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Abstract

Languages with automatic memory management have made their en-
trance on the real-time and control systems scene, and recent development
in research on scheduling of garbage collection has produced different ap-
proaches to real-time garbage collection. As different systems have differ-
ent real-time requirements, there is not one approach to garbage collection
scheduling that performs best in all cases. Rather, there are trade-offs be-
tween predictability and throughput, memory usage and CPU overhead,
etc.

To facilitate the study of the interaction between real-time and mem-
ory requirements, a memory management simulator has been developed
using the Matlab/Simulink-based simulator TrueTime. The simulator al-
lows simulation of a complete computer-controlled physical system, with
co-simulation of an entire control system, including the memory system,
the real-time kernel and the process under control.

1 Introduction

The memory simulator was written to allow experimentation with GC schedul-
ing and studies of how memory management costs affect both real-time and
control performance to be carried out in a controlled environment. Having a
model of a garbage collected heap in the Matlab/TrueTime environment allows
co-simulation of a continous-time dynamic system (process), a real-time ker-
nel, and a memory system. As both the tasks controlling the process and the
garbage collector are executed on the simulated TrueTime kernel, a complete
control system can be simulated.

The fundamental approach to the GC simulation described here is to use an
abstracted heap representation to record the set of objects (live, dead and free)
on the heap, a GC work metric to determine the CPU time required to perform
a GC cycle given a certain heap state, and a TrueTime task performing garbage
collection. The simulation is not intended for detailed study of the performance
of GC algorithms, but the model is generic enough to allow comparisons between
how different types of algorithms perform on a certain application.



The GC simulation is based on a generic heap model and a mark-sweep
garbage collector. The heap model is driven by the mutator’s allocation of
objects and pointer assignmnent, and the GC is used to determine the number
of live and dead objects (the mark routine) or to reclaim memory (sweep).
The GC executes in a separate task. In each invocation of the GC task, the
heap state is measured, and the GC work function is evaluated, and when the
execution time of the GC task is equal or greater than the total work of that cycle
(according to the work function), the cycle finishes. This makes the simulation
fairly accurate, as the actions of the mutator affects the CG workload of the
current cycle. That also means that the scheduling will affect the amount of
floating garbage: With a concurrent GC, if the GC gets much CPU time early
in the cycle, and finishes early, less objects will have had time to die.

1.1 TrueTime

The simulator is implemented on top of TrueTime, a Matlab and Simulink-
based system for studying embedded control systems by co-simulating the timing
properties of a real-time kernel and the continous time dynamics of the process
under control [HCÅ02].

TrueTime makes it possible to simulate the temporal behavior of a multi-
tasking kernel and to study how the timing affects the performance controller
tasks. Tasks are implemented as Matlab m-files, or in C++. Processes under
control are modeled as ordinary Simulink blocks. Different scheduling policies
may be used, e.g., priority or deadline based scheduling. The execution times of
tasks can be constant or time-varying, using some suitable probability distribu-
tion. The effects of context switches and interrupts are taken into account, as
well as blocking due to task synchronization using events and monitors. True-
Time also includes network blocks to simulate timing effects of different network
protocols, which makes it possible to simulate distributed systems.

Figure 1 shows a screenshot of the memory simulator. The physical process
and the control computer are simulink blocks, and both the states of the process
and different signals in the computer, e.g., the schedule, amount of free memory,
GC cycle time and execution time, etc, are available as Simulink signals.

1.2 GC work metrics

The calculation of the GC work required to complete a GC cycle is based on a
GC work function, or GC metric [Hen98, Rob06]. That allows simulation of any
tracing GC, by simply changing the work function. The work metric function
has the signature

work = gc_metric(livecount, livebytes, liverefs, deadcount, deadbytes)

Equation 1 shows the work function for a basic mark-sweep collector, and
Equation 2 describes the cost of a mark-compact algorithm. In both cases, the
terms with livecount and liverefs represent the cost of marking objects, and
the term with deadbytes represents object initialisation.

WMS = α · livecount + β · liverefs + γc · deadcount + γs · deadbytes (1)

WMC = αc · livecount + β · liverefs + αs · livebytes + γs · deadbytes; (2)
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Figure 1: Screenshot of the TrueTime-based memory simulator.

Thus, these metrics allow modelling the effects of object size distribution and
pointer density, but not the actual placement of objects on the heap. Factors
in the GC work that depend on object placement have to be calculated based
on assumptions on e.g. the probability that an object will have to be moved or
that free space can be coalesced.

2 Design

2.1 Data structures

The heap is represented by a matrix where each row (or ”slot”) represents one
object. Slots representing allocated objects are on the format
[size, mark, nptrs, ptr1, ... , ptrn, don’t care, ... ],
and slots representing free space have the form
[0, next_free, don’t care, ...]

For the allocated objects,

size is the size in bytes

mark is 1 if marked, 0 otherwise

nptrs is the number of pointers

ptrk is the heap slot pointed to by pointer k

The left over space at the end of the slot, after the last pointer, is undefined.

For the free slots, next_free is the index of the next slot in the freelist, or 0

if this is the last. The rest of the vector elements, at the end of the slot, are
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undefined. As all matrix rows are of the same length; the ”real” size is indicated
by the size element. slotlength must be set to accomodate the largest slot.

For example, if an object can contain at most four pointers, the slots would
look like in Table 1. A simple object graph is shown in Figure 2, and an example
of a corresponding heap is given in Table 2.

size mark 2 p1 p2 - -
0 next free - - - - -

Table 1: Layout of the heap representation; the first row shows an allocated
object, the second row shows a free slot.
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Figure 2: Simple object graph

The two variables free and used are used to record the actual memory
usage, and the locations of free slots are recorded using a free-list, to facilitate
allocation.

64 mark 2 4 6 - -
0 3 - - - - -
0 5 - - - - -
32 mark 1 1 - - -
0 0 - - - - -
48 mark 0 - - - -

Table 2: Layout of the heap representation corresponding to Figure 2. Objects
are of size 64, 32 and 48 bytes, respectively. The slots 2, 3 and 5 are free, and
the freelist variable points to the first free slot, 2.
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2.2 Operation

The GC simulation is based on the assumption that the amount of GC work
can be sufficiently well approximated by a gc metric:

CGC = f(livecount, livebytes, liverefs, deadcount, deadbytes (3)

for some function f .
Internally in the simulation, a batch mark-sweep collector is used. The mark

phase (which can be run at any time, and any number of times) is used to obtain
the heap state.

Given the heap state, any (tracing) GC algorithm can be simulated using
its corresponding metric. For instance, if we want to simulate a concurrent
mark-copy collector, at each increment we call gc_mark to get the current heap
state, and insert this into the gc metric function to obtain the total GC work
(in increments) required to complete a GC cycle. When this number is equal
to the number of increments performed during the current cycle, the cycle is
finished, and the total execution time is the number of increments times the
time of a single increment.

When the simulated GC has completed its cycle, GC is performed on the
heap representation by calling gc_sweep.

Floating garbage occurs in the simulated system for two reasons. First, in
the gc_sweep routine, a probability (floatprob) for that an unmarked object
will float for one cycle, can be set. Second, as mentioned, the scheduling of the
GC task affects the amount of floating garbage; if the CPU utilization is low
and the GC finishes long before its deadline, less objects have time to die and
the amount of floating garbage increases.

The current implementation assumes that the simulated GC only makes
memory available to the mutator at the end of each cycle, as a moving or
copying collector does. This has the drawback that it cannot simulate GCs
that continously free memory, e.g. traditional incremental mark-sweep. From
a real-time point of view, however, this is not a significant limitation as relying
on using memory being freed before the deadline of the GC means borrowing
memory from the following GC cycle. While this might help avoid an out-of-
memory situation due to too slow GC progress, it means that the real-time
performance of the mutator relies on the placement of objects in memory. From
a robustness point of view, that is unacceptable. Thus, the limitation does not
affect the simulation results, with relation to schedulability.

3 Usage

This section describes how mutator and collector tasks are implemented.

3.1 Mutator operations

The operations available to the mutator is the standard set: object allocation,
field access and pointer update. Additionally, the root stack push and pop are
required to facilitate stack scanning.
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Technically, there are no stacks, per se; all references reside on the heap 1.
From a user perspective, root operations behave almost as expected, with the
difference that the object that will become a root must be allocated before it is
pushed on the root stack.

listhead = allocate(12,3);

push_root(listhead);

Field access (a.b) is done through the ptr(a,b) function. Pointer update
(a.b = c) is done with ptr assign(a,b,c). Continuing the example, the object
referenced by listhead represents a singly linked list with the first element
referenced by field 3. The following code allocates an object of size elem size

and inserts it at the beginning:

tmp = allocate(elem_size,2);

first = ptr(listhead,3);

ptr_assign(tmp,1,first);

ptr_assign(data.listhead,3,tmp);

In the above example, the field is accessed using filed numbers. Symbolic
names can be introduced by using variables:

listhead_thelist = 3;

...

first = ptr(listhead, listhead_thelist);

3.2 Collector operations

The collector implementation is based on tracing the heap to determine the heap
state, and using the gc_metric function to calculate the total amount of GC
work required to complete the current cycle. For each invocation of the gc_task
function, one GC increment is performed, and when totalwork increments have
been performed, the GC cycle is completed.

The TrueTime task representing the GC, gc_task models a concurrent GC.
In the following, a time-triggered GC [RH03] is asssumed. I.e., the scheduling
is controlled by assigning a period time and a deadline to the GC task. Thus,
in a system with scheduling parameters calculated off-line, the parameters are
set when the GC task is created. In principle, an adaptive scheduler would do
the following:

TGC = calculateTGC();

ttSetPeriod(TGC,’gc_task’);

ttSetDeadline(GC, ’gc_task’);

A snippet from the TrueTime gc_task illustrates the operation of the simula-
tion. When the GC is running, the following code is executed in each invocation
(corresponding to one TrueTime segment)

1The reason for this is to avoid having to implement a reference data structure. Instead,

references are simply indices in the heap vector.
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gc_progress = gc_progress + 1;

[livecount, livebytes, liverefs] = gc_mark;

deadcount = alloccount-(livecount+floatingcount);

deadbytes = used-(livebytes+floatingbytes);

totalwork = gc_metric(livecount, livebytes, liverefs, deadcount, deadbytes);

if gc_progress > totalwork

gc_state = 2; % GC cycle finished

end

exectime = gc_time_inc;

The variable gc_time_inc holds the time (in CPU seconds) one atomic GC
increment takes. Thus, when the GC cycle finishes, the execution time of the
GC task is gc progress · gc time inc CPU seconds.

After enough work required to complete the GC cycle has been performed,
the actual reclamation of memory is done by calling gc_sweep() and gc_flip:

[deadcount, deadmem] = gc_sweep;

gc_flip;

If desired, the flip can be delayed until the following GC cycle is triggered.

4 Conclusion

The aim of this tool to allow co-simulation of both real-time and control perfor-
mance of an embedded control system with automatic memory management. It
is not intended for performing detailed study on the performance of a particular
GC algorithm implementation.

The strength of the tool is that the model of the simulated GC algorithm
does not require implementation of GC algorithms, but only a GC work function
to be identified. That makes it easy to add or change the GC algorithms used
for simulation, while providing reasonably realistic simulation. As the GC work
function is evaluated at each GC invocation, the actual scheduling affects the
amount of GC work, the amount of floating garbage, etc.

The main weakness of the described approach is speed: the overhead of
tracing the heap in order to find the heap state is significant, especially if very
fine-grained simulation (i.e., very short GC increments) is required. Thus, there
is a trade-off between simulation granularity and simulation speed. Also, the
simulation does not offer instruction-level correctness, as it is based on approx-
imative models.
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A API

This section lists the different functions of the simulator. The format of the
listing is as follows, with two or three lines per function.

file name

signature, if the function takes parameters or returns a value

description

First, the operations used by the mutator is presented, and then the ones used
by the collector.

A.1 Mutator API

allocate.m

allocate(size, nptrs)

Perform an allocation, returns a pointer to the new object

pop_root.m

Pop a root from the root stack

ptr.m

res = ptr(a, b)

performs field access : return a.b ;

ptr_assign.m

ptr_assign(a, b, c)

performs pointer assignment: a.b = c;

push_root.m

Push a root on the root stack

A.2 GC

gc_flip.m

Perform a flip (or corresponding). I.e., start a new GC cycle

gc_mark.m

function [livecount, livemem, refcount] = gc_mark()

Perform the mark phase

gc_metric.m

gcwork = gc_metric(livecount, livebytes, liverefs, deadcount, deadbytes)

Compute the amount of GC work (in increments) required for a certain

heap state, for mark-sweep, mark-copy and copying collection, respectively

The result, gcwork, is a vector containing the result of the gc work function

for each of the supported GC algorithms.
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gc_sweep.m

[deadcount, deadmem] = gc_sweep()

memman.m

initialize the heap
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