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Problem statement

• Adding flexibility to hard real-time systems
• The need for flexibility is increasing
• Not all hard RT systems are safety critical
• The gap between theory and practice

• Hard RT memory management in practice
• Non-intrusiveness
• GC work metrics
• GC tuning
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Problem statement

Write once — run anywhere
for hard real-time systems
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Problem statement

Treat scheduling and schedulability analysis
separately
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Feedback scheduling

A simple model

Scheduler Tasks Dispatcher

Usp {Ti} {jobs} ci, U
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Garbage Collection

• Batch GC
• Incremental GC
• Real-time GC
• Non-intrusiveness
• Practically feasible
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Incremental GC

• GC work scheduled at allocations
• Increment size proportional to object size
• Ensuring sufficient progress

w ≥ Wmax ·
a

Fmin

GC performed in-line with application code may

cause long delays
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Semi-concurrent GC scheduling

Presented in [Henriksson 98]

Priority

LP/GC

HP

GC

HP

GC

LP/GC LP/GC

Time

• Only suitable for fixed-priority scheduling
• Requires detailed tuning
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GC work metrics

How to express GC work

• Based on known quantities
• Model the temporal behaviour of the GC
• Feasible to calculate at run-time
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Example

The evacuation pointer metric

W = ∆B

Wmax = Emax

Problem: A small increment of the metric may
take very long time to perform
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An improved metric

W = α · roots + β · ∆S + ∆B + γ · ∆P

Wmax = α · rootsmax + β · Emax + Emax + γ · MHP

Requires tuning of α, β and γ
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Allocation-triggered GC

Issues:

• Bursty allocation
• Concurrent GC in EDF systems
• GC work metric concerns
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Time-triggered GC

• Use time instead of allocation to trigger GC
work

• Calculate GC cycle time that ensures
sufficient progress

• TGC = f(H,Lmax, {ap})
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Time-triggered GC

Properties:

• GC rate independent of application
behaviour

• GC can be scheduled as a normal thread
• GC scheduling independent of work metric

Sven Gestegård Robertz, Lic. Thesis, 2003-05-12 – p.15



Adaptive GC scheduling

Manual tuning of GC scheduling parameters
• requires detailed analysis of both GC and

application
• is based on worst case analysis
• is not possible if the run-time configuration or

platform is unknown
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Adaptive GC scheduling

Two orthogonal problems

• Tune GC cycle time

• Estimate GC work

Execution time
estimator

Cycle time

tuner
Process

scheduler

GC thread

Application
threads

Execution time

GC cycle time

Schedule

Available memory, Allocation rate

Heap state, GC schedule

Allocations
Reference updates
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Feedback scheduling

Scheduler Tasks Dispatcher

Memory manager and

GC auto-tuner

Usp
{Ti} {jobs}

Ci, U

TGC , CGC job

CGC
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GC cycle time auto-tuning

A simple model:

Tremaining this cycle =
F

ȧ

TGC =
F

ȧ
+ Telapsed
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Experiment
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Priorities for memory allocations

Memory is a global resource
• Great responsibility on programmers
• Out-of-memory errors have serious

consequences
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Background

Not all of the code is critical
• Critical parts must always be executed
• Non-critical parts may be skipped if there is

not enough memory to run them safely
• Critical and non-critical "aspects"
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The basic idea

Prevent system from running out of memory by
limiting the amount of non-critical allocations.

• Traditionally done manually
• Run-time system support

Priorities for memory allocations!
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Non-critical limit

Keep the amount of live, non-critically allocated
memory below a safe limit

or

Keep the amount of allocatable memory above
the safe level
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Example: logging

Simple control application
• Control – critical
• Logging – non-critical
void control(){

calculateControlSignal();

updateState();

try{

deliverLogData();

} catch(NoNonCriticalMemoryException e) {

// not enough memory to safely allocate log data

}

}
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Example: all allocations critical
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Example: log data is NC
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Example: closeup
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Example: Performance
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a) log data objects are always allocated 

b) allocation of log data is non−critical 
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Priorities for memory allocations

• Memory requirements can be separated into
“critical” and “non-critical”

• Separate memory and CPU time priorities
Not all of the allocations in a HP process are critical

• Run-time system support
• Improves robustness and performance
• possibility to control the memory behaviour
• Worst case analysis only needed for critical

parts
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Summary

Time-triggered GC scheduling

• Cycle-level view on GC scheduling

• Non-intrusive GC with guaranteed progress under
EDF

• Explicit scheduling parameters fits well into feedback
scheduling and auto tuning systems

Priorities for memory allocation

• Increased robustness and performance

• Possible to control allocation rate
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Future Work

• Integrated prototype
• Feedback scheduling
• Distributed systems, composability
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