Tutorial 3

Dynamic programming

Problem 15.3 (405): Give an $O\left(n^{2}\right)$-time algorithm for finding an optimal bitonic traveling-salesman tour. Scan left to right, maintaining optimal possibilities for the two parts of the tour.

Solution: Sort the points by x-coordinate, left to right, in $O(n \log n)$ time. Let the sorted points be $p_{1}, p_{2}, \ldots, p_{n}$.

Subproblems: bitonic paths $P_{i j}$, where $i \leq j$, that includes points p_{1}, \ldots, p_{j}. It starts at p_{i}, goes strictly left to p_{1}, and then goes strictly right to p_{j}. Going strictly left means that each point in the path has a lower x-coordinate than the previous point (the indices of the sorted points form a strictly decreasing sequence). Likewise, going strictly right means that the indices of the sorted points form a strictly increasing sequence. Note that p_{j} is the rightmost point in $P_{i j}$ and is on the rightgoing subpath. The leftgoing subpath may be degenerate, consisting of just p_{1}.

Let $\left|p_{i} p_{j}\right|$ be the euclidean distance between p_{i} and p_{j}, and $b[i, j]$, for $1 \leq i \leq j \leq n$, be the length of the shortest bitonic path $P_{i j}$. Since the leftgoing subpath may be degenerate, we can easily compute all values $b[1, j]$. The only value of $b[i, i]$ that we will need is $b[n, n]$, which is the length of the shortest bitonic tour. Hence:

$$
\begin{aligned}
b[1,2] & =\left|p_{1} p_{2}\right| \\
b[i, j] & =b[i, j-1]+\left|p_{j-1} p_{j}\right|, \text { for } i<j-1 \\
b[j-1, j] & =\min _{1 \leq k<j-1}\left\{b[k, j-1]+\left|p_{k} p_{j}\right|\right\}
\end{aligned}
$$

Any bitonic path ending at p_{2} has p_{2} as its rightmost point, so it consists only of p_{1} and p_{2}. Its length is therefore $\left|p_{1} p_{2}\right|$.

Consider a shortest bitonic path $P_{i j}$. If p_{j-1} is on its rightgoing subpath, then it immediately preceeds p_{j}. The subpath from p_{1} to p_{j-1} must be a shortest subpath $P_{i, j-1}$, since we otherwise could replace it to get a shorter bitonic path than $P_{i j}$. The length of $P_{i j}$ is therefore given by $b[i, j-1]+\left|p_{j-1} p_{j}\right|$.

If p_{j-1} is on the leftgoing subpath, then it must be its rightmost point, so $i=j-1$. Then p_{j} has an immediate predecessor p_{k}, for $k<j-1$, on the rightgoing subpath. Optimal substructure again applies: the subpath from p_{k} to p_{j-1} must be a shortest bitonic path $P_{k, j-1}$. The length of $P_{i j}$ is therefore given by $\min _{1 \leq k<j-1}\left\{b[k, j-1]+\left|p_{k} p_{j}\right|\right\}$.

In an optimal bitonic tour, one of the points adjacent to p_{n} must be p_{n-1}, so $b[n, n]=b[n-1, n]+$ $\left|p_{n-1} p_{n}\right|$. To reconstruct the points on the shortest bitonic tour, we define $r[i, j]$ to be the index of the immediate predecessor of p_{j} on the shortest bitonic path $P_{i j}$. Because the immediate predecessor of p_{2} on $P_{1,2}$ is p_{1}, we know that $r[1,2]$ must be 1 .

Since we iterate over i and j the time is $O\left(n^{2}\right)$, which dominates the initial sorting time.
Problem 15-6 (408): In a company with a hierarchical structure each employee has a conviviality rating. Give an efficient algorithm to make up the guest list to a company party, maximizing the sum of the conviviality ratings without inviting both an empoyee and the immediate supervisor.

Solution: Each employee has a conviviality rating r. Use dynamic programming to compute the largest sum R of ratings such that persons on adjacent levels in the hierarchy are not invited. Start the computation at the leaves. Each employee is a node, v, and a root in a subtree $T(v)$. Its children $c[v]$ are the
nodes directly below, and its grandchildren $g c[v]$ are those one level further down. If v is a leaf then $R(v)=r[v]$. Otherwise the maximum rating $R(v)$ of $T(v)$ is given by

$$
R(v)=\max \left\{\left(r[v]+\sum_{u \in g c[v]} R(u)\right), \sum_{u \in c[v]} R(u)\right\}
$$

Either v is included in the guest list for $T(v)$ (first term) or not. If there are no grandchildren, let the corresponding terms have rating 0 . The value at the root gives the answer. By updating lists of pointers to the children or grandchildren that gave $R(v)$, we can at the end identify the party guests by traversing these lists from the root. The rating of a node is looked up twice, as child and grandchild, when computing the R-value of another node. And an R-value is never changed. Hence the total time is $O(n)$, where n is the number of employee.
Problem 25.2-8 (700): Give an $O(V E)$ algorithm to compute the transitive closure of a directed graph.
Solution: Run an $O(E)$-time graph search (like DFS) from each vertex. This determines all the vertices v_{j} that can be reached from each origin v_{i} (i.e. sets the bit $t_{i j}$ to 1). Since there are $|V|$ vertices to start from we get $O(V E)$ time.
Note: The transitive closure can be computed in $O(M(n))$ time, where $M(n)$ is the time to multiply two $n \times n$ matrices. I will present the algorithm if anyone is interested.

Amortized analysis

Problem 17.1-3 (456): Perform n operations on a data structure, where the i th operation costs i if i is a power of 2 , and 1 otherwise. Use aggregate analysis to determine the amortized cost per operation.
Solution: The cost of the i the operation

$$
c_{i}= \begin{cases}i & \text { if } i=2^{j}, j \geq 1 \\ 1 & \text { otherwise }\end{cases}
$$

Amortized cost over n operations:

$$
\sum_{i=1}^{n} c_{i} \leq n+\sum_{j=1}^{\log n} 2^{j}=n+2(n-1)=3 n-2<3
$$

Problem 17.2-2 (459): Redo previous problem using the accounting method.
Solution: Charge each operation three coins. If i is not a power of 2 , use one coin to pay for the operation, and save two. When $i=2^{j}$, the $2\left(2^{j}-2^{j-1}\right)=2\left(2^{j-1}\right)=2^{j}$ saved coins pay for the operation.

Problem 17.3-2 (462): Redo previous problem using the potential method.
Solution: Let the potential after operation $i>1$ be $\Phi_{i}=2\left(i-2^{\lfloor\log i\rfloor}\right)$ and $\Phi_{1}=1$.

$$
\begin{aligned}
& i=2^{j}>1: \hat{c_{i}}=c_{i}+\Phi_{i}-\Phi_{i-1}=i+2(i-i)-2((i-1)-i / 2)=2 . \\
& 2^{j}<i=2^{j}+k<2^{j+1}: \hat{c_{i}}=1+2\left(\left(2^{j}+k\right)-2^{j}\right)-2\left(\left(2^{j}+k-1\right)-2^{j}\right)=3 .
\end{aligned}
$$

The amortized operation cost is ≤ 3.

Discussion of assignment 3

1. Start by sorting. Assume $n \leq m$.
2. Insertion and removal can have different amortized cost. Determine the lowest (constant) cost for both.
