
Tutorial 3

Dynamic programming

Problem 15.3 (405): Give anO(n2)-time algorithm for finding an optimal bitonic traveling-salesman
tour. Scan left to right, maintaining optimal possibilities for the two parts of the tour.

Solution: Sort the points byx-coordinate, left to right, inO(n log n) time. Let the sorted points be
p1, p2, . . . , pn.

Subproblems: bitonic pathsPij , wherei ≤ j, that includes pointsp1, . . . , pj . It starts atpi, goes strictly
left to p1, and then goes strictly right topj . Going strictly left means that each point in the path has a
lower x-coordinate than the previous point (the indices of the sorted points form a strictly decreasing
sequence). Likewise, going strictly right means that the indices of the sorted points form a strictly
increasing sequence. Note thatpj is the rightmost point inPij and is on the rightgoing subpath. The
leftgoing subpath may be degenerate, consisting of justp1.

Let |pipj| be the euclidean distance betweenpi andpj, andb[i, j], for 1 ≤ i ≤ j ≤ n, be the length of
the shortest bitonic pathPij . Since the leftgoing subpath may be degenerate, we can easily compute all
valuesb[1, j]. The only value ofb[i, i] that we will need isb[n, n], which is the length of the shortest
bitonic tour. Hence:

b[1, 2] = |p1p2|

b[i, j] = b[i, j − 1] + |pj−1pj|, for i < j − 1

b[j − 1, j] = min1≤k<j−1{b[k, j − 1] + |pkpj|}

Any bitonic path ending atp2 hasp2 as its rightmost point, so it consists only ofp1 andp2. Its length is
therefore|p1p2|.

Consider a shortest bitonic pathPij . If pj−1 is on its rightgoing subpath, then it immediately preceeds
pj. The subpath fromp1 to pj−1 must be a shortest subpathPi,j−1, since we otherwise could replace it
to get a shorter bitonic path thanPij . The length ofPij is therefore given byb[i, j − 1] + |pj−1pj |.

If pj−1 is on the leftgoing subpath, then it must be its rightmost point, soi = j − 1. Thenpj has an
immediate predecessorpk, for k < j − 1, on the rightgoing subpath. Optimal substructure again applies:
the subpath frompk to pj−1 must be a shortest bitonic pathPk,j−1. The length ofPij is therefore given
by min1≤k<j−1{b[k, j − 1] + |pkpj|}.

In an optimal bitonic tour, one of the points adjacent topn must bepn−1, so b[n, n] = b[n − 1, n] +
|pn−1pn|. To reconstruct the points on the shortest bitonic tour, we definer[i, j] to be the index of the
immediate predecessor ofpj on the shortest bitonic pathPij . Because the immediate predecessor ofp2

onP1,2 is p1 , we know thatr[1, 2] must be 1.

Since we iterate overi andj the time isO(n2), which dominates the initial sorting time.

Problem 15-6 (408): In a company with a hierarchical structure each employee has a conviviality rating.
Give an efficient algorithm to make up the guest list to a company party, maximizing the sum of the
conviviality ratings without inviting both an empoyee and the immediate supervisor.

Solution: Each employee has a conviviality ratingr. Use dynamic programming to compute the largest
sumR of ratings such that persons on adjacent levels in the hierarchy are not invited. Start the compu-
tation at the leaves. Each employee is a node,v, and a root in a subtreeT (v). Its childrenc[v] are the

1

nodes directly below, and its grandchildrengc[v] are those one level further down. Ifv is a leaf then
R(v) = r[v]. Otherwise the maximum ratingR(v) of T (v) is given by

R(v) = max { (r[v] +
∑

u∈gc[v]

R(u)),
∑

u∈c[v]

R(u)}

Either v is included in the guest list forT (v) (first term) or not. If there are no grandchildren, let
the corresponding terms have rating 0. The value at the root gives the answer. By updating lists of
pointers to the children or grandchildren that gaveR(v), we can at the end identify the party guests by
traversing these lists from the root. The rating of a node is looked up twice, as child and grandchild,
when computing theR-value of another node. And anR-value is never changed. Hence the total time is
O(n), wheren is the number of employee.

Problem 25.2-8 (700): Give anO(V E) algorithm to compute the transitive closure of a directed graph.

Solution: Run anO(E)-time graph search (like DFS) from each vertex. This determines all the vertices
vj that can be reached from each originvi (i.e. sets the bittij to 1). Since there are|V | vertices to start
from we getO(V E) time.

Note: The transitive closure can be computed inO(M(n)) time, whereM(n) is the time to multiply two
n × n matrices. I will present the algorithm if anyone is interested.

Amortized analysis

Problem 17.1-3 (456): Performn operations on a data structure, where theith operation costsi if i is a
power of 2, and 1 otherwise. Use aggregate analysis to determine the amortized cost per operation.

Solution: The cost of theithe operation

ci =

{

i if i = 2j , j ≥ 1
1 otherwise

Amortized cost overn operations:

n
∑

i=1

ci ≤ n +
log n
∑

j=1

2j = n + 2(n − 1) = 3n − 2 < 3

Problem 17.2-2 (459): Redo previous problem using the accounting method.

Solution: Charge each operation three coins. Ifi is not a power of 2, use one coin to pay for the operation,
and save two. Wheni = 2j , the2(2j − 2j−1) = 2(2j−1) = 2j saved coins pay for the operation.

Problem 17.3-2 (462): Redo previous problem using the potential method.

Solution: Let the potential after operationi > 1 beΦi = 2(i − 2⌊log i⌋) andΦ1 = 1.

i = 2j > 1 : ĉi = ci + Φi − Φi−1 = i + 2(i − i) − 2((i − 1) − i/2) = 2.

2j < i = 2j + k < 2j+1 : ĉi = 1 + 2((2j + k) − 2j) − 2((2j + k − 1) − 2j) = 3.

The amortized operation cost is≤ 3.

Discussion of assignment 3

1. Start by sorting. Assumen ≤ m.

2. Insertion and removal can have different amortized cost.Determine the lowest (constant) cost for
both.

2

