
Lecture 3: Red-black trees. Augmenting data structures

A red-black tree is a binary search tree with the following properties:

1. Every node is either red or black.

2. The root is black.

3. Every leaf (NIL) is black.

4. If a node is red, then both its children are black. Hence there cannot be two consecutive red nodes
along a simple path (path without repeated nodes).

5. For each node, all simple paths from the node to descendantleaves contain the same number of
black nodes.

Heighth is the number of edges in a longest path to a leaf.Black-height bh(x) is the number of black
nodes on any path from, but not includingx, down to a leaf.

Example of tree, with node colors instead of keys.

b

b r

b b

r r

b b

b

b b

b

b b

h=4
bh=2

h=3
bh=2

h=1
bh=1

Note that the tree is perfectly balanced wrt the black nodes.By property 4 there are≤ h/2 red nodes
along a path (not counting the subroot), and hence≥ h/2 black. So a node of heighth has black-height
≥ h/2.

It is straightforward to prove by induction that a red-blacktree withn internal nodes (nonleaves) has
heighth ≤ 2 log(n + 1).

We shall study how the properties of red-black trees are maintained on insertions.

7

5 9

12

Color the tree interactively and justify the color choices,starting in node 12 (forced choices: 12 red, 5
and 9 black).

Insert 8 (as left child of 9); no problem, color it red.

Insert 11 (as left child of 12); cannot be red (property 4) or black (property 5). Recolor the tree: 11 red,
change 9 to red, and 8 and 12 to black. (Case 1 below.)

1



7

5 9

8 12

11

b

b r

b b

r

Insert 10 (as left child of 11); now it’s not enough to recolorbecause of unbalance in the tree. We cannot
satisfy property 5 without violating property 4. We must change the tree structure byrotation , without
destroying the search-tree property.

Figure 13.2 shows how rotation works. RIGHT-ROTATE:x keeps its left child, getsy as right child, and
inheritsy’s parent;y keeps its right child and getsx’s right child as its left child. The inorder between
keys is preserved.

RB-INSERT(z): First find correct leaf; it becomes red internal nodez. Property 2 is violated ifz is the
root. Property 4 is violated whenz andp[z] both are red. Move the conflict upwards in the tree until it
can be fixed.

TREE-INSERT(z) usual tree insertion
color[z]← RED
while color[p[z]] = REDdo

if p[z] = left[p[p[z]]] then p[z] is left child
y ← right[p[p[z]]] its sibling
if color[y] = RED then

color[p[z]]← BLACK Case 1
color[y]← BLACK Case 1
color[p[p[z]]]← RED Case 1
z ← p[p[z]] Case 1

else ifz = right[p[z]] then
z ← p[z] Case 2
LEFT-ROTATE(z) Case 2

color[p[z]]← BLACK Case 3
color[p[p[z]]]← RED Case 3
RIGHT-ROTATE(p[p[z]]) Case 3

elsesame asthen above by exchanging right and left
color[root]← BLACK

Note thatp[p[z]] exists sincep[z] is red and hence not root.

In Case 1, we walk up the tree, which only changes color. In Case 2 or 3, one or two rotations are
performed, after which we are done sincep[z] is black in the next iteration ofwhile.

Hence, time isO(log n) with only O(1) rotations. Other trees, like AVL-trees, performO(log n) rota-
tions at an insertion.

Inserting 10 in the tree above result in Case 3: 11 becomes black, 12 red, followed by a right rotation
around 12.

2



7

5 9

8 12

11

10

7

5 9

8 11

10 12

b

b r

b b

r

r

b

b
r

b b

r r

Deletion in red-black trees also takesO(log n) time, doing at most three rotations. When an internal
node is deleted an extra black is introduced and moved up the tree until the red-black properties are
satisfied. We skip the details.

Augmenting data structures

1. Choose underlying data structure, for instance a red-black tree.

2. Determine additional information to be maintained, for instance sizes of subtrees.

3. Verify that additional information is updated correctlyfor the operations on the data structure.

4. Develop new operations.

We will illustrate this methodology through two examples:

Dynamic order statisticswants to support the usual dynamic set operations1, plus:

OS-SELECT(x, i) – returnsith smallest key in subtree rooted atx

OS-RANK(T, x) – returns rank ofx in the linear order determined by an inorder traversal ofT

Idea: Store sizes of subtrees in the nodes in a red-black tree.

M
8

C
5

A
1

F
3

D
1

H
1

P
2

Q
1

i=5
r=6

i=5
r=2

i=3
r=2

i=1
r=1

We do not color the nodes red or black since that does not affect the correctness of the algorithm, only
its speed. Use letters as keys to separate from sizes in the nodes.

1Includes insertions and deletions

3



OS-SELECT(x, i)

r ← size[left[x]] + 1
if i = r then return x
elseifi < r then return OS-SELECT(left[x], i)
else return OS-SELECT(right[x], i− r)

Execute OS-SELECT(root, 5) → H on the tree above and writei andr beside each visited node. The
size of the left subtree determines which subtree contains the answer.

OS-RANK(T, x)

r ← size[left[x]] + 1
y ← x
while y 6= root[T ] do

if y = right[p[y]] then
r ← r + size[left[p[y]]] + 1

y ← p[y]
return r

OS-RANK(root, F ) gives the answer2 + 2 = 4. FindF and back up the search.

Both OS-SELECT and OS-RANK takesO(log n) time.

Can the data structure be maintained during tree modification? If not, we have to traverse the tree on
each update, which takesΩ(n) time.

During insertion, sizes are incremented by 1 along the traversal path. We can update sizes during rotation
in O(1) time by looking at the children of the node (as in Figure 14.2). Deletion is analogous to insertion.
Hence, INSERT and DELETE do takeO(log n) time.

Interval trees: to maintain a set of intervals, for instance time intervals.

i = [7,10]
high(i) = 10low(i) = 7

17 19
5 11

15 18 21 23
4 8

Find one interval in the set that overlaps a given query interval.

For example:[14, 16] → [15, 18]; [16, 19] → [15, 18] or [17, 19]; [12, 14] → NIL.

We ignore whether intervals are open or closed by choosing examples where it doesn’t matter.

Following the methodology to augment data structures:

1. Underlying data structure: red-black tree of intervals with endpointshigh and low, where the
search key islow.

2. Additional information: store in each nodemax, the largest endpoint of the intervals in its subtree.

Example according to above (without node colors).

4



int

max
17,19

23

21,23

23
5,11
18

4,8
8

15,18

18

7,10

10

Note thatmax[x] = max(high[int[x]],max[left[x]],max[right[x]]), since ordered onlow.

3. Maintain information.

INSERT:

• Updatemax for subtrees on the downward traversal.

• If rotations are needed updatemax accordingly:

11,35

6,20

20

35

14 19

14

19 30

6,20

11,35

3530

RIGHT-

ROTATE

Compute newmax of [11,35] from formula above.max of [6,20] can be computed similarly,
but is faster copied from oldmax of [11,35].

• Updatemax after rotation takesO(1) time, i.e.O(log n) total update time.

Example: Insert [16,20] in the tree at the top of the page.

17,19
23

21,23
23

5,11
20

4,8
8

15,18

20

7,10
10

16,20
20

Note: [16,20] overlaps [17,19], but if [16,22] was insertedit would also overlap [21,23].

DELETE is similar to INSERT.

4. New operation: INTERVAL-SEARCH(T, i), find one interval that overlaps query intervali.

x← root[T ]
while x 6= NIL andi does not overlapint[x] do

if left[x] 6= NIL andmax[left[x]] ≥ low[i] then x← left[x]
elsex← right[x]

return x

5



Search for [14,16], and [12,14], in the example tree above. Answers: [15,18] and NIL.

Time isO(log n), since red-black tree is used.

The key idea is that we only need to check one of node’s two subtrees.

If search goes right:

• If there is an overlap in the right subtree, then we are done.

• If there is no overlap in right then there is no overlap in leftsubtree, since we went right
because:

– left[x] = NIL ⇒ no overlap in left, or

– max[left[x]] < low[i] ⇒ no overlap in left.

If search goes left:

• If there is an overlap in the left subtree, then we are done.

• If there is no overlap in left, then there is no overlap in right subtree.

– Went left because:low[i] ≤ max[left[x]] = high[j] for some intervalj in left subtree.

– Since there is no overlap in left subtree,i andj do not intersect.

– Recall: no overlap iflow[i] > high[j] or low[j] > high[i].

– Sincelow[i] ≤ high[j], must havelow[j] > high[i].

– Consider any intervalk in right subtree.

– But since keys are low endpoint:low[j] ≤ low[k].

– Therefore,high[i] < low[j] ≤ low[k].

– Giving high[i] < low[k], so intervalsi andk do not intersect.

6


