Lecture9: Computational geometry

Has applications in, for instance, computer graphics, tiobpVLSI design, and computer-aided design.

We consider finitely representable objects in the plane as®g of: pointp = (z,y), lines (going
through two points), line segmentspt, directed segmentsp: .

A polygon is a closed curve of segments. lsisple if the curve does not intersect itself.

For aconvex polygon a segment between two arbitrary points, internal or on thbary of the polygon,
has all its points internal or on the boundary.

Properties of line segments

We can answer the following questionsdi{(1) time, using additions, subtractions, multiplications and
comparisons.

1. Is the directed segmepgp; clockwise frompypa?
2. Givenpop: andp;p, is there a left turn ap; ?

3. Dopip, andpspy intersect each other?

The cross product of vectorsp; andp, can be seen as the signed area of the parallelogram formed by
the four points(0,0), p1, p2, andp; + p2 = (1 + x2,y1 + y2), i.€. the determinant of a matrix:

xr xr
! 2) = 2X1Y2 — T2Y1 = —P2 X P1

X = det
p1 X p2 <y1 Yo

If p1 x po > 0thenp, is clockwise frompy wrt origo (0, 0). If p; x po < 0 thenp; is counterclockwise
from po. Whenp, x po = 0 the vectors are collinear, i.e. pointing in the same or ojpakrections.

So to decide whetherp; is clockwise frompop,, compute the cross produd; — po) X (p2 — po) =
(1 — 20)(y2 — Yo) — (T2 — o) (Y1 — Yo)-

Decideif consecutive segmentsturn left or right

Given pop1 andpyp- is there a left turn ap;? Equivalently, we want to know which way an angle
/pop1p2 turns. Just check ifp- is clockwise or counterclockwise fropyp;, by computing the cross
product(p; — po) x (p2 — po). Ifitis positive, there’s a left turn at; .

Decideif two segments inter sect

First try a quick rejection: the segments cannot intersettieir bounding boxes do not intersect. The
bounding box is the smallest rectangle whose sides arelglatalthe z- or y-axis and contains the
segment.

If the bounding boxes intersect, investigate if each segrstesddles the line containing the other seg-
ment; in which case the segments do intersect.

Can use the method with cross products to decidgyf straddles the line containing the poiptsand
po, and if p1p» straddles the line containing the poimtsandp,. The first holds ifp1ps andp1ps have

different orientations relative to, p», the other holds if3p; andpsp, have different orientations relative
to p3—p>4.

Determine relative orientations with cross product by &ireg if we get different signs fofps — p1) x
(p2 — p1) and(ps — p1) x (p2 — p1), and for(p1 — p3) x (p4 — p3) and(pz — p3) x (pa — p3).

In the 3rd edition of the course book the quick rejection stegkipped, but then intersection between
p1p2 andpspy has to include &oundary case when the segments are collinear and overlapping.

I nter section between n segments

We just want to find one intersection; on tutorial 4 we consitie problem of finding all intersections.
The segments can be arbitrarily oriented, but for simplieie assume they are not vertical. Can then

order the segments relatively indirection wrt thex value of a sweep line (Figure 33.4 page 1023). We
maintain two sets of data:

Sweep-line status: a red-black tre€l” of segments that the sweep line currently intersects, ivelgt
ordered. At insertion and deletion froi, the usual comparisons between keys needed for tree tehvers
are replaced by cross products to determine the relativer imetween segments (tutorial 4).

Event list: the2n segment endpoints sorted byalue.
1. If the event is a left endpoint of a segménhen insert into 7.

If ¢ intersects a neighbor above or below itfirthen we have found an intersection.

2. If the event is a right endpoint of a segmérihen delete from T'.
If ¢’s two neighbors intersect then we have found an intersectio

Example: Figure 33.5 page 1026.

Sorting the event list take@(n log n) time. UpdatingI’ takesO(log n) time for at mosn events, i.e.
O(n logn) total time.

Convex hulls

Givenn points, compute the smallest convex polygon of segmenteti@dose the points.
[llustration: a tight rubber band that surrounds nails sticking out fronoard.

Graham’s scan: Choose lowest pointg, sort other points by polar angle counterclockwise aropgnd
Scan the points in that ord€p, . . . , p,—1). Note thatp; andp,,_; must be vertices of the convex hull.

® p5
ll‘ e NP3 ® p2
n‘ p4 // ///
6 e -
. [’ -
N 'l 1’ ’ ”' pl
p0

Let <q0> q1,--- ,qk> be the convex hull fOlfpo,pl, ce ,pi>, whereqy = po, ¢1 = p1.
For the next poinp;; consider the angle betweep ;¢ andqp; 1.

If there’s a left turn theny,,1 IS p;11, otherwise consider the angle betwegnﬁk._l and qk_fpiﬂ.
Eliminate vertices on the list until there’s a left turn.

Sorting takesD(n logn) time. Thereafter a point may be included in a convex hull astoace, and be
deleted at most once, i.e. the scan takes linear time. Héregtal time isO(n logn).

Jarvis's march (gift wrapping): Start in the lowest pointpy, and form right and left chains of the
convex hull. The vertey is the one of smallest polar angle wy, ¢» has smallest angle wit, and so
on, until the highest vertex,;, is reached. That completes the right chain. The left clmromputed
similarly, by finding a vertex;; ;1 of smallest angle wig; from the negativer-axis. Continue untipy.

A smallest polar angle is found ifi(n) time, so Jarvis’s march takes timiEn k), whereh is the number
of vertices on the convex hull. This gives a better time camxipy than Graham’s scan if = o(logn).

There are also algorithms that runsixin log h) time. We can even get arin log n) algorithm by using
fusion tree sorting.

Closest pair

Givenn points, find two that are closest to each other. Two points ocodtycide, i.e. be at distance 0.
Naive solution: examine alf;) point pairs, which take®(n?) time.

Divide-and-conquer algorithm: Divide the problemiita and Pr with half the points each (sorted hy
value), and solve’;, and P, recursively.

Let 57, be the distance between two closest point®in anddr be the distance between two closest
points inPg. Letd = min(dz,0R).

To see if there are closer points than the pairs withinand Pr, examine if any point irP;, has a point
in Pr which is at distance less than It suffices to look at the points in a strip of wid#d centered
betweenP;, and Px.

Sort the points in the strip by-coordinate. This gives a ligt’.

We need only consider distances from each ppiint Y’ to 7 points inY” following p, since there can
be at most 8 points in a rectangle of lengthnd width24 within the strip.

Note that two points can coincide as there may be double omthe dividing line ifn is even.

Tlme.T(n) = { 2T(n/2) + O(n log n) ifn>3

with solutionT'(n) = O(nlog®n).

Improvement by presorting all points byy-coordinate, inD(n log n) time. This gives the list".

We can then pick out the points i, and P (sorted byy value) for listsY;, andYx, by traversingt”
and ignore points whose-coordinates are outside. This tak@gn) time.

Similarly for the points in the middle strip ligt”.
Note that the list&7, andYy are passed on in the recursive calls.

Thereby the running time i&(n) = 27(n/2) + O(n) = O(n log n), including the presorting cost.

