
Flexible automatic memory management

for real-time and embedded systems

Sven Gestegård Robertz

Department of Computer Science

Lund University

Sven Gestegård Robertz, Lic. Thesis, 2003-05-12 – p.1



Outline

• Problem statement
• Background
• Time-triggered GC
• Adaptive GC scheduling
• Priorities for memory allocation
• Summary

Sven Gestegård Robertz, Lic. Thesis, 2003-05-12 – p.2



Problem statement

• Adding flexibility to hard real-time systems
• The need for flexibility is increasing
• Not all hard RT systems are safety critical
• The gap between theory and practice

• Hard RT memory management in practice
• Non-intrusiveness
• GC work metrics
• GC tuning

Sven Gestegård Robertz, Lic. Thesis, 2003-05-12 – p.3



Problem statement

Write once — run anywhere
for hard real-time systems

Sven Gestegård Robertz, Lic. Thesis, 2003-05-12 – p.4



Problem statement

Treat scheduling and schedulability analysis
separately

Sven Gestegård Robertz, Lic. Thesis, 2003-05-12 – p.5



Feedback scheduling

A simple model

Scheduler Tasks Dispatcher

Usp {Ti} {jobs} ci, U

Sven Gestegård Robertz, Lic. Thesis, 2003-05-12 – p.6



Garbage Collection

• Batch GC
• Incremental GC
• Real-time GC
• Non-intrusiveness
• Practically feasible

Sven Gestegård Robertz, Lic. Thesis, 2003-05-12 – p.7



Incremental GC

• GC work scheduled at allocations
• Increment size proportional to object size
• Ensuring sufficient progress

w ≥ Wmax ·
a

Fmin

GC performed in-line with application code may

cause long delays

Sven Gestegård Robertz, Lic. Thesis, 2003-05-12 – p.8



Semi-concurrent GC scheduling

Presented in [Henriksson 98]

Priority

LP/GC

HP

GC

HP

GC

LP/GC LP/GC

Time

• Only suitable for fixed-priority scheduling
• Requires detailed tuning

Sven Gestegård Robertz, Lic. Thesis, 2003-05-12 – p.9



GC work metrics

How to express GC work

• Based on known quantities
• Model the temporal behaviour of the GC
• Feasible to calculate at run-time

Sven Gestegård Robertz, Lic. Thesis, 2003-05-12 – p.10



Example

The evacuation pointer metric

W = ∆B

Wmax = Emax

Problem: A small increment of the metric may
take very long time to perform

Sven Gestegård Robertz, Lic. Thesis, 2003-05-12 – p.11



An improved metric

W = α · roots + β · ∆S + ∆B + γ · ∆P

Wmax = α · rootsmax + β · Emax + Emax + γ · MHP

Requires tuning of α, β and γ

Sven Gestegård Robertz, Lic. Thesis, 2003-05-12 – p.12



Allocation-triggered GC

Issues:

• Bursty allocation
• Concurrent GC in EDF systems
• GC work metric concerns

Sven Gestegård Robertz, Lic. Thesis, 2003-05-12 – p.13



Time-triggered GC

• Use time instead of allocation to trigger GC
work

• Calculate GC cycle time that ensures
sufficient progress

• TGC = f(H,Lmax, {ap})

Sven Gestegård Robertz, Lic. Thesis, 2003-05-12 – p.14



Time-triggered GC

Properties:

• GC rate independent of application
behaviour

• GC can be scheduled as a normal thread
• GC scheduling independent of work metric

Sven Gestegård Robertz, Lic. Thesis, 2003-05-12 – p.15



Adaptive GC scheduling

Manual tuning of GC scheduling parameters
• requires detailed analysis of both GC and

application
• is based on worst case analysis
• is not possible if the run-time configuration or

platform is unknown

Sven Gestegård Robertz, Lic. Thesis, 2003-05-12 – p.16



Adaptive GC scheduling

Two orthogonal problems

• Tune GC cycle time

• Estimate GC work

Execution time
estimator

Cycle time

tuner
Process

scheduler

GC thread

Application
threads

Execution time

GC cycle time

Schedule

Available memory, Allocation rate

Heap state, GC schedule

Allocations
Reference updates

Sven Gestegård Robertz, Lic. Thesis, 2003-05-12 – p.17



Feedback scheduling

Scheduler Tasks Dispatcher

Memory manager and

GC auto-tuner

Usp
{Ti} {jobs}

Ci, U

TGC , CGC job

CGC

Sven Gestegård Robertz, Lic. Thesis, 2003-05-12 – p.18



GC cycle time auto-tuning

A simple model:

Tremaining this cycle =
F

ȧ

TGC =
F

ȧ
+ Telapsed

Sven Gestegård Robertz, Lic. Thesis, 2003-05-12 – p.19



Experiment

0 5 10 15 20 25 30
0

0.5

1

1.5

2
x 10

4

A
llo

ca
tio

n 
ra

te

Time

0 5 10 15 20 25 30
0

5

10

x 10
4

F
re

e 
m

em
or

y

0 5 10 15 20 25 30
0

1

2

3

4
x 10

4

G
C

 c
yc

le
 ti

m
e

Sven Gestegård Robertz, Lic. Thesis, 2003-05-12 – p.20



Priorities for memory allocations

Memory is a global resource
• Great responsibility on programmers
• Out-of-memory errors have serious

consequences

Sven Gestegård Robertz, Lic. Thesis, 2003-05-12 – p.21



Background

Not all of the code is critical
• Critical parts must always be executed
• Non-critical parts may be skipped if there is

not enough memory to run them safely
• Critical and non-critical "aspects"

Sven Gestegård Robertz, Lic. Thesis, 2003-05-12 – p.22



The basic idea

Prevent system from running out of memory by
limiting the amount of non-critical allocations.

• Traditionally done manually
• Run-time system support

Priorities for memory allocations!

Sven Gestegård Robertz, Lic. Thesis, 2003-05-12 – p.23



Non-critical limit

Keep the amount of live, non-critically allocated
memory below a safe limit

or

Keep the amount of allocatable memory above
the safe level

Sven Gestegård Robertz, Lic. Thesis, 2003-05-12 – p.24



Example: logging

Simple control application
• Control – critical
• Logging – non-critical
void control(){

calculateControlSignal();

updateState();

try{

deliverLogData();

} catch(NoNonCriticalMemoryException e) {

// not enough memory to safely allocate log data

}

}

Sven Gestegård Robertz, Lic. Thesis, 2003-05-12 – p.25



Example: all allocations critical

Sven Gestegård Robertz, Lic. Thesis, 2003-05-12 – p.26



Example: log data is NC

Sven Gestegård Robertz, Lic. Thesis, 2003-05-12 – p.27



Example: closeup

17.4 17.6 17.8 18 18.2 18.4 18.6 18.8 19 19.2 19.4

0
1
2
3

th
re

ad

17.4 17.6 17.8 18 18.2 18.4 18.6 18.8 19 19.2 19.4
0

2

4

6

8
x 10

4

fre
em

em

17.4 17.6 17.8 18 18.2 18.4 18.6 18.8 19 19.2 19.4
0

2

4

6

8
x 10

4

LP
 a

llo
ce

d

17.4 17.6 17.8 18 18.2 18.4 18.6 18.8 19 19.2 19.4

0

1

NC
 a

llo
c

time/seconds

Sven Gestegård Robertz, Lic. Thesis, 2003-05-12 – p.28



Example: Performance

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−8

−6

−4

−2

0

2

4

6

8

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−8

−6

−4

−2

0

2

4

6

8

a) log data objects are always allocated 

b) allocation of log data is non−critical 

Sven Gestegård Robertz, Lic. Thesis, 2003-05-12 – p.29



Priorities for memory allocations

• Memory requirements can be separated into
“critical” and “non-critical”

• Separate memory and CPU time priorities
Not all of the allocations in a HP process are critical

• Run-time system support
• Improves robustness and performance
• possibility to control the memory behaviour
• Worst case analysis only needed for critical

parts

Sven Gestegård Robertz, Lic. Thesis, 2003-05-12 – p.30



Summary

Time-triggered GC scheduling

• Cycle-level view on GC scheduling

• Non-intrusive GC with guaranteed progress under
EDF

• Explicit scheduling parameters fits well into feedback
scheduling and auto tuning systems

Priorities for memory allocation

• Increased robustness and performance

• Possible to control allocation rate

Sven Gestegård Robertz, Lic. Thesis, 2003-05-12 – p.31



Future Work

• Integrated prototype
• Feedback scheduling
• Distributed systems, composability

Sven Gestegård Robertz, Lic. Thesis, 2003-05-12 – p.32


	
	Outline
	Problem statement
	Problem statement
	Problem statement
	Feedback scheduling
	Garbage Collection
	Incremental GC
	Semi-concurrent GC scheduling
	GC work metrics
	Example
	An improved metric
	Allocation-triggered GC
	Time-triggered GC
	Time-triggered GC
	Adaptive GC scheduling
	Adaptive GC scheduling
	Feedback scheduling
	GC cycle time auto-tuning
	Experiment
	Priorities for memory allocations
	Background
	The basic idea
	Non-critical limit
	Example: logging
	Example: all allocations critical
	Example: log data is NC
	Example: closeup
	Example: Performance
	Priorities for memory allocations
	Summary
	Future Work

