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Abstract

A speech recognition system is one that automatically transcribes speech
into text. It can be divided into two separate stages: training the sys-
tem with a corpus of pre transcribed speech and using the trained
system to recognize spoken words and sentences.

In this master thesis is presented a project to implement a working
small-vocabulary speech recognition system for Swedish. The acoustic
units and statistical models used are hidden Markov models and mel-
frequency cepstral coefficients. The underlying mathematical theory is
explored along with practical considerations and test results.

The training and recognition stages are implemented in C++ and Perl
for use on an ordinary desktop computer. As a proof of concept, the
recognition part is ported to Java for use on Android mobile phones.
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1 Introduction

There are a number of different approaches that may be taken towards im-
plementing a working speech recognition system. A rough outline of the
approach chosen for this project is the following: Given a sizable amount of
training data, construct statistical models for the individual phonemes. Con-
nect the models of the phonemes into larger structures, representing whole
words and then connect these into an even larger structure representing the
whole dictionary of words the system should be able to recognize.

A data set of spoken sentences with annotations such as “in recording x
between 250 ms and 378 ms, the phoneme ‘A’ is being pronounced, between
378 ms and 407 ms, the phoneme ‘B’ is being pronounced, etc.” is in the
context of speech recognition called a corpus1. The corpus in this project
comes from the Waxholm project at KTH (Bertenstam et al., 1995) which
contain about three and a half hours of recorded data in approximately 3900
separate audio files. About 60% of the files, or two hours and fifteen minutes
of the total recordings, are annotated with phoneme boundaries. Except for
a small part in English, all sentences in the Waxholm corpus are in Swedish.

For modern speech recognition systems, the most common choice of sta-
tistical model is currently hidden Markov models. Hidden Markov models
will be explained at some detail later on, but suffice for now to say that
they are used in this project to model individual phonemes. Since hidden
Markov models are a type of directed graphs, the models of the phonemes
conveniently lend themselves to being connected into the larger word and
dictionary structures.

Sound travels through the air as vibrations, or more technically, waves
of air pressure. The input from a microphone is the amplitude of the air
pressure sampled at precise moments in time, as illustrated in Figure 1. The
raw sound waves contain lots of information that is superfluous for recog-
nizing speech. For instance, depending on age and various other factors, the
human ear can perceive sound frequencies between roughly 200 and 20000
Hz, whilst human vocal tract rarely produces frequency components over
4000 Hz that carry significant information for decoding speech. Thus, we
want to transform the raw audio signal in such a manner as to the maximum
extent possible preserve relevant and disregard irrelevant information.

Many such transformation methods is based upon using a Fourier trans-
form to convert the sound waves into a power spectrum. The raw input
signal can be seen as a two-dimensional signal with the time at the x-axis
and the amplitude at the y-axis. A power spectrum is essentially the same
kind of signal, but with the signal broken up into the individual frequency
components that makes up the full signal. If the raw input signal is a two-
dimensional graph with time at the x-axis and amplitude at the y-axis, the

1The word corpus is Latin, meaning body.
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power spectrum will be a 3-dimensional graph, also with time at the x-axis,
but amplitude per frequency at the z- and y-axes.

One popular signal processing method based on Fourier transforms, and
the one that will be used in this project, is mel-frequency cepstral coefficients
(MFCC). MFCC coefficients are derived from the power spectrum of the
input signal, sampled at specific frequencies.
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Figure 1: X/Y plot of the recorded sentence “Jag vill åka 17.45”

1.1 Implementation

The name chosen for the system implemented in this master thesis is ERIS,
a backronym for Eclectic Recognizer Of Speech2. It consists of several semi-
independent programs which do one particular thing each, and are imple-
mented in C++ and Perl. All programs have the prefix “eris_” and the
subset of the programs which are implemented in Perl have the suffix “.pl”.
In total, the system weighs in around about 21000 lines C++ and 4500
lines Perl code. The target platform is Linux, with some parts ported to
Android3. Although portability has not been an explicit goal, the system
does not contain much much platform dependent code. Porting it other
platforms, should one wish to do so, shouldn’t be too much trouble.

Figure 2 provides an overview of the different programs and their rela-
tions to each other. The rectangular shaped node in the figure represent
files or sets of files. The ellipses represent programs. The programs take
files as input and produce other files as output. All of the programs also
share a central configuration file, which is omitted from the figure for sake
of brevity. The configuration file specifies most parameters which aren’t

2The name of the matron deity of confusion and discord seems more appropriate for a
prototype system than Eros. It even provides an automatic memetic patch for the slightly
distorted acronym.

3Which, strictly speaking, is a Linux variant as well.
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Figure 2: Implementation overview of the ERIS speech recognition system.

system paths for input or output files. Appendix B lists a sample con-
figuration file. The idea of having a centralized configuration file is to ease
scripting and running separate tests with different configuration parameters.

The chain of operations is as follows:

1. The Waxholm corpus is provided in a rather cumbersome format. It is
parsed by the program eris_parse_corpus.pl, which writes a wave
file containing all of the audio recordings (about 3 hours and 36 min-
utes long, and roughly 400 MB big) and an index file with the anno-
tations of which time intervals correspond to which phonemes, words
and sentences.
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2. Running the whole chain of operations from start to finish is a fairly
time consuming process. Exactly how long it will take varies a lot
depending on which configuration settings are used, but in the order
of about an hour or so on a 2.5 GHz dual-core desktop computer is
typical. In order to save time, the program eris_mk_phlist.pl parses
the dictionary file and constructs a list of which phonemes are used, so
that no unnecessary phonemes are trained. The phonemes used have
left and right contexts, so called triphones. With 46 phonemes and the
left and right context belonging to one of nine different classes, there
are a total of 9 × 46 × 9 = 3726 triphones, but most don’t occur in
practice. In the Waxholm corpus there are about 1500 triphones, of
which only about 20% will typically be used for a dictionary of about
100 words. The two most time consuming operations are training
the HMM triphone models and constructing the phoneme confusion
matrix. Both depend heavily on the number of triphones, so skipping
unused ones is a big time saver.

3. eris_efx_gen reads the phoneme list, and the wave and text files
produced by eris_parse_corpus.pl in step 1. For every phoneme,
it extracts all recordings from the wave file and does signal processing
in order to convert them into sequences of feature vectors, which are
appropriate for use with the HMMs. The signal processing is detailed
in Section 2. The files containing feature vectors have the suffix .efx.

4. eris_efx_split splits the efx file created in step 3 into a training
file and a testing file. 70% of the feature vectors are written to the
training file and the remaining 30% are written to the testing file.

5. Using the efx file containing the training sequences, eris_hmm_train

trains a three-state hidden Markov model for each phoneme. It does
so by creating crude initial approximations using the clustering al-
gorithms described in Section 4.2, and then refining these using the
Baum-Welch re-estimation algorithm, described in Section 4.3.

6. For every sequence of feature vectors in the efx file containing the
testing sequences, eris_hmm_test goes through every phoneme HMM
created in step 5 and calculates score of how well it matched4. The
scores are written to a binary file.

7. The binary file with the test scores from step 6 is converted into a
confusion matrix. That is, a matrix wherein each row corresponds to
a set of testing sequences for a phoneme and each column specifies how
many times each phoneme was the one with the highest score. The
higher the values on the diagonal, relative to the non-diagonal elements

4Using the forward algorithm, described in Section 3.4.

8



on the same row, the better the phoneme models matched the correct
testing sequences. For a hypothetical perfect match, the confusion
matrix would be positive on the diagonal and zero everywhere else.
An example confusion matrix is illustrated in Figure 3.

Phoneme HMMs
A: A E: E M N

T
es

t
se

qu
en

ce
s A: 5 0 2 2 0 1

A 1 3 3 0 2 1
E: 1 0 7 0 1 1
E 1 2 3 2 0 2
M 1 3 0 2 4 1
N 0 0 1 0 0 9

Figure 3: Example of confusion matrix with 5 phonemes.

8. The eris_mk_gx.pl script combines the phoneme HMMs into a larger
graph, consisting of the words in the dictionary. This process is de-
tailed in Section 5.1.

A hidden Markov model, such as one representing a phoneme, is a type
of graph and the word graph, in turn, is in every sense a hidden Markov
model itself. The HMMs representing phonemes are dense and have
few states, while the word graph is sparse and have many states, so the
distinction in terminology arises from the difference in implementation.
The phoneme HMMs are implemented using matrices, while the word
graph is implemented using explicit node and edge objects.

9. The program eris_word_test reads the file containing the word graph
and an arbitrary number of wave files (specified as a command line
parameter.) For each wave file, it runs it through the word graph and
prints the a list in descending order of how well each word matches it.
See Sections 3.4, 3.6 and 5.2.

1.2 The Waxholm Corpus

The Waxholm corpus, from the Waxholm dialog project at KTH (Bertenstam
et al., 1995), is a collection of audio recordings of spoken sentences. Most
sentences are in Swedish, but there are a few in English as well. Each record-
ing comes with an associated file containing annotations which specifies
which time intervals correspond to which sentences, words and phonemes.

The audio recordings are a collection of .smp files, which are essentially
just raw PCM-data with a 1024 byte header. The header specifies parame-
ters such as sample rate, number of channels, etc. All of the recordings in
the corpus have only one channel and are sampled at a rate of 16 kHz. The
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samples are encoded as 16 bit signed integers with the most significant byte
first.

An annotation file has the same filename as its corresponding audio file,
but with the suffix .smp.mix instead of .smp. The format of the .smp.mix

files is quite irregular, likely due to being mostly manually edited. In this
project, the annotation files from the Waxholm corpus are parsed by the
Perl script eris_parse_corpus.pl in order to produce a new annotation
file in a format which is more easily parsed by the other programs.

The .smp.mix files contains the textual representation of the spoken
sentence, as well as listings of the words and phonemes in the sentence, and
at which time intervals they occur. Only about half of the annotation files
contain annotations down to the phoneme level.

As an example, consider Figure 1. It shows a plot of the audio clip
fp2038.11.04.smp from the Waxholm corpus. The smp file has the ac-
companying annotation file fp2038.11.04.smp.mix, which is summarized
in Table 1.2. The annotation files also contain various decorations of the
phonemes, which indicate things such as which phonemes are stressed in the
pronunciation of the word, as well as pseudo-words; such as breaths, clicks,
smackings and so on. Such information has not been utilized in this project.
All in all, the corpus contains about 3900 .smp files, totaling about three
and a half hours of recorded material.

The phonemes used are triphones, that is, phonemes with a left and right
context. The phoneme M preceded by the phoneme A and followed by O
is thus a separate triphone from the M preceded by A and followed by E.
Since some phonemes affect the preceding or following ones in a similar ways,
the left and right contexts aren’t individual phonemes, but rather classes of
phonemes with similar effects. The classes used are the type of phoneme –
ToP – from Ursin (2002).

The phonemes present in the Waxholm corpus, organized under the ToP
classes they belong to, are summarized in Table 1.2. A vowel followed by a
colon signifies a long vowel, whilst a vowel without a following colon signifies
a short vowel. For instance, compare the pronunciations of the two Swedish
words ja and skicka, which are pronounced as JA: and SJIKA, respectively.

2 Signal Processing

The audio data found in wave files, the Waxholm .smp files and read from
microphones, is typically in pulse-code modulated, PCM, format. That is,
it is simply the amplitude of the sound wave sampled at a fixed frequency
with uniform intervals. A uniform sample interval means that the distance
between two possible sample values is an integer multiple of a constant value.
That is, |x(t1)−x(t2)| = N ×C, where N is an integer and C is a constant.
This is illustrated in Figure 4.
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Milliseconds Phoneme Word

229 J Jag
333 A:
434 G
434 V Vill
472 I
534 L
597 Å Åka
745 K
838 A
907 T Tidigt

1044 I:
1186 D
1264 I
1353 T
1401 P På
1504 Å:
1548 M Morgonen
1620 Å
1736 R
1794 Å
1858 N
1897 E0
2033 N

Table 1: Extracted information from fp2038.11.04.smp.mix.

All of the audio recordings in the Waxholm corpus are in PCM for-
mat and encoded as 16-bit signed big endian integers, which, except for
the endianess, is the same format and encoding found in most wave files.
Furthermore, the audio files in the Waxholm corpus are sampled at 16 kHz
and have only one channel (mono.) Since integers are inconvenient to work
with, the samples that are read from files or the microphone in the ERIS
project are converted into double precision floating point values (double) in
the range [−1, 1]. This is the format raw audio data will be assumed to be
in from here on, unless explicitly stated otherwise.

When training a model to fit a particular set of training data, it is done
under the assumption that said data is somehow representative of the data
the model should recognize. As the raw PCM data from a microphone will
almost certainly contain some noise that does not carry meaningful infor-
mation for recognizing speech, it needs to be transformed in a fashion which
filters out superfluous information while retaining as much relevant informa-
tion as possible. The transformed signal should also be in a format that’s
practical to use with the model that is to be trained. For hidden Markov
models, a convenient representation of the audio signal is as a sequence of
real valued vectors, so called feature vectors. This section will describe how
to transform PCM data into a sequence of such vectors.
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Back vowel A: A O: O U: U Å Å
Frontal vowel E: E E0 I: I Y: Y Ä:

Ä Ä3 Ä4 Ö: Ö Ö3 Ö4
Stop B D 2D G K T 2T P
Fricative F H S 2S SJ TJ
Semi-vowel J V
Nasal M N 2N NG
Lateral L 2L
Tremulant R
Silence sil

Table 2: Phonemes present in the Waxholm corpus, by ToP classes.

-1

0

1

x
(t

)

t

Figure 4: PCM format - fixed frequency and uniform sample intervals.

2.1 Windowing

The first step to extract feature vectors from an audio signal is to slice it up
into fixed length buffers, called windows, each which will be used to produce
one vector. The window length may vary, depending on the type of feature
vectors to be extracted. In this project the windows are 25 ms long with a
shift of 10 ms. Thus, a window will overlap the previous one by 15 ms. If
the sample rate of the signal is 16 kHz, a window will be 400 samples long5.
See Figure 6 for an illustration of how the windowing is performed.

Since there is an overlap of data in two consecutive windows, it’s unnec-
essary work to read the whole window in each step. If one window of data
has been used, the part of the window that overlaps with the next may just
be copied from the end to the beginning, and only the non-overlapping seg-
ment needs to be read from the audio source. This is illustrated in Figure 7.

If l is the length of a window in number of samples, s is the shift length
and there are a total of n ≥ l number of samples in a particular audio file,
1 + ⌊(n− l)/s⌋ number of windows can be completely filled. If the recording
is very short, which it very well may be when generating feature vectors for

516000 1
s
× 0.025s = 400
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. . .
⇒

Figure 5: PCM data is transformed to a sequence of vectors.

10− 35ms

20− 45ms

. . .

0− 25ms

Figure 6: Window slicing.

individual phonemes, it may be desirable to allow for the last window to be
only partially filled and padded with zeroes. The threshold for this project,
chosen rather arbitrarily and not further explored, is that a window will be
kept if it is filled to at least 80%.

When a window has been filled with PCM data, a window function is
typically applied to it. For finite list of audio samples, a window function
is essentially nothing more than a vector of weights which the samples are
element-wise multiplied with. This is done in order to emphasize the effect
of the samples in the middle of the window and de-emphasize the samples on
the edges of the buffer. The rectangular window function is a no-operation
as all weights are 1. Huang et al. (2001) defines the generalized Hamming
window as

w(n) =







(1− α)− α cos
(

2πn
N

)

0 ≤ n < N
0 Otherwise

(1)

When α is set to 0.46 it is typically referred to as the Hamming window and
with α set to 0.5 it is the Hann window function6. The different window

6The Hann window is often referred to as the Hanning window. Though it’s named
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Figure 7: Window shifting.

functions implemented in this project are listed below and illustrated in
Figure 8.

• Rectangular w(n) = 1

• Hamming w(n) = 0.54− 0.46 cos
(

2πn
N

)

• Hann w(n) = 0.5
(

1− cos
(

2πn
N

))

• Cosine w(n) = cos
(
πn

N
− π

2

)

 0

 0.5

 1

 0  200  400

Rectangular

 0

 0.5

 1

 0  200  400

Hann

 0

 0.5

 1

 0  200  400

Cosine

 0

 0.5

 1

 0  200  400

Hamming

Figure 8: Window functions. Sample number 0 ≤ n < N on the x-axis and
sample weight on the y-axis.

after Julius Von Hann, the former is arguably more correct.
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2.2 Mel-Frequency Cepstral Coefficients

A cepstrum7 is the result of taking the Fourier transform of a log-energy
power spectrum of a signal. Huang et al. (2001) defines mel-frequency cep-
stral coefficients as

The Mel-Frequency Cepstrum Coefficients (MFCC) is a repre-
sentation defined as the real cepstrum of a windowed short-time
signal derived from the FFT of that signal. The difference from
a real cepstrum is that a nonlinear frequency scale is used, which
approximates the behavior of the auditory system.

Furthermore, they define the discrete Fourier transform (DFT) as

Xk =
N−1∑

n=0

xne
−j2πnk/N 0 ≤ k < N (2)

The audio signal xn, 0 ≤ n < N is a vector of real valued samples in
the range [−1, 1]. The result of taking the DFT of a real valued vector is
a vector of complex numbers Xk, 0 ≤ k < N , where the imaginary and
real components correspond to the amplitude coefficients of the sinus and
cosinus frequency components of the audio signal expressed as a Fourier-
series. Taking the logarithm of the square of the absolute of X(k) yields the
log-power spectrum of the signal.

The human ear does not perceive frequencies in a linear fashion. Dou-
bling a frequency, for example, does not double the perceived pitch. The
mel scale maps frequencies into these non-linear perceptions of it. The func-
tion mel(x) and its inverse mel−1(y) are shown in Equations 3 and 4 and
illustrated in Figures 9 and 10.

mel(x) = 1125 log(1 + x/700) (3)

mel−1(y) = 700 [ exp(y/1125)− 1 ] (4)

The power spectrum is averaged over a set of triangular filters, called a
filter bank, which are equally spaced in the mel scale. If there are M filters
in the filter bank, fl and fh are the lowest and highest frequencies and Fs
is the sampling frequency, the frequencies for the filters are given by

fm =
(
N

Fs

)

mel−1

(

mel(fl) +m
mel(fh)−mel(fl)

M + 1

)

0 ≤ m ≤M + 1
(5)

The triangular filters Hm(k) are then given by Equation 6, and are il-
lustrated in Figure 11.

7The word cepstrum is derived from reversing the first four letters in the word spectrum.
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Figure 10: Inverse of mel scale.

Hm(k) =







0 k < fm−1

2(k − fm−1)
(fm+1 − fm−1)(fm − fm−1)

fm−1 ≤ k ≤ fm

2(fm+1 − k)
(fm+1 − fm−1)(fm+1 − fm)

fm < k ≤ fm+1

0 k > fm+1

1 ≤ m ≤M

(6)
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Figure 11: Filter bank.

The logarithms of the outputs of the filter bank is thus given by

Sm = log

[
N−1∑

k=0

|Xk|2Hm(k)

]

1 ≤ m ≤M (7)

The MFCC coefficients is then the discrete cosine transform (DCT) of the
M filter outputs
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cn =
M−1∑

m=0

Sm cos(πn(m− 1/2)/M) 0 ≤ n ≤M (8)

The ERIS system uses the Fastest Fourier Transform in the West library
(Frigo and Johnson, 2005), FFTW, for doing the Fourier transforms and
discrete cosine transforms.

2.3 Feature Vector Deltas

A feature vector describes the information relevant for speech at a particular
point in time. In order to increase the representativeness, information of how
the signal changes may also be incorporated into the feature vector by use
of deltas. Informally, a delta is simply the difference between the MFCC
coefficients at some time in the future and the coefficients of some time in
the past.

If the MFCC coefficients generated from a particular window is denoted
by ct, the first order delta is ∆ct = ct+m − ctt− n. For first order deltas,
Huang et al. (2001) recommends m = 2 and n = 2, that is, ∆ct = ct+2 −
ctt− 2 as well as the second order delta being calculated as ∆∆ct = ∆ct+1−
∆ct−1. With a 10 ms window shift, this means that the first order delta
captures the rate of change of the coefficients over a 40 ms interval and the
second order delta captures the rate of the change of the change over a 60
ms interval.

Figure 12 illustrates how the the first order delta at time t depends on
the MFCC coefficients at time t − 2 and t + 2, as well as how the second
order delta at time t depends on the first order deltas at time t−1 and t+ 1
(and hence, on the MFCC coefficients at time t− 3 and t+ 3.)

t

ct ∆ct ∆∆ct

Figure 12: Calculation of first and second order deltas: ∆ct = ct+2 −
ct−2, ∆∆ct=∆ct+1−∆ct−1.
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In summary:

• ct MFCC coefficients
• ∆ct = ct+2 − ct−2 First order delta
• ∆∆ct = ∆ct+1 −∆ct−1 Second order delta

If second order deltas is used with 13 MFCC coefficients, the feature vectors
will be 39 elements long

xt =






ct
∆ct

∆∆ct




 (9)

In the ERIS speech recognition system, the usage of first and second
order MFCC deltas is controlled from the configuration file by specifying
the respective time intervals for the keys efx.delta1 and efx.delta2. For
instance, setting efx.delta1 = (2,-2) in the configuration file specifies
that first order deltas should be used, and should be calculated from the
MFCC coefficients at time t+2 and t−2. Specifying (0,0) or none disables
the delta. First order deltas must be enabled if second order deltas are to
be used.

efx.delta1 = (2,-2) # ’(x,y)’ or ’none’

efx.delta2 = (1,-1)

When training phoneme models, it is done from relatively short clips of
audio data. This raises the question of how to deal with edge cases. For
the first few windows, the deltas will depend on audio data which would
correspond to times prior to that of the start of the sequence, and like-
wise, the for the last few windows the deltas would depend on audio data
corresponding to time steps after the end of the sequence.

The strategy chosen for the ERIS system is to calculate MFCC coeffi-
cients for audio data which precedes and follows that of the actual phoneme.
In the case that the phoneme is at the very start or end of a sentence, so that
there isn’t enough preceding or following data, it is simply padded by ze-
roes. This is illustrated in Figure 13. Alternative strategies, such as simply
discarding the first and last few windows, are not explored in this project.

3 Definitions

3.1 Hidden Markov Models

A Markov chain is a statistical model which consists of a number of states. In
each time step, the model transitions from one state to another, according
to a probability which only depends on the state the model is currently
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Zeroes

Proper phoneme data: 1 ≤ t ≤ T

Data needed for deltas

Figure 13: Padding for calculating MFCC deltas.

in. A hidden Markov model, HMM, is a Markov chain in which the states
aren’t directly visible, but instead have an observation probability function
associated each state. At every time step t, the model transitions from one
state to another and the new state randomly emits an observation according
to observation probability function8. See Figure 14 for an illustration of a
HMM.

1 2 3

Figure 14: A hidden Markov model with three states.

There are not many limitations on the nature of the observations; they
can be symbols from a discrete alphabet, real values, vectors of real values
or pretty much anything else. In this project, the observations used for
the HMMs are vectors of real values. More specifically, the feature vectors
extracted from audio signals as described in Section 2.

The observation probability functions used are multi-variate Gaussian
mixtures, which will be described in more detail later on in Section 3.2.2.

8Strictly speaking, an observation is something which is observed. So, the expression
“emitting observations” is a bit of a misnomer.
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However, since the probability for any outcome in a continuous distribution
of possibilities is infinitesimal, the “probabilities” for the observations are
not really probabilities in the strictest sense. As an approximation of the
probability of an observation, the value of the probability density function
for that observation is used. One consequence of this is that the “proba-
bility” of an observation can have arbitrarily high values, instead of being
confined to the interval [0:1].

Formally, the components of a hidden Markov model are

• A set of states S = {1, 2, . . . , N}

• An initial state distribution vector π = {πi} , 1 ≤ i ≤ N

• A transition probability matrix A = {aij} , 1 ≤ i, j ≤ N

• A termination probability vector ω = {ωi} , 1 ≤ i ≤ N

• A set of output probability functions B = {bj(x)}

The symbol λ is used to refer to the whole set of parameters in a model:

λ = {S, π,A, ω,B} (10)

The initial probability πi specifies the probability of starting in a state
i. That is, the probability of being in state i at time 1. The termination
probability ωi, on the other hand, gives the probability of terminating in the
state i. At any time t, the model may either transition to another state or
terminate. Terminating in a state is essentially the same as transitioning to
a dedicated termination state which does not consume an observation, and
since at any time the the model either transitions to a new state or termi-
nates, every row in the transition matrix plus the termination probability
for the state which corresponds to that row should sum up to 1.





N∑

j=1

aij



+ ωi = 1 1 ≤ i ≤ N (11)

3.2 Observation Probability Density Functions

As previously mentioned, the output probability functions used are only ap-
proximations and are really output probability density functions, OPDFs.
This means that the “probabilities” for the observations can have arbitrar-
ily high values and are not real probabilities in the strictest sense, but will
be used as if they were.

The OPDFs used in the ERIS system are multi-variate Gaussian mix-
tures.
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3.2.1 Gaussian Probability Density Function

The probability density function N (x) for a Gaussian distribution for a
single real value, with the mean µ and variance σ2 is

N (x) =
1√

2πσ2
exp

[

−(x− µ)2

2σ2

]

(12)

Figure 15 illustrates three Gaussians with different means and variances.
The higher the variance, the lower the peak of the bell shaped curve will be.
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Figure 15: Gaussian probability density functions, with varying mean µ and
variance σ2.

3.2.2 Multi-variate Gaussians

The Gaussian probability density function for real valued vectors is

N (x) =
1

√

(2π)k|Σ|
exp

[

−1
2

(x− µ)′Σ−1(x− µ)
]

(13)

where µ is the mean vector and Σ is the covariance matrix. |Σ| is the
determinant of the covariance vector and Σ−1 is the inverse of the covariance
matrix. If the feature vectors are composed of 13 MFCC coefficients with
two levels of delta, they will be 39 elements long, which means that the
mean vector also will be 39 elements long and the covariance matrix will
be a 39 × 39 matrix. Figure 16 illustrates a multi-variate Gaussian of two
dimensions.
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Figure 16: Multi-variate Gaussian probability density function, with µ =
[0, 0] and Σ = [2, 0.05; 0.05, 1.8].

3.2.3 Multi-variate Gaussian mixtures

Gaussian mixtures are combinations of several individual Gaussian distri-
butions of different weights. If a Gaussian mixture consists of M number of
mixture components, its probability density function is given by

N (x) =
M∑

m=1

cm Nm(x) (14)

Since there are now M different Gaussians, the parameters which are
needed in order to fully specify the Gaussian mixture are:

• A vector of weights for each mixture cm 1 ≤ m ≤M
• M number of mean vectors µm

• M number of covariance matrices Σm

Figure 17 illustrates a two dimensional Gaussian mixture with three
components.
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Figure 17: Multi-variate Gaussian mixture with 3 components.

3.3 Generating Observations

Algorithm 1 HMM observation generation.

function ChooseRandom(v) 7→ i
If v is a non-negative row vector of length n, i is an index 1 ≤ i ≤ n,
picked randomly with the probability P (i | v) = vi /

∑
v.

function GenerateObservation(b) 7→ x
x← Vector randomly generated from the OPDF b

i ← ChooseRandom(π)
x1 ← GenerateObservation(bi)

while Random() ≥ ωi do

i ← ChooseRandom(Ai)
xt ← GenerateObservation(bi)

end while

X = < x1, x2, . . . , xT >
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Given a fully specified HMM it is sometimes desirable to generate obser-
vations from that model. In a speech recognition system there may not be
any direct application for this, but it can prove useful for testing whether an
implementation or trained model behaves as expected. As will be seen later
on, generating observations can also be used for determining the distance
between two models.

At time t = 1, the state s1 is chosen randomly according to the initial
state distribution π and an observation x1 is generated from the probability
density function bs1 that belongs to s1.

At time t = 2, the state s2 is chosen randomly according to row in
the transition matrix A that corresponds to previous state s1. The next
observation x2 is chosen by the new state s2’s probability density function
bs2 . This is then repeated for t = 3, t = 4, . . . t = T , producing a total of
T observations. See Figure 18 and Algorithm 1.

π1

π2

π3

πN

x2 x3 xTx1

t = 1 t = 2 t = 3 t = T

Figure 18: HMM observation generation.

3.4 Forward Probability

If given an HMM model λ = {S, π,A, ω,B} and sequence of observations
X =< x1, x2, . . . , xT >, it is often of interest to find out the probability that
the model would have generated that particular sequence. An obvious ap-
plication of this is as a primitive way of doing word recognition. Given a set
of HMM models, each of which corresponds to a word, the probability of an
HMM having generated a particular sequence of observations is essentially
a measurement of how well that model match the sequence. A recorded
wave file, for example, can be converted into a sequence of feature vectors
as described in Section 2. Then, the probability of the sequence is calculated
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for each HMM and the one with the highest probability corresponds to the
word which is the most likely one to have been spoken.

The most straight-forward way of calculating the probability of the se-
quence X is by iterating over all possible paths through the model, and
calculating the probability of emitting the sequence. The probability of
having generated the sequence is then the sum of the probabilities for all
paths.

If N is the number of states in the HMM and Z =< z1, z2, . . . , zT >
is a particular path through the HMM (the sequence of states taken while
traversing it.), the probability of the generating the sequence X while taking
the path Z is

P (X | λ) =
∑

all Z

P (Z | λ)P (X | Z, λ) (15)

The probability P (Z|λ) of taking the path Z through the HMM is simply
the product of the probability of starting in state z1, taking the transition
from z1 to z2, from z2 to z3, and so on until terminating in state zT . If
st is the state the model is in at time t – and care is taken to note the
difference from zt, which is the t:th component of the particular path Z –
the probability is given by:

P (Z | λ) = P (s1 = z1 | λ)
T∏

t=2

P (st = zt | st−1 = zt−1, λ)

= πz1 az1z2 az2z3 . . . azT−1zT ωzT

(16)

If traversing the HMM through the specific path Z, the probability of
generating the sequence of observations X =< x1, x2, . . . xT > is given by

P (X | Z, λ) = bz1(x1) bz2(x2) . . . bzT (xT )

=
T∏

t=1

bzt(xt)
(17)

Combining Equations 16 and 17 allows for the reformulation of Equa-
tion 15 as

P (X|λ) =
∑

all Z

P (Z | λ)P (X|Z, λ)

=
∑

all Z

πz1bz1(x1) az1z2bz2(x2) . . . azT−1zT bzT (xT ) ωzT
(18)

However, this strategy of evaluating the sequence X requires iterating
over all O(NT ) possible paths through the HMM, making it unusable in
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practice for anything but very short sequences. It is possible to improve
the time complexity, however, by noting that the optimal path through the
model cannot include a suboptimal sub path.

Definition 3.1. The forward probability αt(i) is defined as the probability
of being in state i at time t having generated the partial observation sequence
Xt1 =< x1, x2, . . . , xt >

αt(i) = P
(

Xt1, st = i | λ
)

(19)

The probability of being in state i at time t = 1 and seeing the first
observation x1 is simply the probability of starting in state i multiplied by
the probability of state i emitting the observation x1.

α1(i) = πi bi(x1) (20)

The probability of being in state j at any time t, where 2 ≤ t ≤ T , is
then the probability of taking the transition from state i to j, multiplied
by the probability of the new state j emitting the observation xt. The
probability of transitioning from i to j at time t is the probability of being
in state i at time t − 1 multiplied by the transition probability aij . That
is, P (st = i, st−1 = j | λ) = αt−1(i) aij. The forward probability for t > 1
may thus be expressed recursively as the following

αt(j) =

[
N∑

i=1

αt−1(i) aij

]

bj(xt) (21)

j αt(j)

1

2

3

N

a2j

a1j

aNj

a3j

αt−1(1)

αt−1(2)

αt−1(3)

αt−1(N)

xt

bj(xt)

Figure 19: Calculating αt(j).

• αt−1(i) The probability of being in state i at the previous time step
• aij If being in state i, the probability of going to state j
• bj(xt) If being in state j, the probability of observing xt
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The recursion in Equation 21 is illustrated in Figure 19.

Since αT (i) is the probability of being in state i after seeing the last
observation, the probability for the whole sequence P (X|λ) is the sum of
αT for all states multiplied by their termination probabilities.

P (X|λ) =
N∑

i=1

αT (i) ωi (22)

Combining Equations 20, 21 and 22 yields Algorithm 2. Iterating over all
possible paths would have required O(NT ) operations, as there are poten-
tially NT possible paths of length T through an HMM with N states. The
main loop of the forward algorithm, which is executed T − 1 times, iterates
through all N states and sums the probabilities of coming from any of the
N states. Thus the time complexity of the forward algorithm is O(TN2) –
remarkably less than O(NT ).

Algorithm 2 The forward algorithm.

Step 1: Initialization

for i← 1 to N do

α1(i)← πi bi(x1)
end for

Step 2: Recursion

for t← 2 to T do

for j ← 1 to N do

αt(j)←
[
N∑

i=1

αt−1(i) aij

]

bj(xt)

end for

end for

Step 3: Termination

P (X | λ)←
N∑

i=1

αT (i) ωi

3.5 Backward Probability

The forward probability αt(i) is the probability of being in the state i after
having seen the first t observations. Closely related, the backward probability
βt(i) is defined as the probability of observing the rest of sequence XTt+1 if
being in state i at time t.
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βt(i) = P
(

XTt+1 | st = i, λ
)

(23)

At this point, it’s not immediately obvious why the backward probability
might be of interest. It is introduced here because of its close similarity
with the forward probability and because they will both be needed later
on in Section 4.3, when estimating HMM parameters with the Baum-Welch
algorithm.

For t < T , the definition of the backward probability βt(i) is fairly
straight-forward. If we are in state i at time t we can observe the rest of
the sequence XTt+1 by taking any transition, observing the next observation
xt and then the rest of the sequence in the same manner recursively, as per
Equation 24.

βt(i) =
N∑

j=1

aij bj(xt+1) βt+1(j) 1 ≤ t < T (24)

Since βt(i), in the equation above, is a function of xt+1 it cannot be used
for calculating βT (i), as there is no symbol xT+1. Instead βT (i) is defined
as the termination probability for state i.

βT (i) = ωi (25)

To justify this definition, it should be noted that the inclusion of the
termination probability vector ω is conceptually equivalent to having a ded-
icated non-consuming termination state to which every other state si has
an edge. The weight of the edge – that is, its transition probability – is the
termination probability ωi. This is illustrated in Figure 20.

∼=

π1 π2 π3

ω1

ω2

ω3

π3
ω3

ω2

ω1

π1 π2

2

3 s e

1 1 2

3

Figure 20: Having explicit π and ω vectors are equivalent to having dedicated
non-consuming start and termination nodes.

Instead of the dedicated start and termination states being non-consuming,
consider adding the two special symbols xs and xe, as illustrated in Fig-
ure 21. xs will match the start state with the probability 1, and any other
state with the probability 0. The termination state will likewise only match
the termination special symbol xe.
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XT1 = {x1, x2, . . . , xT } X
T+1
0 = {x(s), x1, x2, . . . , xT , x(e)}

Figure 21: Augmenting the observation sequence X for consuming start and
termination states.

In this view of the model, the symbol xT+1 is defined as x(e) and the
same reasoning as was used for Equation 24 may be used for βT (i) as well. In
Equation 24 all possible transitions are summed over, but in the case of the
termination symbol x(e) all terms in the summation will be zero due to that
none of the observation probability functions bj will match it. On the other
hand, a new edge from state i to the termination state with the transition
probability ωi has been introduced. Hence, the summation is replaced by
taking the only transition which may yield a non-zero probability.

Per definition, be(x(e)) = 1. Also, the probability of observing the re-
mainder of the sequence, after the whole sequence has already been observed,
is of course also 1. That is, βT+1(j) = 1. Thus, the definition of βT (i) in
Equation 25 is justifiable.

βT (i) = ωi be(x(e)) βT+1(j)

= ωi

Combining Equations 24 and 25 yields Algorithm 3. Figure 22 illustrates
the calculation.

i

N

1

2

βN (t+ 1)

β2(t+ 1)

β1(t+ 1)
ai1

ai2
βi(t)

aiN

bN (xt+1)xt+1

b1(xt+1)

b1(xt+1)

xt+1

xt+1

Figure 22: Calculating βt(i).
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Algorithm 3 The backward algorithm.

Step 1: Initialization

for i← 1 to N do

βT (i)← ωi
end for

Step 2: Recursion

for t← (T − 1) to 1 do

for i← 1 to N do

βt(i)←




N∑

j=1

aij bj(xt+1) βt+1(j)





end for

end for

Step 3: Termination

P (X | λ)←
N∑

i=1

αT (i) ωi

3.6 Viterbi Algorithm

Closely related to the problem of finding the probability of a sequence X, is
finding out what the most probable path through an HMM is, had the model
indeed generated that sequence. Arguably the most common algorithm for
doing this is the Viterbi algorithm. It is nearly identical to the forward
algorithm in Section 3.4, except that instead of summing the probabilities
of all possible paths up to a state, it only keeps the path with the highest
probability along with pointers of which states it consists of. After the
whole sequence has been iterated through, the back pointers are unwinded,
revealing the most probable path.

In Algorithm 4, Vt(i) is the probability of the most probable sub path
that ends in state i at time t and B is the matrix of back pointers. A
sub path S = {s1, s2, . . . , st−1, st} has the probability Vt(i), where i = st.
Bt(i) is the previous state in the sub path, so that st−1 = Bt(i). As not to
be confused of the boundary cases in the algorithm; while V is defined for
1 ≤ t ≤ T , B is only defined for 2 ≤ t ≤ T .

Note that the probability of the most probable path P (S | X,λ), which
is what the Viterbi algorithm produces, will typically be different from the
probability of the model having generated the sequence P (X |λ), which the
forward algorithm produces. The former is the probability of one particular
path while the latter is a summation of the probabilities of all possible paths.
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Algorithm 4 The Viterbi algorithm.

Step 1: Initialization

for i = 1 to N do

V1(i)← πi bi(x1)
end for

Step 2: Recursion

for t = 2 to T do

for j = 1 to N do

Vt(j) ←
[

max
1≤i≤N

Vt−1(i) aij

]

bj(xt)

Bt(j) ←
[

argmax
1≤i≤N

Vt−1(i) aij

]

end for

end for

Step 3: Termination

sT ←
[

argmax
1≤i≤N

VT (i) ωi

]

Step 4: Backtracking

for t = (T − 1) to 1 do

st ← Bt+1(st+1)
end for

S = (s1, s2, . . . sT ) Most probable sequence

P (S | X,λ) =
[

max
1≤i≤N

VT (i) ωi

]

Probability of S
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3.7 Kullback-Leibler Distance

The actual values for the parameters of two HMMs say very little of whether
they will give similar probabilities for the same sequence of observations.
Models with superficially similar parameters may differ a lot in how they
score sequences, and models with superficially different parameters may give
surprisingly similar results.

As a trivial example of this, it should be obvious that a parameter per
parameter comparison between two models fails as a useful measurement
if, for instance, two models are identical except for a permuted probability
matrix (including the initial state distribution and termination probability
vectors). It should be obvious that they are functionally equivalent, since the
only difference is that the states are numbered differently, but a parameter
per parameter comparison will typically yield a sizable difference.

Instead, a more sensible method of measuring the distance is the Kullback-
Leibler divergence, or – since it used here as a distance measurement – the
Kullback-Leibler distance. To measure the distance between two models A
and B, sequences are randomly generated from either A or B. The Kullback-
Leibler distance between A and B, KL(A,B), is the mean of the logarithmic
differences between the probabilities of the sequences for the two models.
This is formalized in Equation 26, where the N number of observation se-
quences X1, X2, . . . , XN are generated from model A.

KL(A,B) =
1
N

N∑

i=1

log
P (Xi | A)
P (Xi | B)

(26)

The more sequences that are generated, the more accurate will the dis-
tance measurement be, at the expense of computational resources. Also,
the more parameters there are in the models (number of states and number
of Gaussian mixture components), the more sequences are needed for an
accurate measurement.

One drawback of the Kullback-Leibler distance, as defined in Equa-
tion 26, is that it is asymmetric. With the same set of observation se-
quences X1, X2, . . . , XN , KL(A,B) will typically differ from KL(B,A). If
the distance from both directions are averaged over, however, it becomes
symmetric. This is expressed in Equation 27.

KL
sym

(A,B) =
KL(A,B) +KL(B,A)

2
(27)

Since the training algorithms covered later on are non-trivial to imple-
ment and have many sources of potential errors – some quite subtle – the
Kullback-Leibler distance is useful as a debugging tool during development.
To ensure that an implementation of a training algorithm is at least not
completely off-track, the following methodology has proved itself valuable:
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1. Create two HMMs A and B with arbitrary parameters.

2. Calculate the Kullback-Leibler distance between A and B.

3. Generate sequences from A, using Algorithm 1.

4. Train B with the sequences from A.

5. The KL-distance between A and B should now be less than in step 2.

4 Training

4.1 Phoneme Modelling

The phonemes are modelled as HMMs with three states. Since the processes
they model, the pronunciations of phonemes, are linear in the sense that they
are unlikely to have loops of repeated features, they are modelled as left-
right HMMs. This means that a transition from state i to state j is only
allowed if i ≤ j. Also, the HMM is only allowed to start in state 1 and end
in the last state N . That is, for a left-right HMM, the following constraints
apply:

πi = 0 i 6= 1
aij = 0 i > j
ωj = 0 j 6= N

(28)

Figure 23 illustrates an HMM model with three states and free transitions.
Figure 24 illustrates a corresponding left-right model.

Additionally, one may want to ensure that in order to traverse the HMM,
every single state has to be traversed. This may be done by adding the
constraint that any state may only transition back to itself or to the next
state. More generally, an n-degree left right model, where n ≥ 1, is one where
a state may transition only back to itself or to the n number of following
states. That is, for a n-degree left-right HMM, the following constraints
apply in addition to those expressed in Equation 28:

aij = 0 j − i > n (29)

Figure 23: Free model. Figure 24: Left-right model.
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In the ERIS configuration file, which type of HMM model is to be used
is specified by setting the hmm.statemodel variable (see Appendix B for a
sample configuration file):

• free Free transitions model
• left-right Left right model
• left-right-n n-degree left right model

In this project, the free and n-degree left-right models have only been
used in development and debugging. All phonemes are trained as left-right
models.

4.2 Clustering

Clustering is the process of grouping together similar elements. The ele-
ments that will be grouped together here are the HMM observations, that
is, the feature vectors extracted in Section 2. If the feature vectors are D
elements long, they can be regarded as points in D-dimensional space. For
instance, a typical feature vector with 13 MFCC coefficients and two levels
of deltas is a vector of 39 real values, and can thus be regarded as a point
in a 39-dimensional Cartesian space. Since that many dimensions are hard
to visualize, the examples and figures will be in two dimensional space, al-
though the presented algorithms themselves have no particular limitation
on the number of dimensions.

For a Cartesian space of any number of dimensions D ≥ 1, a point
P in that space can be described as by vector of D real numbers9: P =
(x1, x2, . . . , xD). When constrained to three dimensions or less, x1, x2 and
x3 are often referred to as the x, y and z coordinates of the point. The
distance between two points P = (x1, x2, . . . , xD) and Q = (y1, y2, . . . , yD)
is given by

||P −Q|| =

√
√
√
√

D∑

i=1

(xi − yi)2 (30)

For two dimensions, Equation 30 is simply the Pythagorean theorem with
the coordinate system translated so that either P or Q is on the origin:
c =
√
a2 + b2, where c is the length of the hypotenuse and a and b are the

lengths of the sides of a triangle.
If there are N number of elements, i.e. N number of feature vectors, that

are to be clustered into K clusters, where K ≤ N , it will be done in order to
minimize the within-cluster sum of squares, WCSS. The center of a cluster
Ck, 1 ≤ k ≤ K, is simply the mean of the elements in that cluster and is

9A vector in this context refers to an array of numbers, not geometrical vectors – which
can also be described by vector, i.e. array, of numbers.
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denoted by E(Ck). If the size of the cluster, that is, how many elements it
contains, is given by |Ck|

E(Ck) =
1
|Ck|

∑

x∈Ck

(31)

Then the WCSS is the sum of the square distance for every element to the
center of the cluster to which it belongs

WCSS =
K∑

k=1

∑

x∈Ck

||x− E(Ck)||2 (32)

The number of possible ways to cluster N elements into K clusters with-
out any cluster being empty10 is the number of ways to pick K elements
out of N possible (so that no cluster is empty) multiplied by the number of
ways to distribute the remaining N −K elements into K clusters.

Number of possible clusterings =

(

N

K

)

× (N −K)K

This number is prohibitively high for an exhaustive search for the global
minimum WCSS for anything but very small numbers of N and K. Typ-
ically, heuristic algorithms for finding good-enough local minima will have
to make do.

4.2.1 K-Means Clustering Algorithm

The K-means clustering algorithm is a heuristic algorithm for finding a local
minimum WCSS for a set of N elements clustered into K clusters. It is
conceptually simple and not particularly difficult to implement.

Of the N elements that are to be clustered, K elements are chosen at
random and assigned to each cluster. The centers of the clusters E(Ck) are
recalculated and each of the remaining N −K elements is assigned to the
cluster to which it has the shortest distance. That is, if c(x) is the cluster
to which the element x belongs:

c(x)← Ck, k = argmin
1≤i≤K

||x− E(Ci)||

Once all N elements have been assigned to a cluster, they are iterated
through again. If an element is assigned to a cluster which isn’t the one
to which it has the shortest distance, it is reassigned. After having gone
through all elements, if any there were any reassignments, the centers are
recalculated again and the elements are iterated over once more. This pro-
cess is then repeated until no elements can be reassigned. See Algorithm 5.

10If a cluster contains only one element, the distance for the element to the center will
be 0, so it makes little sense to allow for empty clusters.
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Algorithm 5 K-means clustering algorithm.
for i← 1 to K do

j ← RandomInterval(i,K)

if j 6= i then

Swap(xi, xj)
end if

c(xi)← Ci
RecalculateCenter(Ci)

end for

for i← K + 1 to N do

RecalculateCenter(Ci)
AddToCluster(NearestCluster(C, xi), xi)

end for

repeat

for i← 1 to K do

RecalculateCenter(Ci)
end for

num_moved← 0
for i← 1 to T do

c← NearestCluster(C, xi)
if xi /∈ c then

MoveToCluster(c, xi)
num_moved← num_moved + 1

end if

end for

until num_moved = 0
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Figure 25 illustrates 100 randomly generated two-dimensional data points
clustered into three clusters using the K-means algorithm.
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Figure 25: 100 points clustered into 3 clusters with the K-means algorithm.

Since the K-means clustering algorithm finds a set of clusters with a local
minimum WCSS, and the particular local minimum it finds depends on the
first K randomly chosen centers, it may be desirable to run the algorithm
several times in order to decrease the risk of accidentally only finding an
untypically bad minimum, and increase the chance of finding a really good
one.

4.2.2 Bees Clustering Algorithm

The Bees algorithm is a heuristic search algorithm modelled after honey
bees looking for flowers. The basic idea behind it is that of a number of
bees going to look for flowers at random places. The bees return to the
hive and share the results of their findings. Then, a number of the bees
goes to search in the vicinity of the best flower patches and the rest keep
looking at random places. The procedure is repeated for a fixed number
of iterations or until a good enough flower patch has been found. For a
heuristic optimization problem, the geographical places the bees investigate
correspond to proposed solutions, and the amount of flowers at a site is the
fitness of that solution.

The Bees clustering algorithm is, as the name implies, a clustering al-
gorithm which uses the bees search algorithm to search for as good a way
as possible to cluster a set of data points. It is described in Pham et al.
(2007). Informally, it can be described as follows: Randomly generate a
number of different clusterings and calculate their fitness11. Then, change

11Since the goal is the minimize the WCSS, a good fitness value is WCSS−1.
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the best clusterings a little bit and randomly generate new clusterings for
the rest. Changing the best clusterings is the analogue of searching in the
vicinity of a good flower patch. See Algorithm 6.

Of the best sites to explore further, the top e number of sites are called
elite sites. More bees will be dispatched to search in the vicinity of the
elite sites than for the rest of the top scoring sites. In the ERIS con-
figuration file, the following parameters, listed along with their default
values, may be set to control the operation of the algorithm (the prefix,
hmm.cluster.bees is omitted. That is, the parameter num_scouts list be-
low is really hmm.cluster.bees.num_scouts):

• num_scouts = 12 Total number of bees
• num_sites = 4 Number of best sites to explore further
• num_elite = 2 Number of elite sites
• num_bees_elite = 4 Number of bees to send to elite sites
• num_bees_rest = 2 Number of bees to send to non-elite sites
• num_iterations = 300 Number of iterations

For training HMMs, the crucial feature of the bees clustering algorithm
is that one is free to implement the mutation function, the one which makes
small changes to a clustering, as one see fit. If the phoneme model that is
to be trained with a clustering algorithm is a left-right HMM, it must be
ensured that if an element xt belongs to cluster number k the next element
xt+1 must belong to a cluster of number k or higher. That is,

c(xkt ) ≤ c(xkt+1)

{

1 ≤ k ≤ K
1 ≤ t < T k (33)

Otherwise, there will be transitions from a higher state to a lower state.
With the k-means algorithm, it is difficult to exercise such constraints. With
the bees clustering algorithm, however, it is simply a matter of ensuring that
the function for randomly generating new clusterings and the function which
mutates one clustering into another both satisfies the constraint.

In the k-means algorithm, each data point12 needs to have an associated
pointer to which cluster it belongs. With the bees clustering algorithm, a
clustering is defined by a set of walls which separates the observations in
a sequence. Figure 26 illustrates five sequences of observations which are
clustered into three clusters by being separated by two such walls.

The function which generates random clusterings simply generates ran-
dom integers to serve as indexes for the walls separating the elements. The
mutation function, which takes on clustering as input and randomly gener-
ates a new one by making small modifications to the original, first generates
a random number of move points, which depends on the number of walls
times the number of sequences. The more number of move points, the

12Feature vector / HMM observation.
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2 3 4 5 6 7 8 9 10 11 12 131

X1

X2

X3

X4

X5

w1 = {5, 10}

w2 = {3, 9}

w3 = {5, 11}

w4 = {4, 9}

w5 = {3, 8}

Figure 26: Five sequences of observations X1 . . . X5

larger mutation, which relates to a greater area to search in the vicinity of
the flower patch. For each move point, a wall is picked at random and is
randomly shifted one step to the left or right.

Algorithm 6 Bees clustering algorithm
1. Initialize the solution population.
2. Evaluate the fitness of the population.
while Stopping criterion not met do

3. Form new population.
4. Select best sites for neighborhood search.
5. Recruit bees for selected sites (more bees for the best e sites) and
evaluate fitness.
6. Select the fittest bee from each site.
7. Assign remaining bees to search randomly and evaluate their fitness.

end while

4.2.3 HMM Parameter Estimation

If the parameters of an HMM model with N number of states andM number
of Gaussian mixture components are to be fitted to a given set of training
sequences X = {X1, X2, . . . , XK}, clustering may be used to find an initial
estimate of the parameters. These can then be refined using the Baum-
Welch re-estimation algorithm (described in Section 4.3.)

The parameters that need to be estimated are:

• The initial state distribution vector π

• The transition probability matrix A

• The termination probability vector ω

• The Gaussian mixture weight vectors cj , 1 ≤ j ≤ N

• The mean vector and covariance matrix for each Gaussian mixture
component: µmj and Umj
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Estimating the transition probabilities (Juang and Rabiner, 1990), in-
cluding the initial state distribution and termination probabilities, is a mat-
ter of counting how often one state follows another and dividing that by the
total number of transitions from that state. For the initial probability πi
of an HMM state i, this means counting how many training sequences start
with an element that belongs to cluster Ci, divided by the total number of
training sequences K.

Similarly, the termination probabilities are given by the number of train-
ing sequences which ends with an element belonging to the cluster corre-
sponding to a state, divided by the number of elements in the cluster. I.e.
if termination is understood as a kind of special transition, the termination
probability of state i is the number of “termination transitions” from i di-
vided by the total number of transitions from i. The function C(x, i) is
introduced in order to express these relations formulaically.

C(x, i) =

{

1 c(x) = Ci
0 c(x) 6= Ci (34)

Using Equation 34 and the above reasoning, the following equations apply for
the for the initial state distribution, transition probabilities and termination
probabilities:

πi =
1
K

K∑

k=1

C(xk1, i) 1 ≤ i ≤ N (35)

aij =

K∑

k=1

Tk−1
∑

t=1

C(xkt , i) C(xkt+1, j)

K∑

k=1

Tk∑

t=1

C(xkt , i)

1 ≤ i, j ≤ N (36)

ωi =

K∑

k=1

C(xkTk , i)

K∑

k=1

Tk∑

t=1

C(xkt , i)

1 ≤ i ≤ N (37)

Note that in Equation 36 the index t in the inner sum only goes up to
Tk − 1 in the numerator while it goes up to Tk in the denominator. The
reason for this is that the fraction in Equation 36 means the number of
transitions from i to j, divided by the number of transitions from i, and the
number of transitions from i also includes the number of terminations in i.

Next, the parameters of the observation probability density function bi
– mixture weights, mean vectors and covariance matrices – should be esti-
mated so that bi fits the observations that are assigned to cluster Ci. If the
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OPDF for state i only has one mixture component, Mi = 1, the mixture
weight c1 = 1 and the mean vector µi and covariance matrix Ui are given
directly by the elements in cluster Ci:

µi =
1
|Ci|

∑

x∈Ci

x 1 ≤ i ≤ N (38)

Ui =
1
|Ci|

∑

x∈Ci

(x− µi)′(x− µi) 1 ≤ i ≤ N (39)

If there are more than one mixture component, the elements to be fitted
for the OPDF need to be clustered yet again, this time with each cluster
corresponding to one Gaussian mixture component. Figure 27 illustrates
the same clustering as Figure 25, but with each cluster clustered into two
sub clusters – one for each mixture component of an OPDF with two com-
ponents. If the elements of cluster Ci is clustered into the Mi sub clusters
C1
i , C

2
i , . . . , C

Mi
i , the mixture weight vector ci is given by the number of

elements in each sub cluster divided by the total number of elements in the
cluster. The mean and covariance vectors are thus given by Equations 40
and 41, which are all but identical to Equations 38 and 39.

µmi =
1
|Cmi |

∑

x∈Cm
i

x

{
1 ≤ i ≤ N
1 ≤ m ≤Mi

(40)

Umi =
1
|Cmi |

∑

x∈Cm
i

(x− µmi )′(x− µmi )

{
1 ≤ i ≤ N
1 ≤ m ≤Mi

(41)
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Figure 27: Clustered elements with sub clusters for Gaussian mixtures.
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4.3 Baum-Welch Re-estimation

If the parameters of an HMM model has been estimated to fit a set of training
sequences X = {X1, X2, . . . , XK}, for instance by using one of the clustering
algorithms in Section 4.2, the Baum-Welch re-estimation algorithm may be
used to refine that estimation for an even better fit. The idea is to use the
existing model to, in a sense, estimate the parameters of itself. The formulas
and algorithms described in this section are taken from, and to some degree
adapted from, Rabiner (1989).

4.3.1 γ and ξ

Definition 4.1. γt(i) is defined as the probability of being in state i at time
t, given an HMM model λ and a sequence of observations X.

γt(i) = P (st = i,X | λ) (42)

Recall the forward and backward probabilities from Sections 3.4 and
3.5. Given a sequence of observations X =< x1, x2, . . . , xT > and an HMM
model λ, the forward probability αt(i) is the probability of being in state
i after having observed the first t observations. The backward probability
βt(i) is the probability of observing the remainder of the sequence, XTt+1, if
being in state i at time t.

αt(i) = P
(

Xt1, st = i | λ
)

βt(i) = P
(

XTt+1 | st = i, λ
)

γt(i), then, can be expressed in terms αt(i) and βt(i), if it is noted that
the probability of being in state i at time t is the probability of seeing
the first t observation symbols x1, x2, . . . , xt, ending up in state i and then
observing the remaining T − t observations XTt+1, divided by the probability
of being in any state at time t.

γt(i) =
αt(i)βt(i)
N∑

i=1

αt(i)βt(i)

1 ≤ t ≤ T (43)

Definition 4.2. ξt(i, j) is defined as the probability of taking the transition
from state i to state j at time t, given an HMM model λ and a sequence of
observations X. That is, it is the probability of being in state i at time t and
in state j at time t+ 1.

ξt(i, j) = P (st = i, st+1 = j,X λ) (44)
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ξ may also be expressed in terms of α and β. The expression is nearly
identical to that of γ, except that after observing the first t observations, it
includes aij , the probability of transitioning from state i to j, and bj(xt+1),
the probability of observing the next observation xt+1 in state j. This is
multiplied with the probability of observing the remainder of the sequence,
XTt+2, divided by the probability of taking any transition from state i at
time t.

ξt(i, j) =
αt(i) aij bj(xt+1) βt+1(j)

N∑

i=1

N∑

j=1

αt(i) aij bj(xt+1) βt+1(j)

1 ≤ t < T (45)

Take care to note that, while γ is defined for 1 ≤ t ≤ T , ξ is only defined
for 1 ≤ t < T . This is illustrated in Figure 28.

x1 . . . xT−1x2 xT

γ1 γ2 γT−1 γT

ξ1 ξ2 ξT−2 ξT−1

Figure 28: γ is defined for 1 ≤ t ≤ T , but ξ is only defined for 1 ≤ t < T

As a convenient optimization, it turns out that it’s possible to express γ
in terms of ξ, as in Equation 46, by noting that the probability of being in
state i at time t is the probability of taking any transition from state i at
time t. See Appendix A.1 for a formulaic justification of this reasoning.

γt(i) =
N∑

j=1

ξt(i, j) 1 ≤ t < T (46)

Reducing the number of terms involved in the calculations does not only
make the algorithm run faster, it also reduces the risk of implementation
errors. There are many different probabilities involved in Baum-Welch re-
estimation, and opportunities for simplifications should be welcomed as er-
rors are often subtle and hard to track down. However, since ξ is only
defined for t < T , Equation 43 is still needed to calculate γT . However,
since βT (i) = ωi, it can be simplified somewhat:
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γT (i) =
αT (i)βT (i)
N∑

i=1

αT (i)βT (i)

=
αT (i)ωi
N∑

i=1

αT (i)ωi

To summarize:

ξt(i, j) =
αt(i) aij bj(xt+1) βt+1(j)

N∑

i=1

N∑

j=1

αt(i) aij bj(xt+1) βt+1(j)

1 ≤ t < T (45)

γt(i) =
N∑

j=1

ξt(i, j) 1 ≤ t < T (46)

γT (i) =
αT (i)ωi
N∑

i=1

αT (i)ωi

(47)

4.3.2 Estimating Transition Probabilities

Using the estimated state and transition probabilities, γ and ξ from Sec-
tion 4.3.1, the initial state distribution vector π, transition probability ma-
trix A and termination probability vector ω of an HMM model λ may be
estimated. Conceptually, the estimations are straight-forward.

πi =
Number sequences starting in state i

Number of training sequences
(48)

aij =
Number of transitions from state i to j

Number of times in state i
(49)

ωi =
Number of sequences ending in state i

Number of times in state i
(50)

If γkt (i) means the γt(i) for the k:th training sequence, and likewise,
ξt(i, j) for the k:th training sequence by ξkt (i, j), the formulas for the Equa-
tions 48, 49 and 50 become:

πi =

K∑

k=1

γk1 (i)

K
(51)
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aij =

K∑

k=1

Tk−1∑

t=1

ξkt (i, j)

K∑

k=1

Tk∑

t=1

γkt (i)

(52)

ωi =

K∑

k=1

γkTk(i)

K∑

k=1

Tk∑

t=1

γkt (i)

(53)

It should be noted that the summation over t in the numerator of Equa-
tion 52 only goes up to T − 1, as ξ is not defined for t = T , and a transition
from a state i at time T would mean that the model terminated in i. This
probability is to found in the termination probability vector ω.

Also, since the transition probability matrix A doesn’t include the ter-
mination probabilities, it should not be row-stochastic in of itself, but rather
the following should hold true

N∑

j=1

(a
ij + ωi) = 1 1 ≤ i ≤ N (54)

See Appendix A.2 for a proof that this relation does in fact hold true.

4.3.3 Estimating Observation Probability Functions

Recall that the function which determines the probability of the state i
emitting the observation x, bi(x), is a multi-variate Gaussian mixture.

bi(x) =
M∑

m=1

cim N (x, µim,Σim)







1 ≤ i ≤ N
M∑

m=1

cim = 1

The parameters that need to be estimated are

• ci Mixture weight vector
M∑

m=1

cim = 1

• µim Mean vectors for the Gaussian mixtures 1 ≤ m ≤Mi
• Σim Covariance matrices for the Gaussian mixtures 1 ≤ m ≤Mi

In order to estimate these parameters, two additional terms need to be
introduced: δtk(j,m) and φkt (j,m).
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Definition 4.3. δtk(j,m) is the probability of the m:th mixture component of
the observation probability function for state j accounting for the observation
xkt .

δkt (j,m) =










cjmN (xkt , µjm,Σjm)
M∑

m=1

cjmN (xkt , µjm,Σjm)










(55)

Definition 4.4. φkt (j,m) is the probability of being in state j at time t, with
the m:th mixture component of the observation probability function of state
j accounting for the observation xkt .

φkt (j,m) = γkt (j) δ
k
t (j,m) (56)

The mixture weight cjm is estimated by summing the probability of being
in any state at any time with the m:th mixture component accounting for
the observation, as per Equation 57. This is divided by the probability of
any mixture component of the probability function bj accounting for the
observation.

cjm =

K∑

k=1

Tk∑

t=1

φkt (j,m)

K∑

k=1

Tk∑

t=1

M∑

m=1

φkt (j,m)

(57)

The mean vector µ is the average of the observations that the m:th
mixture component of the j:th state accounts for. This means summing
over all observations weighted by the probability that the particular mixture
component accounted for it, and then dividing this by the probability that
any component did – as is expressed in Equation 58.

µjm =

K∑

k=1

Tk∑

t=1

φkt (j,m) xkt

K∑

k=1

Tk∑

t=1

φkt (j,m)

(58)

Estimating the covariance matrix Σ is essentially identical to estimating
the mean vector, except that it is the deviations from the mean that are
summed over instead of the actual observations. Note that xkt and the mean
vector µjm in Equation 59 are row-vectors, so the resulting covariance matrix
will indeed be a square matrix.
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Σjm =

K∑

k=1

Tk∑

t=1

φkt (j,m) (xkt − µjm)′(xkt − µjm)

K∑

k=1

Tk∑

t=1

φkt (j,m)

(59)

4.3.4 Scaling α and β

Since the “probability” functions really are probability density functions, as
there is no sensible definition for probabilities of non-discrete observations,
and they are built by combinations of multi-variate Gaussians for vectors of
quite high dimensionality (39 for 13 MFCC coefficients and two delta levels),
the probability value for an observation is typically very small. The forward
and backward probabilities – α and β in Equations 21 and 24 – both involve
repeated multiplications of such probabilities, as well as multiplications of
the transition probabilities which are all less than or equal to 1.

αt(j) =

[
N∑

i=1

αt−1(i) aij

]

bj(xt) (21)

βt(i) =
N∑

j=1

aij bj(xt+1) βt+1(j) (24)

If, for example, the smallest positive value that can be represented with
a floating point data type, such as a double13, is 10−324 and the probabil-
ities that are multiplied are of the order of 10−9, the product will not be
possible to represent after about 35 multiplications. Adding more bits to
the data type used to represent the values is possible, but does not scale
well for training sequences of arbitrary lengths. However, it turns out that
it’s possible to work around this problem by introducing scaled versions of
α and β.

First it should be note that α and β are only directly used in γ and ξ. If
it is possible write those two equations in such a way that their values are
still equivalent but they do not suffer from the scaling problem of repeated
multiplication of small values, then that is the only change that needs to be
introduced.

13A 64-bit IEEE floating point number, i.e. a typical double on most modern platforms,
can represent 2−1074

≈ 10−324 as the smallest positive value.
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γt(i) =
αt(i)βt(i)
N∑

i=1

αt(i)βt(i)

(43)

ξt(i, j) =
αt(i) aij bj(xt+1) βt+1(j)

N∑

i=1

N∑

j=1

αt(i) aij bj(xt+1) βt+1(j)

(45)

The scaling factors are defined as

ct =
1

N∑

i=1

αt(i)

t = 1

ct =
1

N∑

j=1

[
N∑

i=1

α̂t−1(i) aij

]

bj(xt)

t > 1
(60)

Using the scaling factor ct, a scaled version of the forward probability α̂
may be formulated as

1. Initialization.
α̂1(j) = c1 α1(j) (61)

2. Recursion

α̂t(j) =

[
N∑

i=1

α̂t−1(i) aij

]

bj(xt)

N∑

j=1

[
N∑

i=1

α̂t−1(i) aij

]

bj(xt)

(62)

The initialization equation (61) may be rewritten as

α̂t(j) = ct αt(j)

=

(
t∏

s=1

cs

)

αt(j)







t = 1 (63)

The recursion step (62) may also be rewritten in a similar fashion
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α̂t(j) =

[
N∑

i=1

α̂t−1(i) aij

]

bj(xt)

N∑

j=1

[
N∑

i=1

α̂t−1(i) aij

]

bj(xt)

= ct

[
N∑

i=1

α̂t−1(i) aij

]

bj(xt)

= ct

[
N∑

i=1

(
t−1∏

s=1

)

αt−1(i)aij

]

bj(xt)

=

(
t∏

s=1

)[
N∑

i=1

αt−1(i)aij

]

bj(xt)

=

(
t∏

s=1

)

αt(j) t > 1

(64)

Combining Equations 63 and 64 yields an expression of α̂ defined for all
t:

α̂t(j) =

(
t∏

s=1

)

αt(j) 1 ≤ t ≤ T (65)

Two additional terms which will prove useful are Ct and Dt.

Ct =
t∏

s=1

cs (66)

Dt =
T∏

s=t

cs (67)

Combining equations (63), (64) and (66) yields

α̂t(j) = Ctαt(j) 1 ≤ t ≤ T (68)

Next, a scaled version of the backward probability β is introduced.

1. Initialization
β̂T (i) = cTβT (i) (69)

2. Recursion

β̂t(i) = ct





N∑

j=1

aijbj(xt+1)β̂t+1(i)



 (70)
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Equation 69 is rewritten as

β̂T (i) =

(
T∏

s=t

)

βt(i) t = T (71)

Equation 70 is also rewritten

β̂t(i) = ct





N∑

j=1

aijbj(xt+1)β̂t+1(i)





= ct





N∑

j=1

aijbj(xt+1)

(
T∏

s=t+1

cs

)

βt+1(i)





=

(
T∏

s=t

cs

)



N∑

j=1

aijbj(xt+1)βt+1(i)





=

(
T∏

s=t

cs

)

βt(i) 1 ≤ t < T

(72)

Combining (71), (72) and (67) yields a similar equation for β̂ as for the
scaled forward probability α̂ in Equation 68.

β̂t(i) = Dtβt(i) 1 ≤ t ≤ T (73)

Now, it is possible to rewrite γ and ξ in terms of the scaled forward and
backward probabilities α̂ and β̂, and it turns out they are equivalent to the
unscaled versions. This means that the only thing that is needed in order
to avoid overflowing the exponents in the floating point representations of
the forward and backward probabilities is to change the calculations to use
the scaled versions instead. All other calculations remain the same. See
Appendix A.3 and A.4 for proofs of Equations 74 and 75.

γ̂t(i) =
α̂t(i)β̂t(i)
N∑

i=1

α̂t(i)β̂t(i)

= γt(i) (74)

ξ̂t(i, j) =
α̂t(i) aij bj(xt+1) β̂t+1(j)

N∑

i=1

N∑

j=1

α̂t(i) aij bj(xt+1) β̂t+1(j)

= ξt(i, j) (75)

The algorithms for calculating the scaled forward and backward probabilities
are presented in Algorithms 7 and 8.
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Algorithm 7 The scaled forward algorithm.

Step 1: Initialization

for i← 1 to N do

α̂1(i)← πi bi(x1)
end for

s1 ← Normalize(α̂1)

Step 2: Recursion

for t← 2 to T do

for j ← 1 to N do

α̂t(j)←
[
N∑

i=1

α̂t−1(i) aij

]

bj(xt)

end for

st ← Normalize(α̂t)
end for

Step 3: Termination

P (X | λ)←
(
T∏

t=1

st

)
N∑

i=1

αT (i) ωi

Algorithm 8 The scaled backward algorithm.
{Note: The scaling factors st used here are those that were produced by
the scaled forward algorithm – Algorithm 7.}

Step 1: Initialization

for i← 1 to N do

β̂T (i)← ωi/sT
end for

Step 2: Recursion

for t← (T − 1) to 1 do

for i← 1 to N do

β̂t(i)←




N∑

j=1

aij bj(xt+1) β̂t+1(j)





end for

β̂t(i)← β̂t(i)/st
end for
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5 Word Recognition

5.1 Building The Word Graph

When the HMM models representing the phonemes have been trained, a
larger HMM will be built from these, using a dictionary of phonetic pronun-
ciations for words. When doing word-recognition, the audio source – such
as a wave file or a microphone – is transformed into a sequence of feature
vectors (as is described in Section 2). For this sequence, the most probable
path through the larger HMM, from here on referred to as the word graph,
reveals which words were the ones most probable to have been spoken. Fig-
ure 5.1 illustrates the process of building a word graph from the set of HMM
models representing phonemes and a dictionary of phonetic pronunciations.

. . .

Dictionary

A

A:

B

D

E

E:

F

R

. . .

. . .

. . .

. . .

Phoneme HMMs

Word Graph

Figure 29: Building the word graph.

The dictionary is a text file which contains a list of all words that the
system should be able to recognize, as well as their phonetic pronunciations.
See Table 5.1 for an example of a small dictionary or Appendix C for the
full dictionary used to test the ERIS system.

It is possible for a word to have more than a single pronunciation. These
could be specified by having an entry for each pronunciation, but the ERIS
Perl-script for constructing the word graphs, eris_mk_gx.pl, understands
pseudo-regular-expression-like constructs – such as (A|B|C) – to indicate
that either the phoneme A, B or C should be pronounced. A question mark
‘?’ after a phoneme indicates that the pronunciation of it is optional. Thus
(A|B)? means that either A, B or neither of them should be pronounced.
Consider the word Acceptans in the dictionary in Table 5.1. Its phonetic
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pronunciation is specified as AKSEPTA(N|NG)S, which means it could be pro-
nounced either as AKSEPTANS or AKSEPTANGS14.

Word Phonetic pronunciation

Acceptans A K S E P T A (N|NG) S

Ja J A:

Nej N E J

Ring R I NG

Stäng S T Ä NG

Öppna Ö P N A

Table 3: Example dictionary of phonetic pronunciations.

The dictionary is expanded from a one-to-one mapping of words to pro-
nunciations, to a one-to-many mapping with all pronunciations explicitly
stated. That is, without the pseudo-regular expressions for alternatives – as
is illustrated in Figure 5.1.

Acceptans −→ AKSEPTA(N|NG)S

⇓

Acceptans −→
{

AKSEPTANS

AKSEPTANGS

Figure 30: Dictionary expanded to one-to-many mapping.

The phonemes in the word pronunciations are then mapped into the
proper triphones by inspecting the phoneme classes of the preceding and
following phonemes. In Figure 5.1, the first phoneme, A, is followed by K –
which is a Stop-phoneme – and hence the context-free phoneme A is replaced
by one with a right-context, i.e. A<st>. The next phoneme, K is preceded by
A, which is a Back-vowel, and followed by S, which is a Fricative. Hence, it
is replaced by the triphone <bv>K<fr>. This is repeated for the remainder of
the phonemes.

Since some triphones rarely occur in practice, it’s not necessarily the
case that all the triphones needed by the dictionary exist in the corpus and
have been trained. This is especially probable if there is threshold set, so
that only phonemes with at least a minimum number of training sequences
are actually trained.

14‘NG’ is one phoneme
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Class bv st fr fv st st bv na na fr

Phoneme A K S E P T A N NG S

AKSEPTANS −→ A<st> <fv>K<r> <st>S<fv> <fr>E<st> <fv>P<st> <st>T<bv> <st>A<na> <bv>N<fr> <na>S
AKSEPTANGS −→ A<st> <fv>K<r> <st>S<fv> <fr>E<st> <fv>P<st> <st>T<bv> <st>A<na> <bv>NG<fr> <na>S

Figure 31: Word pronunciations with triphones.

In the ERIS system, if a triphone <L>M<R> does not exist, the biphones
<L>M and M<R> will be examined. If both of them exists, the biphone with
the most number of training sequences will be used instead of the triphone.
If neither one of them exist, the mono-phoneme M will be used as a last
resort. It is assumed that all mono-phonemes will have been trained.

Given a dictionary of words with their corresponding pronunciations as
lists of triphones and a set of trained phoneme HMMs, building the word
graph is a fairly straight-forward task. Nodes in the graph can be either
consuming or non-consuming, with the latter being called epsilon nodes.
Epsilon nodes don’t really affect the functionality of the graph, since a graph
with epsilon nodes always can be converted into a graph without. Consider
Figures 5.1 and 5.1. Figure 5.1 illustrates a graph of two phonemes A and
B which are connected with epsilon nodes. Figure 5.1 illustrates the same
graph but with the epsilon nodes removed. All paths between a pair of two
consuming nodes n1 and n2 which only contain epsilon nodes are replaced by
a direct edge between n1 and n2. As this will typically increase the number
of edges dramatically, it should be obvious that epsilon nodes are crucial
for organizing the graph and allowing for visual inspection of it – which is
valuable during development and debugging.

A/1 B/1

B/2A/2

es
1

πB1 ωB1

ωB2

aB
12

aB
21

πB2

πA1 ωA1

πA2 ωA2

aA
21

aA
12

Figure 32: Graph with two phonemes A and B, with interconnecting epsilon
nodes.

The word graph is essentially a three-level hierarchy, each of which con-
tains a start and an end node. The graph itself is a start and an end node
wrapping a list of words. The words, in turn, contains lists of triphones,
wrapped by an initial start node and a terminating end node. Finally, each
triphone also has non-consuming start and end nodes. These wrap a list of
consuming nodes, each of which correspond to a state in the phoneme HMM
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A/2

B/1

B/2

A/1

s eaA
12

aB
12

aA
21

aB
21

πA2 ωB2

ωB1πA1

ωA1 π
B
1

ωB1 π
A
1

ωA2 π
B
2

ωB2 π
A
2

ωB2 π
A
1

ωB1 π
A
2

ωA2 π
B
1

ωA1 π
B
2

Figure 33: Graph with two phonemes A and B, without interconnecting
epsilon nodes.

which was trained from the corpus. Only the sub graphs for the triphones
contain consuming nodes. All others are non-consuming. See Figure 5.1 for
an illustration of this hierarchy. The start and end nodes for the whole word
graph are marked s and e, for the words they are marked sw and ew, and
for the triphones they are marked sp and ep.

The start node for the whole word graph s is special in that it represents
the initial state of the system. The end node e is also special. It is the
only state in which a sequence of observations is allowed to end. That is, a
consuming state i only has ωi > 0 if it has a direct edge – or a path of only
epsilon nodes – to the end node. Figure 5.1 illustrates this, as only the node
A/3 has ω > 0. This is so that the whole of the sub graph representing a
word has to be traversed in order to match a sequence of observations. In
order to be able to recognize an arbitrary number of consecutive words, the
end node has an edge back to the start node.

When attempting to recognize words, it is typically not interesting to
know exactly which path through the word graph was the most probable for
a particular sequence of observations. Rather, it is of more interest which
words were on that path – and potentially also which time intervals they
correspond to. When allowing the system to recognize several consecutive
words – by the end node having an edge back to start – the end nodes
for the words are tagged as collecting strings representing words. When
searching through the graph for the most probable path, only nodes tagged
as collecting are reported back. That is, a list of words is returned by the
search algorithm, instead of a list of sub-phoneme states. The collecting
states are marked by c(word) in Figure 5.1.

Typically, many words in the dictionary share a common prefix. For in-
stance, the words avbryt and avsluta share the prefix av. When searching
the graph for the most probable word sequence, it’s unnecessary work to
explore two different paths with the same prefix. Instead, the graph can be
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A/1 B/1

B/2A/2

C/2

C/1 D/1

D/2

1

πD1 ωD1

ωD2

aD
12

aD
21

πD2

πC1 ωC1

πC2

aC
21

aC
12

Phoneme DPhoneme C

Word CD

ωC2

1 1

11 1

πB1 ωB1

ωB2

aB
12

aB
21

πB2

πA1 ωA1

πA2 ωA2

aA
21

aA
12

Phoneme BPhoneme A

Word AB

Word graph, containing two words AB and CD

c(AB)

c(CD)

ewepepsw sp sp

ewepepsw sp sp

es

Figure 34: Word graph containing two words, consisting of two phonemes
each.

A/1 A/2 A/3

=
π2

ω2

=0
0 >
π3

ω3

=0
0

>π1

ω1 =
0
0

s e

Figure 35: A/1 is the start node, and hence π1 > 0. A/3 is the termination
node, with ω3 > 0.

organized as a prefix-tree, also called a trie (Jelinek, 1997), as is illustrated
in Figure 5.1.

Building a trie is a straight-forward procedure. For simplicity, consider
the words as strings and the phonemes as characters. If given a set of sorted
strings15, building a trie is simply a matter of partitioning the strings so that
all strings which start with the same character belong to the same partition.
For each partition, a node for the corresponding prefix-character (phoneme)
is created and the procedure is repeated recursively for the partitions. See
Algorithm 9.

In the ERIS system, the word graphs are stored in files with the suffix
.gx.

15The actual order the strings doesn’t matter, other than that two strings sharing a
prefix need to be ordered next to each other.
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Algorithm 9 Algorithm for building prefix tree.

function MakeNode(x) 7→ Node

Creates a Node object containing the symbol x

function MakeEdge(a,b)

Creates an edge from node a to node b

function Partition(str, p, a, b, k)
while a ≤ b and strlen(stra) < k do

a← a+ 1
end while

if a ≤ b then

n← MakeNode(stra[k])
MakeEdge(p, n)

for i = a+ 1 to b do

if stri[k] 6= stri−1[k] then

Partition(str, n, a, i− 1, k + 1)

n← MakeNode(stri[k])
MakeEdge(p, n)
a← i

end if

end for

Partition(str, n, a, b, k + 1)

end if

str =< str1, str2, . . . , strN >
s← MakeNode(<start>)

Partition(Sort(str), s, 1, N, 1)
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Figure 36: Words sharing the same prefix are merged to form a trie.

5.2 Viterbi Beam-Search

The Viterbi algorithm – described in Section 3.6 – has a time complexity of
O(TN2). For HMM models with relatively few states, such as those repre-
senting phonemes, this is computationally cheap enough for an exhaustive
search of all possible paths. As the number of states N increases, this may
not any longer be the case, as the factor N2 grows prohibitively large.

Beam search is a heuristic breadth first search that only explores the
highest ranking nodes. The number of nodes it explores can either be a
fixed number, or it can be a factor of how many nodes there are to explore.
For instance, a beam search can ignore every node except the top 500 ones, or
it can ignore every node except the top 10% ones. Consider Figure 37, which
illustrates a beam search with a beam size of 4 in a tree with a branching
factor of 2. In an ordinary breadth first search there would be 2k number
of nodes to explore in the k:th level. With the beam search, however, the
number of nodes to explore is explicitly limited to just 4.

The Viterbi beam search algorithm is the ordinary Viterbi algorithm
adapted with the beam search heuristic. The main difference, implementation-
wise, is analogous to the difference between the dense HMMs for the phonemes
and the sparse HMMs for the word graph. In the ordinary Viterbi algorithm,
the probabilities and back pointers are stored as matrices, while in the beam
search adaptation, they are stored as lists of state and backtrack objects –
akin to the explicit node objects in the sparse HMMs. Figure 38 shows a
class diagram16 of the implementation in the ERIS system.

16The class diagram is slightly simplified for the sake of brevity.
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Figure 37: Beam search with beam size 4 on a tree with branching factor 2.
Black nodes represent explored nodes and white nodes unexplored nodes.

A Graph object represents a word graph (not shown in the diagram, as
it is essentially just a pointer to the start node) and contains Node objects
which are connect by Edges. A Node object may or may not have an asso-
ciated OPDF, depending on whether or not it corresponds to a consuming
or non-consuming state in the word graph HMM.

The VBSearcher object represents the state of the beam search at a par-
ticular point in time. It is fed observations by calling the add-method. An
object interested in words that are recognized implements the Consumer-
interface and registers itself with the searcher. When the searcher success-
fully recognizes a word, it signals all registered consumers by calling the
consume-method in the Consumer-interface.

The State object corresponds to a Node and contains the probability of
the most probable path up to that node from the start of the observation
sequence, as well as a backtrack pointer. Since the the backtrack matrix
from the ordinary Viterbi algorithm would be very sparse as well, it also is
represented by explicit node objects – BTNode.

The BTNodes make up a tree structure, where, from the point of a
single node, it looks like a singly linked list which is traversed in reverse
order. Please refer to Figure 39 for the layout of the backtrack nodes and
their relation to the state objects. After observing an observation xt, by
having the add-method called, the searcher examines the tree of backtrack
nodes. If the root only has a single branch, it means that all different paths
which are to be considered start with the same word. If that is the case,
the root node is removed, the node its single branch leads to is made to be
the new root and its corresponding word is emitted by calling the consume-
method on the registered consumers. This is repeated until the root node
has more than one branch. At this point, it is no longer certain which the
next emitted word should be.
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6 Results And Conclusions

6.1 Word Recognition

To test the performance of the system, the 97 words listed in the dictionary
in Appendix C were recorded as wave files in five sets by three different
speakers. That is, all 97 words were spoken by person A, 97 by person B
and 327 by person C, making 485 in total. The words were chosen rather
arbitrarily, but with some regard as to which type of words might be ex-
pected for giving commands to a smart phone, such as one of the Android
family. The words are in Swedish and the native language of all speakers is
also Swedish. The full dictionary that was used is listed in Appendix C.

Since the ERIS system does not have a proper silence model, a simple
utility program to automatically remove the silence in the beginning and the
end of the recorded wave files was implemented. It finds the start of the non-
silent audio data by approximating the power of the signal and comparing it
to a hard coded threshold. Since all wave files were recorded under similar
conditions, the hard coded threshold works equally well for all recordings.

Two different means of recognition were used. The Viterbi beam search
algorithm, described in Section 5.2, was used to find the most likely word for
a recording. It is possible to get a list of the N most probable words using
Viterbi beam search, but due to time constraints, this was not implemented.
As an alternative approximation of this list, the forward probability, from
Section 3.4, was calculated for each word and sorted in descending order. As
the Viterbi algorithm finds the most optimal path and the forward algorithm
computes the probability of all possible paths, they do not produce equiv-
alent results. They do, however, give somewhat similar results in practice.
This is because the probabilities for a “match” and a “non-match” usually
differ by several orders of magnitude, so the contributions of the probabil-
ities of non-optimal paths which is included in the forward probability will
typically be negligible.

The configuration file used when running the tests is listed in Appendix B.
The most important parameters of which were:

• 25 ms long windows with 10 ms shift

• Cosine window function

• 13 MFCC coefficients with 29 filters

• Level-1 and level-2 MFCC deltas

• Phonemes modelled as left-right HMMs with three states

• 2 Gaussian mixture components

• 3 Baum-Welch iterations
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Using the configuration parameters listed above, the forward probabili-
ties were calculated as an approximation of an N best list. 51.8% of the 485
words were recognized correctly, with 85.0% of the words listed as being in
the top 10 most probable. The results are summarized in Table 6.1. Since
there are 97 different words, 1/97 ≈ 1.03% correct matches would be ex-
pected if the recognizer would simply be making random guesses. Using the
Viterbi beam search algorithm, 54.2% of the words were classified correctly
with a beam size of 500.

Top N Percent correct

1 51.8
2 62.9
3 68.9
5 75.4
10 85.0
20 90.4

Table 4: Percentages of words correctly classified as being in the top N most
probable.

Using the parameters in the configuration file as summarized above,
different values for various parameters were tested, with only one parameter
deviating from the template configuration in each test. The parameters
tested were:

• Number of Gaussian mixtures

• Number of MFCC coefficients

• MFCC delta levels

• Window function

The number of Gaussian mixtures was varied from 2 to 4, and the results
are plotted in Figure 40 with the percentage of correct matches on the y-
axis and the beam size for the Viterbi beam search algorithm on the x-axis.
Figure 41, 42 and 43 show similar plots, with different values for the number
of MFCC coefficients, MFCC delta levels and window functions, respectively.
Please note that the y-axis only goes from 45 to 60 percent. For the most
part, the correct matches is between 50 and 55% percent. The highest
percentage correct matches achieved when varying the four parameters was
57.3%, which was when using 4 Gaussian mixture components.

Not unexpectedly, the results indicate that the more Gaussian mixture
components, number of MFCC coefficients and delta levels used, the better.
Also, the Hamming window seems to be slightly superior to the other window
functions in this particular setup.
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6.2 Android Port

As a proof of concept, a simple word recognition algorithm was ported from
ERIS to the Android platform. It consists of the signal processing part,
as well as an implementation for calculating the forward probability for
a sequence of observations and a word graph. The interaction with the
Android system is minimal. The ported system reads a gx file containing
a word graph from the Android file system, as well as a wave file which
contains the audio data that should be attempted to be recognized.

The gx file is parsed and the word graph is reconstructed. The audio data
in the wave file is processed into a sequence of feature vectors, as described in
Section 2. Then, for each word in the word graph, the forward probability
for the sequence is calculated. The list of words and their corresponding
probabilities are sorted in descending order and printed on the screen, so
that the top word is the most probable one. A screenshot of the system
running in the Android emulator is shown in Figure 44.

The performance of the system has not been evaluated on an actual
phone. This is mostly due to the fact there are obvious optimizations which
could affect it dramatically. For instance, calculating the MFCC coeffi-
cients, as described in Section 2.2, involves a discrete Fourier transform. It
so happens that implementing a fast DFT is a rather complex operation,
while making a naïve implementation with no regards to performance is
fairly trivial. Due to time constraints, such a trivial DFT was implemented,
which has the effect of making the signal processing part a big bottle neck.
Substituting the naïve FFT with a proper library, such as FFTW (Frigo and
Johnson, 2005) as is used in the GNU/Linux version of ERIS, should make
for a significant increase in performance.

Another significant optimization would be to use the Viterbi algorithm
or the Viterbi beam search algorithm instead of calculating the forward
probability for each word.

6.3 Summary

This project consisted of implementing a working speech recognition sys-
tem for Swedish, using hidden Markov models with mel-frequency cepstral
coefficients and multi-variate Gaussian mixtures. The target platform was
GNU/Linux and Android.

The audio recordings for individual triphones was extracted from the
annotated Waxholm corpus (Bertenstam et al., 1995) and trained as left-
right hidden Markov models with three states. The models were trained by
using the bees clustering algorithm, and then refined using the Baum-Welch
re-estimation algorithm.

Using a dictionary of phonetic pronunciations of words, the smaller HMM
models representing the phonemes were then combined into a larger graph
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representing all the words in the dictionary, and thus, that the system should
be able to recognize.

For evaluation, 97 words were recorded 5 times by 3 different speakers,
giving a total of 485 recordings. The Viterbi beam search algorithm was
used to find the most probable word for each recording and the forward
algorithm was used to approximate an N -best list.

As a proof of concept, a simple recognition system was ported to the
Android platform. The port was tested in the Android emulator.

6.4 Evaluation

The performance of the implemented system was evaluated by making 5
different recordings, by 3 different speakers, of the 97 words in the dictionary
used (listed in Appendix C.) The wave files with the recorded words were
automatically cropped using a small script to find the silence/non-silence
boundaries by estimating the power of the audio signal.

The word graph was built from the Waxholm corpus with varying con-
figuration parameters, and the Viterbi beam search algorithm was used to
find the most probable word for each recording. The forward algorithm was
used to estimate an N -best list.

Of the 485 total number of recordings, the best result obtained was about
57% were correctly classified. 85% were classified as being in the top 10 most
probable words in the approximate N -best list.

6.5 Suggestions For Improvements

The ERIS system does not currently have a good silence model, which is
needed for continuous speech recognition. A simple silence model could
be implemented by inspecting the power of the audio signal, tag the ob-
servations as being silent frames and having special OPDFs matching only
observations tagged as such.

About 57% of the 97 recorded test files were classified correctly. However,
about 85% were classified as being within the top 10 most probable words.
The rate of recognition could likely be improved significantly by using a
language model, such as a bigram model, so that the probability of a word
depends on the word preceding or following it – or both, for a more resource
expensive trigram model.

Since many nodes in the word graph share the same OPDF, and thus an
OPDF may be called upon to evaluate the probability of an observation more
than once, it is likely that caching the result of the probability calculations
in each time step in order to avoid repeated calculations might incur some
increase in performance.

Similarly, it’s plausible that using OPDFs of layered granularity might
boost performance, by early exclusion of OPDFs with very low probability.
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For instance, if when calculating the probability of an observation, it might
first be done by a function which does a fast and coarse estimation using the
Euclidean distance between the observation and the means of the OPDF.
Only if the coarse probability is greater than some threshold is the fine
grained, and slower, multi-variate Gaussian function actually called.

For the Android port, the biggest issue is that the signal processing is
far too slow to run in real-time. A proper Fourier transform library would
be needed to remedy this. Also, the forward algorithm is used to rank
words, instead of a more proper implementation of the Viterbi beam search
algorithm.

The interaction with the actual Android environment is quite minimal.
Given a dictionary of words which the system should recognize, the sys-
tem might want to signal recognized words by, for instance, having the
ERIS system implemented as a service from which interested parties receive
broadcasts.
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A Proofs

A.1 Expressing γ in terms of ξ

(eq. (43)) γt(i) =
αt(i)βt(i)
N∑

i=1

αt(i)βt(i)

1 ≤ t ≤ T

(eq. (24)) βt(i) =





N∑

j=1

aij bj(xt+1) βt+1(j)



 1 ≤ t < T

=⇒ γt(i) =

αt(i)





N∑

j=1

aij bj(xt+1) βt+1(j)





N∑

i=1



αt(i)





N∑

j=1

aij bj(xt+1) βt+1(j)









=⇒ γt(i) =

N∑

j=1

αt(i)aij bj(xt+1) βt+1(j)

N∑

i=1

N∑

j=1

αt(i)aij bj(xt+1) βt+1(j)

=⇒ γt(i) =
N∑

j=1










αt(i)aij bj(xt+1) βt+1(j)
N∑

i=1

N∑

j=1

αt(i)aij bj(xt+1) βt+1(j)










=⇒ γt(i) =
N∑

j=1

ξt(i, j) 1 ≤ t < T

A.2 Proof that (A | ω) is row stochastic

It shall be proven that each row in the transition probability matrix, plus
the termination probability vector, is stochastic. That is,

N∑

j=1

(aij + ωi) = 1 1 ≤ i ≤ N
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N∑

j=1

(aij + ωi) =





N∑

j=1

aij



+ ωi

=
















N∑

j=1

aij , eq. 52
︷ ︸︸ ︷

K∑

k=1

Tk−1∑

t=1

ξkt (i, j)

K∑

k=1

Tk∑

t=1

γkt (i)
















+

ωi, eq. 53
︷ ︸︸ ︷

K∑

k=1

γkTk(i)

K∑

k=1

Tk∑

t=1

γkt (i)

=

K∑

k=1

Tk−1∑

t=1

γkt (i), eq. 46
︷ ︸︸ ︷

N∑

j=1

ξkt (i, j)

K∑

k=1

Tk∑

t=1

γkt (i)

+

K∑

k=1

γkTk(i)

K∑

k=1

Tk∑

t=1

γkt (i)

=

K∑

k=1

Tk−1∑

t=1

γkt (i)

K∑

k=1

Tk∑

t=1

γkt (i)

+

K∑

k=1

γkTk(i)

K∑

k=1

Tk∑

t=1

γkt (i)

=





K∑

k=1

Tk∑

t=1

γkt (i)



−
(
K∑

k=1

γkTk(i)

)

K∑

k=1

Tk∑

t=1

γkt (i)

+

K∑

k=1

γkTk(i)

K∑

k=1

Tk∑

t=1

γkt (i)

=

= 1
︷ ︸︸ ︷

K∑

k=1

Tk∑

t=1

γkt (i)

K∑

k=1

Tk∑

t=1

γkt (i)

= 0
︷ ︸︸ ︷

−

K∑

k=1

γkTk(i)

K∑

k=1

Tk∑

t=1

γkt (i)

+

K∑

k=1

γkTk(i)

K∑

k=1

Tk∑

t=1

γkt (i)

= 1
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A.3 Proof that γ̂ = γ

γt(i) is the probability of being in state i at time t. Recall Equation 43:

γt(i) =
αt(i)βt(i)
N∑

i=1

αt(i)βt(i)

1 ≤ t ≤ T (43)

It shall be proven that substituting the forward and backward proba-
bilities, α and β, with the scaled versions, α̂ and β̂, yields an equivalent
equation.

First, it should be noted that

α̂t(i)β̂t(i) = Ctαt(i) Dtβt(i)

=

(
t∏

s=1

cs

)

αt(i)

(
T∏

s=t

cs

)

βt(i)

= ct

(
T∏

s=1

cs

)

αt(i) βt(i)

= ctCt αt(i) βt(i)

Next, α and β are substituted with α̂ and β̂ in Equation 43

γ̂t(i) =
α̂t(i)β̂t(i)
N∑

i=1

α̂t(i)β̂t(i)

=
ctCt αt(i)βt(i)
N∑

i=1

ctCt αt(i)βt(i)

=
ctCt αt(i)βt(i)

ctCt

N∑

i=1

αt(i)βt(i)

=
αt(i)βt(i)
N∑

i=1

αt(i)βt(i)

= γt(i)

The scaling factors cancel themselves out completely, so the scaled terms
can be directly used in Equation (43) without any further modifications.
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A.4 Proof that ξ̂ = ξ

ξt(i, j) is the probability of taking the transition from state i to j at time t.
It shall be proven that the Equation 45 for ξ still holds if the forward and
backward probabilities, α and β, are substituted by the scaled versions, α̂
and β̂.

ξ̂t(i, j) =
α̂t(i) aij bj(xt+1) β̂t+1(j)

N∑

i=1

N∑

j=1

α̂t(i) aij bj(xt+1) β̂t+1(j)

=
Ctαt(i) aij bj(xt+1) Dt+1βt+1(j)

N∑

i=1

N∑

j=1

Ctαt(i) aij bj(xt+1) Dt+1βt+1(j)

=
CtDt+1αt(i) aij bj(xt+1) βt+1(j)

CtDt+1

N∑

i=1

N∑

j=1

αt(i) aij bj(xt+1) βt+1(j)

=
αt(i) aij bj(xt+1) βt+1(j)

N∑

i=1

N∑

j=1

αt(i) aij bj(xt+1) βt+1(j)

= ξt(i, j)

Thus, the scaling factors for ξ are cancelled out in the same fashion
as for γ. α̂ and β̂ can directly be used in Equation 45 without any other
modifications.
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B Sample configuration file

math {
random_seed = 326

}

efx {
type = mfcc
delta1 = (2,-2)
delta2 = (1,-1)

train_ratio = 0.7

min_seq_len = 7
min_num_train_seq = 20
min_num_test_seq = 3

window { function = cosine ; length_ms = 25 ; shift_ms = 10 ; min_filled = 0.8 }
mfcc { num_coeff = 13 ; num_filters = 29 }

}

gx {
silence {

singleword {
at_start = false
at_end = false
free_transitions = false
optional = true ## Add null-arc around the silence

}

multiword {
at_start = false
at_end = false
free_transitions = false
optional = true

}
}

use_triphones = true
min_num_seq = 10

}

hmm {
num_states = 3
num_mixtures = 2
use_covariance = false
statemodel = left-right
train_order = bees, baumwelch
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opdf {
prob_floor = 1e-100
gaussian {

var_floor = 1e-4
var_default = 1e-1

}
}

cluster {
uniform_weight = 0.1
max_iterations = 120

bees {
num_scouts = 12
num_sites = 4
num_elite = 2
num_bees_elite = 4
num_bees_rest = 2
num_iterations = 300

}
}

baumwelch {
num_iterations = 3

}
}
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C Dictionary file

ja -> JA:
nej -> NEJ
avbryt -> A:VBRY:T
avsluta -> A:VSLU:TA
och -> (Å:|ÅK)
eller -> EL(E|E0)R
inte -> INT(E|E0)
ifall -> IFAL
om -> ÅM
ring -> RING
skicka -> SJIKA
spela -> SPE:LA
spela upp -> SPE:LA UP
spela in -> SPE:LA IN
stäng -> ST(E|E0)N
öppna -> ÖPNA
nästa -> NESTA
förra -> FÖ4RA
föregående -> FÖ3REGÅ:(E|E0)ND(E|E0)
sätt på -> S(E|E0)T PÅ:
sätt in -> S(E|E0)T IN
sätt in i -> S(E|E0)T IN I:
stäng av -> ST(E|E0)N A:V
stopp -> STÅP
pausa -> PAUS
sluta -> SLU:TA
ta bild -> TA BILD
ta foto -> TA FOTO
börja -> BÖ4RJA
svara -> SVA:RA
lägg på -> LEG PÅ:
tyst -> TYST
normal -> NÅRMA:L
vanlig -> VA:NLIG
vanliga -> VA:NLIGA
profil -> PROFI:L
signal -> SINGNA:L
klocka -> KLÅKA
klockan -> KLÅKAN
måndag -> MÅND(A|A:G)
tisdag -> TI:SD(A|A:G)
onsdag -> ONSDA:G
torsdag -> TO:2SD(A|A:G)
fredag -> FRE:D(A|A:G)
lördag -> LÖ32D(A|A:G)
söndag -> SÖND(A|A:G)
vecka -> VEKA
månad -> MÅ:NAD
kalender -> KAL(E|E0)ND(E|E0)R
plus -> PLUS
minus -> MI:NUS
gånger -> GÅNG(E|E0)R
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minst -> MINST
som minst -> SÅM MINST
mest -> MEST
som mest -> SÅM MEST
mindre -> MINDR(E|E0)
mera -> ME:R(A)?
starkare -> STARKAR(E|E0)
svag -> SVA:GAR(E|E0)
högre -> HÖ:GR(E|E0)
lägre -> LÄ:GR(E|E0)
lägst -> LÄ:GST
lägsta -> LÄ:GST
högst -> HÖ(G|K)ST
högsta -> HÖ(G|K)STA:
vänster -> V(E|E0)NST(E|E0)R
höger -> HÖ:G(E|E0)R
upp -> UP
ner -> NE:R
knapplås -> KNAPLÅ:S
knapplås på -> KNAPLÅ:S PÅ:
knapplås av -> KNAPLÅ:S A:V
lås upp -> LÅ:S UP
tillbaka -> TILBA:KA
bakåt -> BA:KÅ:T
framåt -> FRAMÅT
sök -> SÖ:K
klicka -> KLIK(A)?
dölj -> DÖLJ
visa -> VI:SA
meny -> M(E|E0)NY:
huvudmeny -> HUVUDM(E|E0)NY:
huvudmenyn -> HUVUDM(E|E0)NY:N
väckarklocka -> VEKARKLÅKA
lägg till -> LEG TIL
ta bort -> TA: BÅ2T
webb -> VEB
webbläsare -> VEB LÄ:SAR(E|E0)
ljud -> JU:D
ljud på -> JU:D PÅ:
ljud av -> JU:D A:V
ljudlös -> LÖ:S
räknare -> RÄ:KNAR(E|E0)
miniräknare -> MI:NI RÄ:KNAR(E|E0)
inställning -> INSTELNING
inställningar -> INSTELNINGAR
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Figure 38: Class diagram of the Viterbi beam search implementation in
ERIS.
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Figure 39: Organization of the backtrack nodes and their relation to the
state objects.
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Figure 41: Percent correct matches for
different number of MFCC coefficients
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Figure 43: Percent correct matches for
different window functions
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Figure 44: Screenshot of Android port running in the emulator.
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