
Lecture 12: van Emde Boas trees

Supports dynamic set operations inO(log log u) time when elements have values from{0, 1, . . . , u−1},
its universe.

Direct addressing: We record the element values in a bit vectorA[0..u − 1], whereA[x] = 1 iff the
valuex is in the set. INSERT, DELETE, and MEMBER operations can be performed inO(1) time, but
MINIMUM, MAXIMUM, SUCCESSOR, and PREDECESSOR may takeΘ(u) time.

Superimpose a binary tree structureon top of the bit vector. Since the height islog u and each
operation makes at most one pass up the tree and one pass down,the operation time isO(log u).

Superimpose a tree of constant height: Assume thatu = 22k for some integerk, so that
√

u is an
integer. Then superimpose a tree of degree

√
u on top of the bit vector. The height of the tree is 2.

The internal nodes at depth 1 we can view as an arraysummary[0..
√

u− 1]. Thensummary[i] = 1 iff the
subarrayA[i

√
u..(i + 1)

√
u− 1] contains a 1. We call this

√
u-bit subarray ofA theith cluster.

• To insertx, setA[x] andsummary[⌊x/
√

u⌋] to 1, which takesO(1) time.

• To find the minimum (maximum) value, find the leftmost (rightmost) entry insummarythat con-
tains a 1, and then do a linear search within that cluster for the leftmost (rightmost) 1.

• To find the successor (predecessor) ofx, first search to the right (left) within its cluster. If no 1 is
found, continue search to the right (left) withinsummaryarray from index⌊x/

√
u⌋.

• To deletex, let i = ⌊x/
√

u⌋. SetA[x] to 0 andsummary[i] to the logical-or of the bits in theith
cluster.

In each operation we search through at most two clusters plusthesummaryarray, so the time isO(
√

u).
This approach will be a key idea of van Emde Boas trees.

A recursive structure

We will use the idea of superimposing a tree of degree
√

u on top of a bit vector, but shrink the universe
size recursively by a square root at each tree level. Theu1/2 items on the first level each hold structures
of u1/4 items, which hold structures ofu1/8 items, and so on, down to size 2.

Assume for simplicity now thatu = 22k

for some integerk. Our aim is to achieve time complexity:

T (u) = T (
√

u) + O(1) = T (u1/2k

) + O(k) = O(log log u)

sinceu1/2k

= 2 implies2k = log u, which givesk = log log u.

On the top level of the tree,log u bits are needed to store the universe size, and each level needs half the
bits of the previous level. Define:

high(x) = ⌊x/
√

u⌋, the most significant(log u)/2 bits ofx gives the number ofx’s cluster.

low(x) = x mod
√

u, the least significant(log u)/2 bits ofx givesx’s position within its cluster.

index(x, y) = x
√

u + y, builds an element number, wherex = index(high(x),low(x)).

Proto van Emde Boas structureor proto-vEB(u):

1

• If u = 2 then it contains an arrayA[0..1] of two bits.

• Foru = 22k

for k ≥ 1, it contains the attributes:

– a pointersummaryto a topproto-vEB(
√

u) structure

– an arraycluster[0..
√

u− 1] of
√

u pointers toproto-vEB(
√

u) structures as leaves

Determining if a value x is in a setV takesO(log log u) time:

PROTO-vEB-MEMBER(V, x)

if V.u = 2 then return V.A[x]
else return PROTO-vEB-MEMBER(V.cluster[high(x)], low(x))

The value high(x) gives the proto-vEB(
√

u) to visit and low(x) gives the element within that structure
we are querying.

Finding the minimum element:

PROTO-vEB-MINIMUM(V)

if V.u = 2 then
if V.A[0] = 1 then return 0
elseifV.A[1] = 1 then return 1
else return NIL

else min-cluster← PROTO-vEB-MINIMUM(V.summary)
if min-cluster= NIL then return NIL
else offset← PROTO-vEB-MINIMUM(V.cluster[min-cluster])

return index(min-cluster, offset)

If not the base case, find the first cluster that contains an element. If the set is non-empty, get the offset
of the minimum element within the cluster.

With two recursive calls in the worst case, the time is

T (u) = 2T (
√

u) + O(1) = 2kT (u1/2k

) + O(2k−1) = O(log u)

instead of the desiredO(log log u).

Finding the successor:

PROTO-vEB-SUCCESSOR(V, x)

if V.u = 2 then
if x = 0 andV.A[1] = 1 then return 1
else return NIL

else offset← PROTO-vEB-SUCCESSOR(V.cluster[high(x)], low(x))
if offset6= NIL then return index(high(x), offset)
else succ-cluster← PROTO-vEB-SUCCESSOR(V.summary, high(x))

if succ-cluster= NIL then return NIL
else offset← PROTO-vEB-MINIMUM(V.cluster[succ-cluster])

return index(succ-cluster, offset)

2

If not the base case, search for a successor withinx’s cluster, assigning the result tooffset. If there is
none, search for the next non-empty cluster. If any,offsetgives the first element in that cluster.

With possibly two recursive calls plus the call to PROTO-vEB-MINIMUM, the time is

T (u) = 2T (
√

u)+O(log
√

u) = 2T (
√

u)+O(log u) = 2kT (u1/2k

)+O(2k−1 log u) = O(log u log log u)

Inserting an element:

PROTO-vEB-INSERT(V, x)

if V.u = 2 then V.A[x]← 1
else PROTO-vEB-INSERT(V.cluster[high(x)], low(x))

PROTO-vEB-INSERT(V.summary, high(x))

If not the base case, insertx in the right cluster and set the summary bit for that cluster to 1.

Time is the same as for PROTO-vEB-MINIMUM:T (u) = 2T (
√

u) + O(1) = O(log u).

Deleting an element is more complicated since we cannot justreset the appropriate summary bit to 0.

The van Emde Boas tree (vEB tree)

We will now just assume thatu = 2k for some integerk. When
√

u is not an integer we will divide the
log u bits into the most significant⌈(log u)/2⌉ bits and the least significant⌊(log u)/2⌋ bits. We denote
2⌈(log u)/2⌉ by ↑

√
u (upper square root) and2⌊(log u)/2⌋ by ↓

√
u (lower square root). Hence,u = ↑

√
u · ↓
√

u.

high(x) = ⌊x/ ↓
√

u⌋
low(x) = x mod ↓

√
u

index(x, y) = x ↓
√

u + y

Attribute summarypoints to a vEB(↑
√

u) tree, and arraycluster[0.. ↑
√

u−1] points to ↑
√

u vEB(↓
√

u) trees.

A vEB tree also stores its minimum element asminand its maximum asmax, which help us as follows:

1. MINIMUM and MAXIMUM operations do not need to recurse.

2. SUCCESSOR can avoid a recursive call to determine if the successor ofx lies within its high(x),
becausex’s successor lies within its cluster iffx < maxof its cluster.

3. INSERT and DELETE will be easy if bothmin andmaxare NIL, or if they are equal.

4. If a vEB tree is empty, INSERT takes constant time just by updating itsminandmax. Similarly, if
it has only one element DELETE takes constant time.

Time will be given byT (u) ≤ T (↑
√

u) + O(1), which also solves toO(log log u).

Finding minimum and maximum :

vEB-TREE-MINIMUM(V)

return V.min

vEB-TREE-MAXIMUM(V)

return V.max

3

Determining if a value x is in setV :

vEB-TREE-MEMBER(V, x)

if x = V.min or x = V.maxthen return TRUE
elseifV.u = 2 then return FALSE
else return vEB-TREE-MEMBER(V.cluster[high(x)], low(x))

Finding the successor:

vEB-TREE-SUCCESSOR(V, x)

if V.u = 2 then
if x = 0 andV.max= 1 then return 1
else return NIL

elseifV.min 6= NIL andx < V.min then return V.min
else max-low← vEB-TREE-MAXIMUM(V.cluster[high(x)])

if max-low6= NIL and low(x) < max-lowthen
offset← vEB-TREE-SUCCESSOR(V.cluster[high(x)], low(x))
return index(high(x), offset)

else succ-cluster← vEB-TREE-SUCCESSOR(V.summary, high(x))
if succ-cluster= NIL then return NIL
else offset← vEB-TREE-MINIMUM(V.cluster[succ-cluster])

return index(succ-cluster, offset)

If not the base case andx ≥ minimum value, letmax-lowbe the maximum inx’s cluster. If there is a
greater element in the cluster then assign it tooffsetand return the index of the successor. Otherwise we
have to search for the next non-empty cluster. If any,offsetgives the minimum in that cluster.

With just one recursive call, time isT (u) ≤ T (↑
√

u) + O(1) = O(log log u).

Finding the predecessor is almost symmetric. There is one extra case whenx’s predecessor, if it exists,
does not reside inx’s cluster.

Inserting an element:

vEB-EMPTY-TREE-INSERT(V, x)

V.min← x
V.max← x

vEB-TREE-INSERT(V, x)

if V.min= NIL then vEB-EMPTY-TREE-INSERT(V, x)
else ifx < V.min then exchangex with V.min

if V.u > 2 then
if vEB-TREE-MINIMUM(V.cluster[high(x)]) = NIL then

vEB-TREE-INSERT(V.summary, high(x))
vEB-EMPTY-TREE-INSERT(V.cluster[high(x)], low(x))

elsevEB-TREE-INSERT(V.cluster[high(x)], low(x))
if x > V.maxthen V.max← x

4

Update theminvalue if necessary. Then, if not the base case and the relevant cluster is empty, insertx’s
cluster number into the summary and insertx into the empty cluster. Ifx’s cluster was not empty, insert
x into it (the summary need not be updated). At the end check if themaxneeds to be updated.

Time isT (u) ≤ T (↑
√

u) + O(1) = O(log log u), since inserting into an empty tree isO(1).

Deleting an element:

vEB-TREE-DELETE(V, x)

if V.min= V.maxthen V.min← V.max← NIL
elseifV.u = 2 then

if x = 0 then V.min← 1 elseV.min← 0
V.max← V.min

else ifx = V.min then
first-cluster← vEB-TREE-MINIMUM(V.summary)
x← index(first-cluster, vEB-TREE-MINIMUM(V.cluster[first-cluster]))
V.min← x
vEB-TREE-DELETE(V.cluster[high(x)], low(x))
if vEB-TREE-MINIMUM(V.cluster[high(x)]) = NIL then

vEB-TREE-DELETE(V.summary, high(x))
if x = V.maxthen

summary-max← vEB-TREE-MAXIMUM(V.summary)
if summary-max= NIL then V.max← V.min
elseV.max← index(summary-max, vEB-TREE-MAXIMUM(V.cluster[summary-max]))

elseifx = V.maxthen V.max← index(high(x), vEB-TREE-MAXIMUM(V.cluster[high(x)]))

If |V | ≥ 2 andu ≥ 4 we have to delete an element from a cluster. This may not bex, because ifx equals
min then after deletingx, another element within one ofV ’s clusters becomes the newmin, and we have
to delete that element from its cluster.

If the cluster now is empty then removex’s cluster number from the summary. If we have deletedmax
we have to find another maximum element. It is equal tomin if all of V ’s clusters are empty.

Finally, if x’s cluster did not become empty whenx was deleted, we may need to updatemax.

Two recursive calls can be made, vEB-TREE-DELETE(V.cluster[high(x)], low(x)) and vEB-TREE-
DELETE(V.summary, high(x)), but the second call is only reached whenx’s cluster is empty. Thenx
was the only element in its cluster at the first recursive call, which takesO(1) time to execute. The
recurrence is therefore as before:T (u) ≤ T (↑

√
u) + O(1) = O(log log u).

5

