
Covering and Packing in Linear Space?

Andreas Björklund1, Thore Husfeldt1,2, Petteri Kaski3, and Mikko Koivisto4

1 Lund University, Department of Computer Science,
P.O.Box 118, SE-22100 Lund, Sweden

andreas.bjorklund@yahoo.se,
2 IT University of Copenhagen,
2300 Copenhagen S, Denmark

thore@itu.dk
3 Helsinki Institute for Information Technology HIIT,
Aalto University, School of Science and Technology,
Department of Information and Computer Science

PO Box 15400, FI-00076 Aalto, Finland
petteri.kaski@tkk.fi

4 Helsinki Institute for Information Technology HIIT,
Department of Computer Science, University of Helsinki,

P.O.Box 68, FI-00014 University of Helsinki, Finland
mikko.koivisto@cs.helsinki.fi

Abstract. Given a family of subsets of an n-element universe, the k-
cover problem asks whether there are k sets in the family whose union
contains the universe; in the k-packing problem the sets are required to
be pairwise disjoint and their union contained in the universe. When the
size of the family is exponential in n, the fastest known algorithms for
these problems use inclusion–exclusion and fast zeta transform, taking
time and space 2n, up to a factor polynomial in n. Can one improve
these bounds to only linear in the size of the family? Here, we answer
the question in the affirmative regarding the space requirement, while
not increasing the time requirement. Our key contribution is a new fast
zeta transform that adapts its space usage to the support of the function
to be transformed. Thus, for instance, the chromatic or domatic number
of an n-vertex graph can be found in time within a polynomial factor of
2n and space proportional to the number of maximal independent sets,
O(1.442n), or minimal dominating sets, O(1.716n), respectively. More-
over, by exploiting some properties of independent sets, we reduce the
space requirement for computing the chromatic polynomial to O(1.292n).
Our algorithms also parallelize efficiently.

1 Introduction

Brute-force algorithms typically use lots of time but only little space. For in-
stance, a straightforward algorithm for the traveling salesman problem (TSP)
? This research was supported in part by the Swedish Research Council, project “Exact

Algorithms” (A.B., T.H.), and the Academy of Finland, Grants 117499 (P.K.) and
125637 (M.K.).

visits every possible permutation of the n cities, requiring about n! computa-
tional steps and a storage for about n cities and two real numbers (in addition
to the input). Designing faster algorithms is sometimes possible by trading space
against time. Indeed, this is precisely what Bellman’s [1, 2] and Held and Karp’s
[7] dynamic programming treatment of TSP does by tabulating partial solutions
across all subsets of the n cities: both the runtime and the space requirement
grow as 2n. A similar story can be told about coloring n-vertex graphs, or set
covering more generally, albeit the 2n bounds were discovered only quite recently
[3]. Reducing the space requirement for these problems appears challenging, and
has been so far achieved only at the cost of increasing the running time [5, 9].

In this paper, we provide an input-sensitive characterization of the space–
time tradeoff for the set cover problem. Regarding the time requirement, the
best one can hope for is an upper bound linear in the size of the input, for all
input must be read in the worst case. While no such lower bound is obvious
for the space requirement, one may, again, regard a linear upper bound as a
plausible goal. Since a set family over an n-set universe may contain an order
of 2n members, the known upper bounds are optimal in the worst case. For the
current techniques, however, the O∗(2n) time and space bounds are tight even
if the given set family is much smaller; throughout the paper the O∗ notation
hides a factor polynomial in n. Here, we show that the set cover problem can be
solved in time O∗(2n) using space only about linear in the size of the set family.
Applications to graph coloring and domatic partitioning yield space bounds of
the form O(Cn) with C < 2, as outlined in the sequel.

When making these claims we assume the general case where the set family
is given explicitly in the input. It goes without saying that in many concrete
problems, such as graph coloring or domatic partitioning, the set family is rep-
resented implicitly, for example in terms of a graph.

Our study actually concerns the counting variant of the set cover problem.
A k-cover over a family F of subsets of an n-element universe U is a tuple of k
members of F whose union contains U . Given F and k, the counting problem asks
the number of k-covers over F, denoted by ck(F). We start with the inclusion–
exclusion formula [3],

ck(F) =
∑

X⊆U

(−1)|U\X|a(X)k , (1)

where a(X) is the number of subsets Y ⊆ X that belong to F. The key obser-
vation is that given F, the numbers a(X), for all X ⊆ U , can be listed (in some
order) in time O∗(2n) and space O∗(|F|).

It is useful to formulate this result slightly more generally in terms of the zeta
transform on the subset lattice, as follows. If f is a function from the subsets of
U to a ring R, then the zeta transform of f , denoted as fζ, is defined by

fζ(X) =
∑

Y⊆X

f(Y), X ⊆ U .

See Fig. 1 for an illustration of the zeta transform.

Theorem 1 Suppose f vanishes outside F and the members of F can be listed
in time O∗(2n) and space O∗(|F|). Then the values fζ(X), for X ⊆ U , can be
listed in time O∗(2n) and space O∗(|F|).

This result, which we will prove in Sect. 3, allows us to easily extend the
result for set covers to an analogous result for set partitions and set packings;
a k-partition (k-packing) over F is a tuple of k pairwise disjoint member of F

whose union equals (is contained in) the universe U . Thus, given Theorem 1, we
have the following.

Theorem 2 Let F be a family of subsets of an n-element universe U , and let k
be an integer. Suppose F can be listed in time O∗(2n) and space O∗(|F|). Then
the k-covers, k-packings, and k-partitions over F can be counted in time O∗(2n)
and space O∗(|F|).

We illustrate this result with some immediate implications to graph coloring
and domatic partitioning. The chromatic number of a graph is the smallest inte-
ger k such that there exists a proper k-coloring of the graph, that is, a mapping
σ from the vertices of the graph to {1, 2, . . . , k} such that σ(u) 6= σ(v) if u and
v are adjacent in the graph. To test if the chromatic number is k or smaller, it
clearly suffices to count the covers of the vertices by k independent sets of the
graph; a subset of vertices is an independent set if it does not contain two adja-
cent vertices. In fact, it suffices to count the covers of the vertices by k maximal
independent sets; an independent set is maximal if it is not a subset of any other
independent set. The maximal independent sets can be trivially listed in time
O∗(2n) and space linear in their number. Because a graph with n vertices can
have at most 3n/3 ≈ 1.44225n maximal independent sets [10], Theorem 2 gives
us the following.

Corollary 1 The chromatic number of a given n-vertex graph can be found in
time O∗(2n) and space O(1.443n).

Analogous reasoning applies to domatic partitioning. The domatic number of
a graph is the largest integer k such that the vertices of the graph be partitioned
into k pairwise disjoint dominating sets; a subset of vertices D is a dominating
set if every vertex not in D is adjacent to at least one vertex in D. To test if
the domatic number is k or larger, it suffices to count the k-packings over the
dominating sets of the graph. Again, it actually suffices to count the k-packings
over the minimal dominating sets; a dominating set is minimal if it contains no
other dominating set. Because a graph with n vertices can have at most 1.716n

minimal dominating sets, which can be listed in time O(1.716n) [6], we have the
following.

Corollary 2 The domatic number of a given n-vertex graph can be found in
time O∗(2n) and space O(1.716n).

It should be noted that the computation of the chromatic or domatic number
are, in essence, decision problems, even though the counting approach is crucial

for obtaining the reduced space requirement. If Theorem 2 is applied, for exam-
ple, to the computation of the chromatic polynomial, which at k evaluates to the
number of proper k-colorings, then the space bound O∗(2n) is tight, since it does
not suffice to consider only maximal independent sets. In this light, we find it
somewhat surprising that the chromatic polynomial can, however, be computed
in much less space by using a variant of the linear-space zeta transform that
exploits the special structure of independent sets. Indeed, in Sect. 5 we prove
the following bound, which improves upon Corollary 1.

Theorem 3 The chromatic polynomial of a given n-vertex graph can be found
in time O∗(2n) and space O(1.292n).

However, the algorithm behind Corollary 1 remains interesting for finding the
chromatic number, as most graphs have a lot fewer maximal independent sets
than the Moon–Moser bound 3n/3 predicts.

Apart from the space savings, our algorithms have also another feature that
should be relevant for practical implementations: they admit efficient paralleliza-
tion. It will be immediate from the descriptions in Sects. 3 and 4 that the algo-
rithms can be executed in parallel on O∗(2n/S) processors, each using time and
space O∗(S), where S varies as given in the space bounds of Theorems 1 and 2
and Corollaries 1 and 2 ; for the chromatic polynomial some extra space is needed
compared to Theorem 3: O∗(2n/2) = O(1.415n) processors, each using time and
space O∗(2n/2). This capability for parallel computation is in sharp contrast to
the previous algorithms [3], for which efficient parallelization to exponentially
many processors seems not possible.

Remark. In the statements above and their proofs in the remainder sections,
we ignore the polynomial factors for simplicity. We note, however, that the hid-
den factors are relatively small. For instance, in Theorem 1 the actual storage
requirement is O(|F|n) bits and ring elements, assuming each member of F is
represented naturally by n bits. Likewise, in Theorem 2 O(|F|n) bits suffice if
we resort to space-efficient manipulation of the involved polynomials, that is,
evaluation–interpolation, each evaluation modulo small relative primes and us-
ing the Chinese Remainder Theorem. We omit a more detailed consideration of
these standard techniques in this paper.

2 Preliminaries

We adopt the following conventions. Let U be a universe of n elements. Denote
by 2U the set of all subsets of U . Let R be an algebraic ring. Let f : 2U → R
be a function. The (down-)zeta transform of f is the function fζ : 2U → R,
defined for all X ⊆ U by fζ(X) =

∑
Y⊆X f(Y). The up-zeta transform of f is

the function fζ ′ : 2U → R, defined for all X ⊆ U by fζ ′(X) =
∑

X⊆Y f(Y).
We employ Iverson’s bracket notation, that is, for a logical proposition P , we

write [P] to indicate a 1 if P is true and a 0 if P is false.
We recall that there is an algorithm, the fast zeta transform [8, 4], that com-

putes the function fζ from the function f in time and space O∗(2n), where we

assume that the arithmetic operations in the ring R take time O∗(1) and each
ring element takes O∗(1) space.

The Fast Zeta Transform. Let the universe be U = {1, 2, . . . , n} and let
f : 2U → R be given as input. The algorithm pseudocode is as follows:

1. Set f0 ← f .
2. For each j = 1, 2, . . . , n do:

(a) For each X ⊆ U , set fj(X)← [j ∈ X]fj−1(X \ {j}) + fj−1(X).
3. Give the output fζ ← fn.

An analogous algorithm is easy to derive for the up-zeta transform.

3 The zeta transform in linear space and O∗(2n) time

This section proves Theorem 1.
Let us fix a bipartition of the universe U ,

U = U1 ∪ U2, U1 ∩ U2 = ∅, |U1| = n1, |U2| = n2 , (2)

for integers n1 and n2 yet to be fixed. We now execute the following algorithm;
see Fig. 2.

The Linear-Space Fast Zeta Transform. Let a family F ⊆ 2U and a
function f : 2U → R that vanishes outside F be given as input. We execute the
following algorithm to output fζ(X) for each X ⊆ U , with comments delimited
by double braces “{{” and “}}”:

1. For each X1 ⊆ U1 do:
(a) For each Y2 ⊆ U2, set g(Y2)← 0.
{{ This step takes O∗(2n2) time and space. }}

(b) For each Y ∈ F , if Y ∩U1 ⊆ X1 then set g(Y ∩U2)← g(Y ∩U2) + f(Y).
{{ This step takes O∗(|F|) time and O∗(2n2) space. }}

(c) Compute h← gζ using the fast zeta transform on 2U2 .
{{ This step takes O∗(2n2) time and space. }}

(d) For each X2 ⊆ U2, output the value h(X2) as the value fζ(X1 ∪X2).

Note that the algorithm evaluates f only at F. Moreover, we can iterate over
the elements of F in arbitrary order.

We establish the correctness of the algorithm by analyzing the contents of
the array h during each iteration of the loop over X1 ⊆ U1:

Lemma 1 For each fixed X1 ⊆ U1, we have h(X2) = fζ(X1 ∪ X2) for all
X2 ⊆ U2.

3

5

1

2

1

7

4

6

1 2 3 4 5 6 7

U

F

f

3

5

1

2

1

7

4

6

1 2 3 4 5 6 7

X

f

Fig. 1. Left: a set family F over U = {1, 2, . . . , 7}, and values f(Y) 6= 0 for every
Y ∈ F. Right: For X = {1, 2, 4, 5, 6}, the value fζ(X) is the sum over its subsets,
4 + 1 + 1 + 5 = 11.

3

5

1

2

1

7

4

6

1 2 3 4 5 6 7

f

U1 U2

5 6 7

2U2

5

1+1

0

0

4

0

0

7

g

5 6 7

5

7

5

5

11

5

7

18

gζ

Fig. 2. The linear space zeta transform. U is partitioned into U1 and U2 with |U2| =
log |F|. We iterate over all X1 ⊆ U1; here we show X1 = {1, 2, 4}. Left: We consider
only the sets Y ∈ F with Y ∩ U1 ⊆ X1. Middle: For each of these sets, add its value
f(Y) to g(Y ∩ U2). Right: Compute the zeta transform gζ on U2. The result contains
the values of fζ for all X for which X ∩ U1 = X1. For example, fζ({1, 2, 4, 5, 6}) =
11. The central point of the analysis is that the most space-expensive operation, the
exponential-space fast zeta transform, operates only on U2, so the whole algorithm
runs in space 2|U2| = |F|.

Proof. Expanding the assignments in the algorithm, we have

h(X2) =
∑

Y2⊆X2

g(Y2)

=
∑

Y2⊆X2

∑
Y ∈F

[Y ∩ U1 ⊆ X1][Y ∩ U2 = Y2]f(Y)

=
∑
Y ∈F

[Y ∩ U1 ⊆ X1][Y ∩ U2 ⊆ X2]f(Y)

=
∑
Y ∈F

Y⊆X1∪X2

f(Y)

=
∑

Y⊆X1∪X2

f(Y)

= fζ(X1 ∪X2) .

ut

Observe that the algorithm runs in O∗(2n1(2n2 + |F|)) time and O∗(2n2)
space. We now fix the values n1 and n2 to n2 = dlog2 |F|e and n1 = n−n2. The
algorithm thus runs in O∗(2n) time and O∗(|F|) space. Note also that because
the computations are independent for each X1 ⊆ U1, they can be executed in
parallel on O∗(2n/|F|) processors.

4 Coverings, packings, and partitions

This section proves Theorem 2.
To compute the number of k-coverings we need to evaluate (1). Note that a

equals fζ, where f is F’s characteristic function, f(Y) = [Y ∈ F]. By Theorem 1
we can list all values a(X) for X ⊆ U in some order within the desired time
and space bounds; while doing so we accumulate their kth powers with the sign
given by (1).

We turn to counting the k-partitions. The idea is to modify the function a
above so that it controls the size of the counted members of the set family [3].
This can be handily formulated [4] by replacing a(X) by a polynomial over an
indeterminate z:

dk(F) =
∑

X⊆U

(−1)|U\X|
(
a0(X) + a1(X)z + · · ·+ an(X)zn

)k

,

where the coefficient aj(X) is the number of subsets Y ⊆ X that belong to F

and are of size j. Now dk(F) is a polynomial whose coefficient of the monomial
zn is the number of k-partitions [4]. To evaluate this expression, we note that
the polynomial a(X) equals gζ(X), where g(Y) = [Y ∈ F]z|Y |. Now, the linear-

space fast zeta transform (Theorem 1, Sect. 3) operates in a ring of polynomials
and lists the polynomials a(X) for all X ⊆ U in the desired time and space.5

Finally, the number of k-packings can be viewed as the number of (k + 1)-
partitions with k members from F, the (k + 1)th member being an arbirary
subset of U . The expression corresponding to (1) becomes

pk(F) =
∑

X⊆U

(−1)|U\X|(1 + z)|X|
(n∑

j=0

aj(X)zj

)k

,

and the coefficient of zn gives the number of k-packings.

5 The chromatic polynomial in time O∗(2n) and space
O(1.2916n)

This section proves Theorem 3.
Let G be a graph with vertex set V , |V | = n. For a positive integer k,

denote by χG(k) the number of proper k-colorings of the vertices of G, that is,
the number of mappings σ from V to {1, 2, . . . , k} so that σ(u) 6= σ(v) holds
whenever u and v are adjacent in G. It is well known that the integer function
χG(t) admits representation as a polynomial of degree n with integer coefficients.
In particular, χG(t) is called the chromatic polynomial of G.

To compute χG(t) from a given G, it suffices to evaluate χG(k) for n + 1
distinct positive integers k and then recover the polynomial in t by interpolation.

Thus, our task reduces to counting the number of proper k-coloring of G.
Equivalently, our task is to count the number of ordered partitions (with empty
parts permitted) of the vertices of G into k independent sets. Put otherwise, it
suffices to compute for every X ⊆ V the z-polynomial

i(X) =
∑

Y⊆X

z|Y |[Y is independent in G] ,

which enables us to recover the number of k-colorings of G as the coefficient of
zn in the polynomial

r =
∑

X⊆V

(−1)n−|X|i(X)k .

Our improved space requirement stems from an algorithm that evaluates the
polynomials i(X) in two parts. To this end, partition the vertex set V into two
disjoint sets, V1 and V2, with |V1| = n1 and |V2| = n2. Let n1 = dn(log 2)/(log 3)e
and n2 = n− n1. Observe that 2n2 = O(1.29153n).

For a set Y ⊆ V , denote by N(Y) ⊆ V the set of vertices that are adjacent
to at least one vertex in Y .
5 To save some polynomial factors in both time and space, the arithmetic should

actually not be carried out directly with polynomials. Instead, the polynomials can
be evaluated at sufficiently many small integers, and finally the coefficients of dk(F)
are recovered via interpolation and the Chinese Remainder Theorem.

Our strategy is to count each independent set Y via its parts Y ∩ V1 and
Y ∩ V2 using the following elementary observation:

Lemma 2 A set of vertices Y ⊆ V is independent in G if and only if Y ∩ V2 ⊆
V2 \N(Y ∩ V1) and both Y ∩ V1 and Y ∩ V2 are independent in G.

V1 V2

YN(Y ∩ V1)

In particular, we observe that Y ∩ V2 is oblivious to Y ∩ V1 except for the
requirement Y ∩V2 ⊆ V2\N(Y ∩V1). Thus, in terms of space usage, we can collect
together all eligible independent sets Y1 ⊆ V1 that share the set Z2 = V2\N(Y1).
The function h in the following algorithm collects such sets Y1 by their size
|Y1| into the coefficients of the polynomial h(Z2). The function h requires only
O∗(2n2) space, which in effect enables us to compute i(X) for all X ⊆ V in time
O∗(2n) and less space than the number of independent sets in G. That is, using
Lemma 2 we can beat the bound in Theorem 1.

In precise terms, we execute the following algorithm to obtain the number of
proper k-colorings of G:

1. Set r ← 0.
2. For each X1 ⊆ V1 do:

(a) For each Z2 ⊆ V2, set h(Z2)← 0.
{{ The array h takes space O∗(2n2). }}

(b) For each Y1 ⊆ X1, set

h(V2 \N(Y1))← h(V2 \N(Y1)) + z|Y1|[Y1 is independent in G].

{{ This loop takes time O∗(2|X1|). }}
(c) For each Y2 ⊆ V2, set `(Y2)← z|Y2|[Y2 is independent in G].
{{ The array ` takes space O∗(2n2). }}

(d) Set g ← (hζ ′) · `.
{{ Here “·” denotes the elementwise product of two arrays.

Time and space O∗(2n2) using the fast up-zeta transform on 2V2 . }}
(e) Set j ← gζ.
{{ Time and space O∗(2n2) using the fast zeta transform on 2V2 . }}

(f) For each X2 ⊆ V2, set r ← r + (−1)n−|X1|−|X2|j(X2)k.
3. Return the coefficient of zn in r.

We establish the correctness of the algorithm by analyzing the contents of
the array i during each iteration of the loop over X1 ⊆ V1:

Lemma 3 For each fixed X1 ⊆ V1, we have j(X2) = i(X1∪X2) for all X2 ⊆ V2.

Proof. Expanding the assignments in the algorithm and using Lemma 2, we have

j(X2) =
∑

Y2⊆X2

g(Y2)

=
∑

Y2⊆X2

hζ ′(Y2)`(Y2)

=
∑

Y2⊆X2

∑
Y2⊆Z2

h(Z2)`(Y2)

=
∑

Y2⊆X2

∑
Y2⊆Z2

∑
Y1⊆X1

z|Y1|[Y1 is independent in G and Z2 = V2 \N(Y1)]

× z|Y2|[Y2 is independent in G]

=
∑

Y1⊆X1

∑
Y2⊆X2

z|Y1∪Y2|[Y1 ∪ Y2 is independent in G]

= i(X1 ∪X2) .

ut

To analyze the running time, we observe that the total running time (over all
iterations X1 ⊆ V1) spent in Step 2(b) of the algorithm is within a polynomial
factor of ∑

X1⊆V1

2|X1| =
n1∑

j=0

(
n1

j

)
2j = 3n1 = O(2n) .

Thus, the total running time is O∗(2n), using space O∗(2n2) = O(1.2916n).
Because the computations are independent for each X1 ⊆ V1, they can be ex-

ecuted in parallel on O∗(2n1) = O(1.5486n) processors. While the space require-
ment per processor is O(1.2916n) and the total running time remains O∗(2n), the
time requirement per processor varies, ranging from O(1.5486n) to O(1.2916n).
This bottleneck can be removed by taking a more balanced scheme with n1

and n2 about equal, yielding time and space O∗(2n/2) for each of the O∗(2n/2)
processors.

References

1. Bellman, R.: Combinatorial Processes and Dynamic Programming. In: Bellman, R.,
Hall, M., Jr. (eds.) Combinatorial Analysis, Proceedings of Symposia in Applied
Mathematics 10, pp. 217–249. American Mathematical Society (1960)

2. Bellman, R.: Dynamic Programming Treatment of the Travelling Salesman Prob-
lem. J. Assoc. Comput. Mach. 9, 61–63 (1962)

3. Björklund, A., Husfeldt, T., Koivisto, M.: Set partitioning via inclusion–exclusion.
SIAM J. Comput. 39, Special Issue for FOCS 2006, 546–563 (2009)

4. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Fourier meets Möbius: fast sub-
set convolution. In: 39th ACM Symposium on Theory of Computing (STOC 2007),
pp. 67–74. ACM Press (2007)

5. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Computing the Tutte polyno-
mial in vertex-exponential time. In: 49th Annual IEEE Symposium on Foundations
of Computer Science (FOCS 2008), pp. 677–686. IEEE Computer Society (2008)

6. Fomin, F.V., Grandoni, F., Pyatkin, A., Stepanov, A.: Combinatorial bounds via
measure and conquer: Bounding minimal dominating sets and applications. ACM
Transactions on Algorithms 5, 1–17 (2008)

7. Held, M., Karp, R.M.: A Dynamic Programming Approach to Sequencing Prob-
lems. J. Soc. Indust. Appl. Math. 10, 196–210 (1962)

8. Kennes, R.: Computational aspects of the Moebius transform of a graph. IEEE
Transactions on Systems, Man, and Cybernetics 22, 201–223 (1991)

9. Koivisto, M., Parviainen, P: A space-time tradeoff for permutation problems.
In: 21st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2010),
pp. 484–492. (2010)

10. Moon, J.W., Moser, L.: On cliques in graphs. Israel Journal of Mathematics 3,
23–28 (1965)

