
Lecture 9: Computational geometry

Has applications in, for instance, computer graphics, robotics, VLSI design, and computer-aided design.

We consider finitely representable objects in the plane composed of: pointsp = (x, y), lines (going
through two points), line segmentsp0p1, directed segments

−→
p0p1.

A polygon is a closed curve of segments. It issimple if the curve does not intersect itself.

For aconvex polygon a segment between two arbitrary points, internal or on the boundary of the polygon,
has all its points internal or on the boundary.

Properties of line segments

We can answer the following questions inO(1) time, using additions, subtractions, multiplications and
comparisons.

1. Is the directed segment
−→
p0p1 clockwise from

−→
p0p2?

2. Given
−→
p0p1 and

−→
p1p2 is there a left turn atp1?

3. Do
−→
p1p2 and

−→
p3p4 intersect each other?

Thecross product of vectorsp1 andp2 can be seen as the signed area of the parallelogram formed by
the four points(0, 0), p1, p2, andp1 + p2 = (x1 + x2, y1 + y2), i.e. the determinant of a matrix:

p1 × p2 = det

(

x1 x2

y1 y2

)

= x1y2 − x2y1 = −p2 × p1

If p1 × p2 > 0 thenp1 is clockwise fromp2 wrt origo (0, 0). If p1 × p2 < 0 thenp1 is counterclockwise
from p2. Whenp1 × p2 = 0 the vectors are collinear, i.e. pointing in the same or opposite directions.

So to decide whether
−→
p0p1 is clockwise from

−→
p0p2, compute the cross product:(p1 − p0) × (p2 − p0) =

(x1 − x0)(y2 − y0) − (x2 − x0)(y1 − y0).

Decide if consecutive segments turn left or right

Given
−→
p0p1 and

−→
p1p2 is there a left turn atp1? Equivalently, we want to know which way an angle

6 p0p1p2 turns. Just check if
−→
p0p2 is clockwise or counterclockwise from

−→
p0p1, by computing the cross

product(p1 − p0) × (p2 − p0). If it is positive, there’s a left turn atp1.

Decide if two segments intersect

First try a quick rejection: the segments cannot intersect if their bounding boxes do not intersect. The
bounding box is the smallest rectangle whose sides are parallel to the x- or y-axis and contains the
segment.

If the bounding boxes intersect, investigate if each segment straddles the line containing the other seg-
ment; in which case the segments do intersect.

1



Can use the method with cross products to decide if
−→
p3p4 straddles the line containing the pointsp1 and

p2, and if
−→
p1p2 straddles the line containing the pointsp3 andp4. The first holds if

−→
p1p3 and

−→
p1p4 have

different orientations relative to
−→
p1p2, the other holds if

−→
p3p1 and

−→
p3p2 have different orientations relative

to
−→
p3p4.

Determine relative orientations with cross product by checking if we get different signs for(p3 − p1) ×
(p2 − p1) and(p4 − p1) × (p2 − p1), and for(p1 − p3) × (p4 − p3) and(p2 − p3) × (p4 − p3).

In the 3rd edition of the course book the quick rejection stepis skipped, but then intersection between
−→
p1p2 and

−→
p3p4 has to include aboundary case when the segments are collinear and overlapping.

Intersection between n segments

We just want to find one intersection; on tutorial 4 we consider the problem of finding all intersections.
The segments can be arbitrarily oriented, but for simplicity we assume they are not vertical. Can then
order the segments relatively iny direction wrt thex value of a sweep line (Figure 33.4 page 1023). We
maintain two sets of data:

Sweep-line status: a red-black treeT of segments that the sweep line currently intersects, relatively
ordered. At insertion and deletion fromT , the usual comparisons between keys needed for tree traversal
are replaced by cross products to determine the relative order between segments (tutorial 4).

Event list: the2n segment endpoints sorted byx value.

1. If the event is a left endpoint of a segmentℓ then insertℓ into T .

If ℓ intersects a neighbor above or below it inT then we have found an intersection.

2. If the event is a right endpoint of a segmentℓ then deleteℓ from T .

If ℓ’s two neighbors intersect then we have found an intersection.

Example: Figure 33.5 page 1026.

Sorting the event list takesO(n log n) time. UpdatingT takesO(log n) time for at most2n events, i.e.
O(n log n) total time.

Convex hulls

Givenn points, compute the smallest convex polygon of segments that enclose the points.

Illustration: a tight rubber band that surrounds nails sticking out from a board.

Graham’s scan: Choose lowest pointp0, sort other points by polar angle counterclockwise aroundp0.
Scan the points in that order,〈p1, . . . , pn−1〉. Note thatp1 andpn−1 must be vertices of the convex hull.

p0

p1

p2p3

p4

p5

p6

2



Let 〈q0, q1, . . . , qk〉 be the convex hull for〈p0, p1, . . . , pi〉, whereq0 ≡ p0, q1 ≡ p1.

For the next pointpi+1 consider the angle between
−→

qk−1qk and
−→

qkpi+1.

If there’s a left turn thenqk+1 is pi+1, otherwise consider the angle between
−→

qk−2qk−1 and
−→

qk−1pi+1.
Eliminate vertices on theq list until there’s a left turn.

Sorting takesO(n log n) time. Thereafter a point may be included in a convex hull at most once, and be
deleted at most once, i.e. the scan takes linear time. Hence,the total time isO(n log n).

Jarvis’s march (gift wrapping): Start in the lowest point,p0, and form right and left chains of the
convex hull. The vertexq1 is the one of smallest polar angle wrtp0, q2 has smallest angle wrtq1, and so
on, until the highest vertex,qj, is reached. That completes the right chain. The left chain is computed
similarly, by finding a vertexqj+1 of smallest angle wrtqj from the negativex-axis. Continue untilp0.

A smallest polar angle is found inO(n) time, so Jarvis’s march takes timeO(n h), whereh is the number
of vertices on the convex hull. This gives a better time complexity than Graham’s scan ifh = o(log n).

There are also algorithms that runs inO(n log h) time. We can even get ano(n log n) algorithm by using
fusion tree sorting.

Closest pair

Givenn points, find two that are closest to each other. Two points maycoincide, i.e. be at distance 0.

Naive solution: examine all
(n
2

)

point pairs, which takesΘ(n2) time.

Divide-and-conquer algorithm: Divide the problem inPL andPR with half the points each (sorted byx
value), and solvePL andPR recursively.

Let δL be the distance between two closest points inPL, andδR be the distance between two closest
points inPR. Let δ = min(δL, δR).

To see if there are closer points than the pairs withinPL andPR, examine if any point inPL has a point
in PR which is at distance less thanδ. It suffices to look at the points in a strip of width2δ centered
betweenPL andPR.

Sort the points in the strip byy-coordinate. This gives a listY ′.

We need only consider distances from each pointp in Y ′ to 7 points inY ′ following p, since there can
be at most 8 points in a rectangle of lengthδ and width2δ within the strip.

Note that two points can coincide as there may be double points on the dividing line ifn is even.

Time:T (n) =

{

O(1) if n ≤ 3
2T (n/2) + O(n log n) if n > 3

with solutionT (n) = O(n log2 n).

Improvement by presorting all points byy-coordinate, inO(n log n) time. This gives the listY .

We can then pick out the points inPL andPR (sorted byy value) for listsYL andYR, by traversingY
and ignore points whosex-coordinates are outside. This takesO(n) time.

Similarly for the points in the middle strip listY ′.

Note that the listsYL andYR are passed on in the recursive calls.

Thereby the running time isT (n) = 2T (n/2) + O(n) = O(n log n), including the presorting cost.

3


