Lecture 12: van Emde Boas trees

Supports dynamic set operations(itlog log v) time when elements have values frgm 1,...,u—1},
its universe

Direct addressing We record the element values in a bit vectfd..u — 1], where A[z] = 1 iff the
valuez is in the set. INSERT, DELETE, and MEMBER operations can béopmed inO(1) time, but
MINIMUM, MAXIMUM, SUCCESSOR, and PREDECESSOR may taRé¢u) time.

Superimpose a binary tree structureon top of the bit vector. Since the heightligg« and each
operation makes at most one pass up the tree and one passtdewperation time i (log u).

Superimpose a tree of constant heightAssume that, = 22 for some integek, so that\/u is an
integer. Then superimpose a tree of degyéeon top of the bit vector. The height of the tree is 2.

The internal nodes at depth 1 we can view as an auaymary0..,/u — 1]. Thensummaryi| = 1 iff the
subarrayA[iy/u..(i + 1)y/u — 1] contains a 1. We call thig/u-bit subarray of4 theith cluster.

e To insertz, setA[z] andsummary|z//u|] to 1, which take€)(1) time.

e To find the minimum (maximum) value, find the leftmost (riglotst) entry insummarythat con-
tains a 1, and then do a linear search within that clusteti@féftmost (rightmost) 1.

e To find the successor (predecessor)pfirst search to the right (left) within its cluster. If no 1 is
found, continue search to the right (left) wittsnmmaryarray from index|z/\/u].

e To deleter, leti = |x/\/u]. SetA[z] to 0 andsummaryi] to the logical-or of the bits in théth
cluster.

In each operation we search through at most two clusterstiphmimmaryarray, so the time i®(\/u).
This approach will be a key idea of van Emde Boas trees.

A recursive structure

We will use the idea of superimposing a tree of degg@eon top of a bit vector, but shrink the universe
size recursively by a square root at each tree level. @&items on the first level each hold structures
of u!/4 items, which hold structures af!/8 items, and so on, down to size 2.

Assume for simplicity now that = 22" for some integek. Our aim is to achieve time complexity:
T(u) = T(vVu) + O(1) = T(u/?") + O(k) = O(log log u)

sinceu!/?" = 2 implies2* = log u, which givesk = log log u.

On the top level of the treépg u bits are needed to store the universe size, and each levds ha# the
bits of the previous level. Define:

high(z) = |z/+/u], the most significanflog u)/2 bits of = gives the number of's cluster.
low(z) = x mod+/u, the least significanflog «)/2 bits of x givesz’s position within its cluster.

index@,y) = x /u+ y, builds an element number, where= index(high),low(z)).

Proto van Emde Boas structureor proto-vEB (u):



e If u = 2then it contains an array[0..1] of two bits.
o Foru =22 fork > 1, it contains the attributes:

— a pointersummanyto a topproto-vER+/u) structure
— an arrayclustef0..,/u — 1] of \/u pointers toproto-vER,/u) structures as leaves

Determining if a value x is in a setV takesO(log log u) time:

PROTO-VEB-MEMBERV, x)

if Viu = 2 then return V. A[z]
else return PROTO-vEB-MEMBERV.clustefhigh(z)], low(x))

The value hight) gives the proto-vEB(/«) to visit and low() gives the element within that structure
we are querying.

Finding the minimum element

PROTO-VEB-MINIMUM(V)
if V.u = 2then
if V.A[0] =1 then return O
elseif V.A[1] = 1 then return 1
else return NIL
else min-cluster— PROTO-VEB-MINIMUM(V.summary
if min-cluster= NIL then return NIL
else offset«— PROTO-VEB-MINIMUM(V.clustefmin-clustef)
return index(nin-cluster, offsgt

If not the base case, find the first cluster that contains anesie If the set is non-empty, get the offset
of the minimum element within the cluster.

With two recursive calls in the worst case, the time is
T(u) = 2T(vVau) + O(1) = 28T (u'/?") + 0(2F 1) = O(log u)
instead of the desire@(log log u).

Finding the successar

PROTO-VEB-SUCCESSOR( )

if V.u = 2then
if  =0andV.A[l] =1 thenreturn 1
else return NIL
else offset«— PROTO-vVEB-SUCCESSOR(clustefhigh(z)], low(x))
if offset== NIL then return index(high(), offse}
else succ-clustek— PROTO-VEB-SUCCESSOR(summaryhigh(z))
if succ-clustere= NIL then return NIL
else offset«— PROTO-VEB-MINIMUM(V.clustefsucc-cluste))
return index@ucc-cluster, offsgt



If not the base case, search for a successor witlircluster, assigning the result affset If there is
none, search for the next non-empty cluster. If affgetgives the first element in that cluster.

With possibly two recursive calls plus the call to PROTO-vEEBNIMUM, the time is

T(u) = 2T (v/u)+0(log Vu) = 2T (v/u)+O(log u) = QkT(ul/Qk)—i—O(Qk_1 log u) = O(log ulog log u)

Inserting an element

PROTO-VEB-INSERTY, z)

if V.u=2thenV.Alz] — 1
else PROTO-vVEB-INSERTY.clustefhigh(x)], low(x))
PROTO-VEB-INSERTY.summaryhigh(z))

If not the base case, insertin the right cluster and set the summary bit for that clustet.t
Time is the same as for PROTO-VEB-MINIMUN(u) = 2T'(y/u) + O(1) = O(log u).

Deleting an element is more complicated since we cannotggst the appropriate summary bit to 0.

The van Emde Boas tree (VEB tree)

We will now just assume that = 2* for some integek. When,/« is not an integer we will divide the
log w bits into the most significant(log «)/2] bits and the least significanflog «)/2] bits. We denote
2l(ogu)/2] hy 1/3 (upper square root) arl(°e%)/2] by /i (lower square root). Hence, = /u - V/u.

high(z) = |2/ v/
low(z) = x mod/u

index@,y) =z Vu+y
Attribute summarypoints to a VEB(/u) tree, and arraglustef0.. \/u — 1] points toy/u VEB({/u) trees.

A vEB tree also stores its minimum elementram and its maximum amax which help us as follows:

1. MINIMUM and MAXIMUM operations do not need to recurse.

2. SUCCESSOR can avoid a recursive call to determine if tkeessor ofr lies within its high(),
becauser’s successor lies within its cluster iff < maxof its cluster.

3. INSERT and DELETE will be easy if botlhin andmaxare NIL, or if they are equal.

4. If avEB tree is empty, INSERT takes constant time just byating itsminandmax Similarly, if
it has only one element DELETE takes constant time.

Time will be given byT'(u) < T'({/u) + O(1), which also solves t@®(log log u).
Finding minimum and maximum:

VEB-TREE-MINIMUM(V)
return V.min

VEB-TREE-MAXIMUM(V)
return V.max



Determining if a value x is in setV:

VEB-TREE-MEMBERY, z)

if x = V.minorz = V.maxthen return TRUE
elseif V.u = 2 then return FALSE
else return vEB-TREE-MEMBERY .clustefhigh(z)], low(x))

Finding the successar

VEB-TREE-SUCCESSOR( z)

if V.u = 2then
if x =0 andV.max= 1 thenreturn 1
else return NIL
elseifV.min # NIL and x < V.minthen return V.min
else max-low« VEB-TREE-MAXIMUM(V.clustefhigh(x)])
if max-low# NIL and low(z) < max-lowthen
offset«— VEB-TREE-SUCCESSOR({clustefhigh(z)], low(z))
return index(high(), offse)
else succ-cluster— VEB-TREE-SUCCESSOR{summaryhigh(z))
if succ-cluster= NIL then return NIL
else offset— VEB-TREE-MINIMUM(V.clustefsucc-cluste))
return index@ucc-cluster, offsgt

If not the base case and> minimum value, letmax-lowbe the maximum irx’s cluster. If there is a
greater element in the cluster then assign thffsetand return the index of the successor. Otherwise we
have to search for the next non-empty cluster. If affgetgives the minimum in that cluster.

With just one recursive call, time B(u) < T'({/u) + O(1) = O(loglog u).

Finding the predecessor is almost symmetric. There is otra ease when's predecessor, if it exists,
does not reside im’s cluster.

Inserting an element

VEB-EMPTY-TREE-INSERTY, x)

V.min— z
V.max«— z

VEB-TREE-INSERTV, 7)

if V.min= NIL then VEB-EMPTY-TREE-INSERTY, x)
else ifz < V.minthen exchanger with V.min
if V.u > 2then
if vVEB-TREE-MINIMUM(V.clustefhigh(z)]) = NIL then
VEB-TREE-INSERTY.summaryhigh(x))
VEB-EMPTY-TREE-INSERTV.clustefhigh(z)], low(zx))
elsevEB-TREE-INSERTV.clustefhigh(x)], low(x))
if z > V.maxthen V.max«— z



Update thaninvalue if necessary. Then, if not the base case and the relelester is empty, insett’s
cluster number into the summary and inserhto the empty cluster. I&’s cluster was not empty, insert
z into it (the summary need not be updated). At the end chetleifnaxneeds to be updated.

TimeisT'(u) < T({/u) + O(1) = O(log log u), since inserting into an empty treeG¥1).
Deleting an element

VEB-TREE-DELETEV, )

if V.min= V.maxthen V.min«+ V.max« NIL
elseifV.u = 2 then
if x = 0thenV.min«— 1 elseV.min«+ 0
V.max« V.min
else ifz = V.minthen
first-cluster« vVEB-TREE-MINIMUM(V.summary
x « indexf(irst-cluster vVEB-TREE-MINIMUM(V clusteffirst-clustet))
V.min«+— x
VEB-TREE-DELETEV.clustefhigh(x)], low(x))
if VEB-TREE-MINIMUM(V.clustefhigh(z)]) = NIL then
VEB-TREE-DELETE{.summaryhigh(z))
if x = V.maxthen
summary-max— VEB-TREE-MAXIMUM(V.summary
if summary-max= NIL then V.max« V.min
elseV.max« indexummary-maxvEB-TREE-MAXIMUM(V.clustefsummary-maf)
elseifx = V.maxthen V.max+« index(high¢), vVEB-TREE-MAXIMUM(V clustefhigh(z)]))

If V| > 2 andu > 4 we have to delete an element from a cluster. This may nat because if: equals
minthen after deleting;, another element within one &f’s clusters becomes the nemin, and we have
to delete that element from its cluster.

If the cluster now is empty then remowés cluster number from the summary. If we have delateak
we have to find another maximum element. It is equahinif all of V’s clusters are empty.

Finally, if z's cluster did not become empty wherwas deleted, we may need to updatex

Two recursive calls can be made, VEB-TREE-DELEVE(ustefhigh(x)], low(x)) and vEB-TREE-
DELETE(V.summary high(z)), but the second call is only reached whes cluster is empty. Then
was the only element in its cluster at the first recursive, aallich takesO(1) time to execute. The
recurrence is therefore as befofB(u) < T'(V/u) + O(1) = O(loglog u).



