
An Experimental Study of Nivre’s
Parser

Peter Nilsson

Examensarbete för 30 hp
Institutionen för datavetenskap, Naturvetenskapliga fakulteten, Lunds Universitet

Thesis for a diploma in computer science, 30 ECTS credits
Department of computer science, Faculty of science, Lund University

2

Abstract
In most fields within computer linguistics it is essential tohave access to high-
quality syntactic parsing. During the previous 10-15 yearsgreat improvements
have been made in development of parsing algorithms. Increasingly, the approach
is to use algorithms to train the parser from annotated text samples. This report
studies one of the most successful parser algorithms and explores methods of how
to find optimal training parameters.

Sammanfattning
För de flesta områden inom datalingvistiken är det av avgörande betydelse att
ha tillgång till en syntaktisk parser med hög prestanda. De senaste 10–15 åren
har stora framgångar uppnåtts inom utvecklandet av parseralgoritmer. I allt hö-
gre grad används tillvägagångssättet att träna parsern medexempel av uppmärkt
text. I denna rapport studeras en av de mest framgångsrika parseralgoritmerna och
undersöker olika sätt att finna de bästa parametrarna för träning.

Contents

1 Introduction 5

2 Background 7
2.1 Two grammars . 7
2.2 Phrase-structure grammar . 7
2.3 Parsing phrase-structure grammars9
2.4 Ambiguity . 11
2.5 Dependency grammar . 12
2.6 Parsing dependency grammars 14
2.7 Why dependency parsing? . 14
2.8 Grammar-griven vs. data-driven parsing 15
2.9 Machine learning . 15

3 Previous work 19
3.1 MiniPar . 19
3.2 Covington . 19
3.3 MSTParser . 20

4 Nivre’s Parser 23
4.1 Description . 23

4.1.1 Nondeterminism . 25
4.1.2 Manually improving the rule set 26

4.2 Inductive dependency parsing . 28
4.3 Gold standard parsing . 30
4.4 Dependency labels . 32
4.5 Features . 33
4.6 Pseudo-projective dependency parsing 33
4.7 CoNLL . 34

3

4 CONTENTS

5 Method 37
5.1 The parser implementation . 37
5.2 Parameter set . 38
5.3 Investigations of the feature set40

6 Matrix study and intuitive search 41
6.1 Parser hints . 42
6.2 Right to left parsing . 44
6.3 Combinations . 45

7 Systematic exploration of the feature space 49
7.1 Axis search . 49
7.2 Finding neighbors . 50
7.3 First evaluation on Swedish corpus 50

7.3.1 Rules for parameter selection 51
7.3.2 The first generation . 51
7.3.3 The second generation 54
7.3.4 Results of first evaluation 55

7.4 Second evaluation on Swedish corpus 55
7.5 Evaluation on English corpus. 58

8 Conclusions 61

Acknowledgements
I would like to thank my supervisor Pierre Nugues for many inspiring discussions
and his always encouraging support.

Chapter 1

Introduction

One of the activities that distinguishes man from other living beings is the use of
language. Most humans can handle at least one language. When we grow up we
gradually build an infallible sense for how our native language is constructed and
what constructs belong and does not belong to it.

The linguist tries to describe how this sense works. The common idea is to
describe the language constructs using a set of rules calleda grammar. These
rules shall define how different parts of the language are connected. Usually it is
required that, to be called a grammar, the rules should be quite detailed at the level
of single and groups of words as parts of a sentence.

Thus, using the rules in grammar we can describe all possiblesentences in
a language. Ideally such a grammar should be able to describeevery possible
sentence in the language and at the same time not describe anyinvalid sentence.
In this way we can use the grammar to answer the question “Doesthis sentence
belong to the language?”.

The notion of a grammar in the western culture goes back to ancient Greece
and Alexandria. It includes the concept ofpart of speechas constituents of a
sentence, e.g. nouns and verbs. There have been different opinions on exactly
what those parts are, but the basic set has remained practically unchanged to the
present day.

It is of course interesting to compare the difficulty, or impossibility, of con-
structing a perfect grammar to the ease with which a child intuitively learns its
native language without any theoretical aid. It is not knownhow the human sense
for right and wrong in a language works. The construction of agrammar is an at-
tempt to define the exact rule set that seems to be used when using a language. It
is comparable to other situations where an observer tries tomake a model describ-
ing a phenomenon in nature. The grammar constructor doesn’tnecessarily have
to believe that this is the exact working of the human mind, inparticular since a
native speaker usually exceeds a grammar in performance.

5

6 CHAPTER 1. INTRODUCTION

Much of the refinement of traditional grammar was made when applied to
Greek and classical Latin being taught and studied as secondlanguage. This was
the case in Alexandria around 100 BC and in Rome ca 300 AD (Keith,2007, p.
11).

The termparsing is originally used to denote the act of reading a text and
describing how it is constructed using a grammar. The meaning has been slightly
generalised to indicate a method of consuming a text and deliver one or more
analyses. It is not mandatory that the analysis is based on a grammar. Other
means are also possible.

During the latter part of the twentieth century it has been technically feasible
to handle very large amounts of text. The mere difference between the size of
how much text is accessible and how fast it can be processed today compared to
50 years ago makes a considerable change to the value of statistical analysis of
the data. Large sets of text are collected as base for analysis. Such a collection
is called a corpus. The text can also be annotated according to a grammar. A
text corpus with syntactically annotated sentences is called a treebank. If the
annotations are made by hand it is also referred to as agold standard.

Besides the corpora there is also a huge amount of text accessible on the In-
ternet which can be used for statistical analysis.

This report presents a study of one of the most successful parser algorithms
today.

Chapter 2

Background

2.1 Two grammars

This chapter will briefly describe two of the most common grammars during the
previous half century or more. They represent two differentapproaches on how to
describe the sentence structure of a natural language.

Thephrase-structure grammarconsiders a sentence to be built from phrases
which in turn is built from smaller constituents, where the smallest is the actual
word. For this reason it is also calledconstituent grammar.

The dependency grammar, on the other hand, is focused on the relations (or
dependencies) between the individual words without any intermediate representa-
tions.

These are by no means totally incompatible approaches to thelanguage, and
there are ways to view one in the perspective of the other, buttraditionally there
has been a polarization between the two.

2.2 Phrase-structure grammar

The prevailing theory for a grammar during the second half ofthe previous century
is the phrase-structure grammar. One of the most influentiallinguists in this field
is Noam Chomsky. InSemantic Structure, Chomsky (1957) presents a grammar of
phrase-structure rules. A simple example is the very small grammar in Figure 2.1
(Chomsky, 1957, p. 26).

Each rule with the formX→Y should be read as “rewriteX asY”. Thus,
according to the first rule, a Sentence can be rewritten asNP (a Noun Phrase) and
VP (a Verb Phrase).

Figure 2.2 shows what is called a derivation of the sentenceThe man hit the
ball. Starting with the Sentence, each following line is a rewriting of the previous

7

8 CHAPTER 2. BACKGROUND

(i) Sentence→ NP+VP
(ii) NP→ T +N
(iii) VP→V +NP
(iv) T→ the
(v) N→man, ball, etc
(vi) V→ hit, took, etc

Figure 2.1: A simple grammar.

Sentence

NP+VP (i)

T +N+VP (ii)

T +N+V +NP (iii)

the+N+V +NP (iv)

the + man+V +NP (v)

the + man + hit+NP (vi)

the + man + hit+T +N (ii)

the + man + hit + the+N (iv)

the + man + hit + the ball (v)

Figure 2.2: Derivation of the sentenceThe man hit the ball.

2.3. PARSING PHRASE-STRUCTURE GRAMMARS 9

using one of the rules (as indicated in parentheses). It is clear that a sentence is
considered being composed of smaller constituents, “phrases”. Using the rewrit-
ing rules each constituent is replaced by its constituents and this procedure con-
tinues until no more replacement can be done and the actual words in the sentence
remains. The bottom row of Figure 2.2 is said to be terminated, and it is called a
terminal string. The terminal strings for a language is the (possibly infinite) set of
valid strings for that language.

2.3 Parsing phrase-structure grammars

A parser would read the sentence and, using the rules, generate the analysis shown
as a graph in Figure 2.3. This can be done in different ways, but they are mainly
divided into two categories, top-down and bottom-up.

Sentence

NP VP

T N V NP

T N

The man hit the ball

Figure 2.3: Tree structure ofThe man hit the ball.

The behavior for the top-down parser is to take the rule that describes the full
sentence and then gradually try to unfold the structure by applying the rewriting
rules. Another way of saying this is that a top-down parser searches the rules from
the left side of the arrow to the right.

In the example sentencethe man hit the ballabove, the top-down parser will
start with the first rule where Sentence can be rewritten asNP+VP. It will then
look for all possible rewritings ofNP and find rule (ii). The right side of rule (ii)
is T +N. Once again it will take the first part, T, and try to find rewritings of this.
It will find rule (iv) and see thatT can be rewritten as the wordthe. This matches
the first word in the sentence to be parsed, so this is a match. The parser will then
go back to rule (ii) and try to find rewritings of theN in T +N. In a similar manner
it will find that N can be the wordmanand there is once again a match. Since all

10 CHAPTER 2. BACKGROUND

of the right side of rule (ii) now is matched, theNP in rule (i) is matched and the
parser continues to try to find a match for the remaining part,VP.

The bottom-up parser goes the other way. It starts with the first word in the
sentence and tries to match the rewriting rules backwards from the right side to
the left. In that process it will group smaller parts into larger units.

With our example sentence it starts with the wordthe and looks for a rule
where a rewriting can be athe. It finds rule (iv) whereT→ the. The parser will
search for a rule that can be rewritten asT, but will not find any. Continuing with
the wordman it finds that it can be anN. Now it hasT + N, and will find rule
(ii) where they can be collapsed toNP. Eventually it will have parsed the full
sentence and arrive at the final reducing ofNP+VP to Sentencein rule (i).

In both cases with this very small grammar the parser will finda match at once,
but in a real world situation there can be a large amount of rules, and several rules
that have the same left part of the rule, that is alternative rewritings of the same
expression. In that case the parser will have to try many rules and backtrack on
failure. If the full sentence is parsed successfully, the sentence is said to be part
of the language described by the grammar, and the parser willhave generated an
analysis.

The analysis can also be illustrated graphically as in Figure 2.3 and is in that
case for obvious reasons called aparse tree. It differs from the derivation in
Figure 2.2 in that a parse tree doesn’t show the order in whichthe rules are applied.
The same tree could have been the result of top-down and bottom-up parsing or
yet another parsing method.

A grammar is also intended to be used for generating all possible sentences of
the language. For instance, in addition to our example sentence the grammar in
Figure 2.1 can generate, among others,the man hit the man, the ball hit the ball
andthe ball hit the man.

This report presents only the basic idea of the phrase-structure grammar with
a simple example. To make it a useful theory it has to be extended in several
ways. Among other things the rules must be adjusted so that the different parts
of a sentence match regarding gender, number and time. Another problem is to
handle the fact that the complexity of a grammar can grow immensely if every
possible rewriting is covered.

As can be seen in the grammar, a symbol on the left can always berewritten
irrespective of where it occurs in a rewriting rule. For thatreason this particular
kind of grammar is called a context-free grammar. There are also other kinds, for
instance the context-sensitive grammar that contains rules like

a+NP+b→ a+T +N+b

meaning that in this case aNP can be rewritten asT +N only if it is surrounded
by the symbolsa andb.

2.4. AMBIGUITY 11

2.4 Ambiguity

(i) Sentence→ NP+VP
(ii) NP→ T +N
(iii) NP→ T +N+PP
(iv) VP→V +NP
(v) VP→V +NP+PP
(vi) PP→P+NP
(vii) T→ the
(viii) N→ man, ball, etc
(ix) V→ hit, took, etc
(x) P→ with, of, etc

Figure 2.4: An extended simple grammar.

One of the hardest problems in parsing is how to handle ambiguity. In Fig-
ure 2.4 our simple grammar has been slightly extended to contain rules for prepo-
sitional phrasesPP and prepositionsP. With this grammar we can construct the
sentence “The man hit the ball with a bat”. This can be parsed as the analysis in
Figure 2.5 and also as the analysis in Figure 2.6. While most humans wouldn’t
even consider any interpretation other than Figure 2.5 bothanalyses are correct
according to the grammar. Similarly if we exchange “bat” for“dot” and get “the
man hit the ball with a dot”, the analysis in Figure 2.6 seems natural to most
people.

Sentence

NP VP

T N V NP PP

T N P NP

T N

The man hit the ball with a bat/dot

Figure 2.5: Tree structure ofThe man hit the ball with a bat.

One way to handle disambiguation is to use probability. In probabilistic context-
free grammar, PCFG, each rule is assigned a probability (Charniak, 1993). Prob-

12 CHAPTER 2. BACKGROUND

Sentence

NP VP

T N V NP

T N PP

P NP

T N

The man hit the ball with a bat/dot

Figure 2.6: Tree structure ofThe man hit the ball with a dot.

abilities are collected from a treebank. There are different ways to do this, but one
simple example is this:

1. Parse the text and follow the annotations to construct analyses for each sen-
tence.

2. Count the total number of times each rule is used in all the analyses.

3. For every group of rules that has the same left side (e.g.NP→ . . .): Sum
the total and give each rule a probability that corresponds to its relative
proportion of the sum.

Parsing is the performed in the same way as described above, with the addition
that each time a rule is applied it is counted. The probability for a particular parse
tree is then the joint probability of each rule used in the tree, where each rule is
counted as many times at it occurs. If a parse results in more than one possible
analysis, the most probable analysis is selected.

While being an improvement to the non-probabilistic context-free grammar
in some areas, PCFG has some weaknesses. By its nature it is based on phrase
structure statistics and does not account for the lexical content, which could be a
better guide for disambiguation.

2.5 Dependency grammar

Historically there are many names from different times associated with a the con-
cept of a dependency grammar. There has been a diversity of ideas about what

2.5. DEPENDENCY GRAMMAR 13

Figure 2.7: Dependency graph forThe man hit the ball.

comprises the grammar. Nevertheless there are a few fundamental ideas which
are mostly agreed on.

The structure of a sentence consists of elements and their relations. The only
elements are the terminal words. The relations between the words are asymmet-
rical connections, arcs, where one edge is calledheadand the otherdependentor
modifier. With one exception, every word has exactly one head and can have zero
or more dependents. One word in the sentence has no head, but aspecial relation
calledRoot. This is the main word of the sentence.

A typical graphical representation is illustrated in Figure 2.7. Analogous to
the phrase-structure parse tree this is called adependency graphor sometimes
dependency treeand is equivalent to an analysis of the sentence.

There are four properties which are required of a dependencygraph:

Single head.Every node shall have exactly one relation to a head.

Acyclic. The graph must be acyclic. That is, the head for a node can not be
depending on that node directly or indirectly. Put in another way, if we start
at any node and traverse the relations from dependent to headit shall not be
possible to arrive at any node a second time. In graph theory this is known
as a directed acyclic graph, DAG.

Connected. The graph must be connected. This means that all nodes exceptone
must have a connection to a head.

Projective. A graph is projective if no connections are crossed. This means that
for any two words that are connected in a sentence, all words between them
must be connected to each other or any of the two words. There is some
disagreement over this constraint, partly because a various percent of sen-
tences in a language must be described by a graph that is non-projective.
This is dealt with in different ways as described later, and generally the
requirement for a graph to be projective is accepted.

14 CHAPTER 2. BACKGROUND

2.6 Parsing dependency grammars

Parsing a text using a dependency grammar is usually a more straightforward
procedure than the corresponding ways to parse using a phrase-structure grammar.
This is because there is no need to build an intermediate formal structure but
simply find a connection for each word. Parsing can be done in different ways,
but similar to phrase-structure parsing we can discern two approaches, attacking
the problem from different sides.

1. Parsing the words in a sentence one by one and try to add a connection with
one or more of the previously parsed words until a dependencygraph is
built.

2. Start by making every possible connection between all words, and then re-
move them one by one until a dependency graph remains.

Just as in the case of phrase-structure parsing there is the problem of selecting
the best among many possible analyses, and the solution is the same: using hand
crafted rules or statistics or a mixture of both.

2.7 Why dependency parsing?

According to Covington (2001) constituent grammar appears to have been in-
vented only once, by the ancient Stoics, and has been passed through formal logic
to linguists of modern times. On the other hand, dependency grammar seems to
have been invented many times in many places (Covington, 2001, p. 95). Never-
theless the constituent based view has for the major part of the previous century
overshadowed every other view of syntactic representation.

Mel’ čuk makes an argument that this can be partially explained bythe fact
that the phrase-structure view is particularly suitable for English, and this is the
mother tongue of the founding fathers (Mel’čuk, 1988, p. 4).

Furthermore Mel’̌cuk summarizes a few reasons why the dependency model
is preferrable:

1. A phrase-structure tree focus on grouping of the words, which words go
together in the sentence, but does not give a representationof the relations
between the words.

2. A dependency tree is based on relations. It shows which words are related
and in what way. The sentence is “built out of words, linked bydepen-
dencies”. The relations could be described in more detail bygiving them
meaningful labels.

2.8. GRAMMAR-GRIVEN VS. DATA-DRIVEN PARSING 15

3. A dependency tree also represents grouping. A phrase is represented by a
word and its entire sub-tree of dependents.

4. In a phrase-structure tree usually most nodes are nonterminal, representing
intermediate groupings. A dependency tree consists of onlyterminal nodes.
There is no need for abstract representation of grouping.

5. In a phrase-structure tree the linear order of the nodes isrelevant. It must
be kept to retain the meaning of the sentence. In a dependencytree this is
not important. All information is preserved in the, possibly labeled, con-
nections.

2.8 Grammar-griven vs. data-driven parsing

We have described previously that parsing can be driven by a grammar, but this
method can be extended. For instance, in probabilistic context-free grammar the
disambiguation is resolved by using statistics from a treebank. The use of tree-
banks and other large corpora can be drawn much further as to become the main
guide for the parser. In this way the rules can be said to be “discovered” by ana-
lyzing the annotated text. These two categories for performing parsing are usually
called grammar-driven parsing and data-driven parsing respectively. These are the
extremes. Many parsing methods use a mix of the two.

2.9 Machine learning

For data-driven parsing, the “discovery” part is made usingmethods in the field of
machine learning. This is a large field, and only a brief description will be made
here since it will be referred to later.

Machine learning could be described as “any computer program that improves
its performance through experience” (Mitchell, 1997, p. 2). To generate experi-
ence the program is usually constructed to make ahypothesisabout the solution
to a problem, and is given the possibility to compare that hypothesis to the ex-
pected, correct, one. This type of learning is calledsupervised learning, because
the program can supervise its progress.

A common use of this method, and the one of current interest inthis report,
is when the hypothesis is a classification of the sample. In this case the sample
should be classified from a finite set of classifications. By comparing the hypoth-
esis with the correct classification in the training sample the program can adjust
parameters to improve its performance. This is called thetraining phase.

16 CHAPTER 2. BACKGROUND

Figure 2.8: Hypothesis for classification as a straight line.

When the degree of classification is considered good enough, this method can
be used to classify unknown samples.

A simple instructive example is visualized in Figure 2.8. The figure shows a
set of 12 sample dots in a coordinate system. The relation between the color of a
dot and its position is made according to a system which is unknown to us. The
collection of 12 dots is the training set. The learning algorithm is presented the
training data in the form of a list containing the data{x,y,color} for each of the 12
dots. The training task is to learn to classify new dots givenonly the coordinates
x andy of the dot.

Since we don’t know the system for coloring the dots, we have to make an
attempt to approximate it using some assumption. This assumption is crucial to
the success of the task. If we suspected that the colors were assigned at random
we could do no better than to guess with a 50% chance to be correct. The only
thing we know is that there are equally many black and white dots in the training
set, and that seems to be the distribution. The assumption thus limits how we
can express our hypothesis for the classification. The collection of all possible
hypotheses that are possible to express based on such an assumption is called the
hypothesis space.

In Figure 2.8 is shown the assumption that the dots can be classified depend-
ing on whether they are positioned above or below a straight line. The possible
hypotheses can then be expressed as different values for theslope and y-intercept
of the line. During training the algorithm will use the data from the train set to
adjust these values until all or a sufficiently large part of the train set are classified
correctly.

2.9. MACHINE LEARNING 17

Figure 2.9: Hypothesis for classification as a curve.

As we can observe by looking at Figure 2.8 it will not be possible to make a
perfect classification of the samples using a straight line.To achieve this we will
need to be able to make a more expressive hypothesis, for instance a combination
of lines or a curve. Depending on the nature of the problem we try to solve we
can either change our assumption to get better train resultsor accept the results
from using the straight line. Perhaps we know that the training data may contain
a certain degree of errors.

Figure 2.9 shows the same training set where the hypothesis is a curve. In this
case the curve has been trimmed to fit the area of the black dotsvery well. Without
any other information there is no way to know if this is a very good approximation
of the unknown coloring system or not. To get an indication how good approxi-
mation a hypothesis is the usual method is to set aside part ofthe training set to
a development set. During training optimal hypothesis is searched for and then
the hypothesis is applied to the development set. The expected behavior is that
as the results for the training set improves the results for the development set will
follow but be a bit lower. At a certain point the results for the development set
will decrease while the training set will still increase. Atthat point the training
hypotheses will be optimized for the particular instances in the training set and
cease to be generally useful. This phenomenon is calledoverfitting.

As illustrated above a more expressive hypothesis space is more inclined to
overfitting. We could consider an even more expressive hypothesis space where
the hypothesis was a collection of coordinates and color fora position. Such
hypotheses would be able to adapt perfectly to any training set, but would be
useless for anything else since it would not give us any clue of how to classify

18 CHAPTER 2. BACKGROUND

a new dot. The hypotheses would contain exactly the same information as we
already have in the training set. The strength of a good hypothesis space is the
ability to learn from specific instances and make generalizations that apply well
to unknown instances.

Chapter 3

Previous work

In this chapter we briefly present a few well-known dependency parsers. Together
they serve as examples of the variety of approaches that is applied to the parsing
problem.

3.1 MiniPar

MiniPar (Lin, 1998) uses a hand-crafted grammar, represented as a network with
grammatical categories as nodes and types of dependency relations as links. Gram-
matical rules are implemented as constraints associated with nodes and links. The
parser contains a huge lexicon (approximately 130000 entries), where each entry
contains all possible part of speech of the word. This is a wayto handle lexical
ambiguities.

During parsing all possible analyses are generated and the one with the highest
ranking is selected. While the grammar is constructed manually, the ranking is
based on statistics acquired from parsing a very large (1GB) corpus.

3.2 Covington

Covingtons parser (Covington, 2001) presents some strategies to improve a brute-
force search of head-dependency pairs. For instance, one strategy is to set aside
all words that already are dependents and not consider thosewhen searching for
dependents of a word.

For this purpose the parser maintains two list during parsing, WordListand
HeadList. TheWordListcontains all words parsed so far, and theHeadListcon-
tains all of those words which lack a head. For both lists words are inserted at
the front, meaning that when reading the list the most recentinserted words are
encountered first.

19

20 CHAPTER 3. PREVIOUS WORK

The parser reads words one by one from the beginning of the sentence. For
each wordW the following is done:

(i) Add the word to the front of theWordList. Search the rest ofWordListfor a
word that can be the head ofW. If such a word is found, add a dependency
arc from that word toW, otherwise addW to the front ofHeadList.

(ii) Look through theHeadListfor an words that can haveW as head. For every
such word, add a dependency arc fromW to that word, and remove that
word fromHeadList.

The efficiency of this method is then further improved by adding limitations
enforced by the requirement of projectivity.

For item (i) the search for a possible head forW ends when an unbounded
word is encountered. This is because all words betweenW and its head must have
arcs betweenW and its head. Otherwise the arcs would cross.

For item (ii) the search for a dependent toW is ended as soon as a word is
found that is not dependent ofW. The reason for this is the same as for item (i).

3.3 MSTParser

It is probably safe to say that the majority of the most successful parsers or parsing
methods used for dependency parsing today are based on one oftwo state-of-the-
art parsing algorithms. One is the main topic of this study, Nivre’s Parser, and the
other is McDonalds MSTParser (McDonald, 2006).

The approach of the MST parser is to view the problem of findingthe right
dependency graph for a sentence as the problem of finding themaximum spanning
treefor the graph.

The initial stage is a graph with words of a sentence as nodes,and dependency
connections in both directions from every node to every other. Each connection
has been assigned a score. By removing connections until we have a connected
graph with no cycles we get a spanning tree. The sum of the scores for each con-
nection in the score of the spanning tree. There are many possible spanning trees
for each sentence, and the one with the hightest score is the maximum spanning
tree.

The problem with this method is of course to find the tree with the highest
score. If we simply select the connection with the highest score coming to each
node it could result in a spanning tree (which then would be the maximum), but it
could also result in a graph containing cycles.

MST uses the Chu-Liu-Edmonds algorithm for finding the maximum spanning
tree. It will not be decribed in detail here. In short, it works as described above

3.3. MSTPARSER 21

by first greedily selecting the incoming connection with thehighest score for each
node. If there is a cycle it will be contracted into a new single node, and in the
new node the connection to remove while keeping the best score will be found.
This could possibly be a recursive process. The end result will be the maximum
spanning tree.

22 CHAPTER 3. PREVIOUS WORK

Chapter 4

Nivre’s Parser

4.1 Description

Nivre’s Parser (Nivre, 2003) is an algorithm for extractingthe dependency graph
for a sentence. The algorithm uses a stack and an input string. Initially the input
string consists of tokens representing the words, delimiters and punctuations of
the sentence. The algorithm then performs a series of well-defined operations on
the first token in the input string and the top token of the stack, if any. These
operations are: moving the first input token to the top of the stack, removing the
token on top of the stack and creating a dependency arc between the first input
token and the token on top of the stack. In this way the dependency graph is
created.

More formally, the parser configuration is described as a triple<S, I ,A> where
S is a stack,I a string of input tokens andA the set of arcs between the tokens.
The initial state of the configuration is<nil ,W, /0> meaning an empty stack, an
input string of tokens,W, and an empty set of arcs. The parsing process consists
of a series of four possible transitions, described below, and the parsing terminates
when the configuration state is<S,nil ,A>.

The transitions involve possible operations on the token ontop of the stack
and the next token in the input string. Each transition is equivalent to a change of
configuration state, thus transitionti is equivalent to the change from configuration
ci−1 to ci.
The transitions are:

Left-Arc. Adds an arci← j between the token on top of the stack, i, and the next
input token,j. The token on top of the stack is then popped.

This transition is possible only if the stack is not empty andthe set of arcs
does not contain an arc makingi dependent of another token.

23

24 CHAPTER 4. NIVRE’S PARSER

Figure 4.1: Dependency graph forThe man hit the ball.

Right-Arc. Adds an arci → j between the token on top of the stack,i, and the
next input token,j. The tokenj is then removed from the input string and
pushed onto the stack.

This transition is possible only if the stack is not empty.

Reduce. Pops the token on top of the stack,i. This transition is possible only if
the stack is not empty and the set of arcs contains an arc making i dependent
of another token.

Shift. Removes the next input token,j, from the input string and pushes it on the
stack. This transition is always possible providing the input string is not
empty.

The transitions Left-Arc and Reduce reduces the size of the stack, and the
transitions Right-Arc and Shift reduces the size of the inputstring. Because of
the conditions for the different transitions the termination state will always be
reached, and it can be easily proven that the algorithm terminates after at most
2n− 1 transitions (Nivre, 2005, p. 79), wheren is the number of tokens in the
input string.

As an example, the graph in Figure 4.1 is created using the transitions in Ta-
ble 4.1. Each word and punctuation in the sentence is represented by a node
numbered from 1 and upwards. The first row in Table 4.1 shows the initial con-
figuration, an empty stack and an input string containing thenodes 1-6. The fol-
lowing rows shows the sequence of transitions, with the operations abbreviated as
LA, RA, RA, and SH, and the arc created, if any. For visibility reasons the stack
is shown right to left, with the top token on the right, and theinput string is shown
left to right, with the first token to the left.

The first operation is inevitably Shift, since the stack is initially empty. Now
the stack contains the first node and the rest are in the input string.

In the second step a LeftArc is performed, so the top stack node is popped and
the created arc 1← 2 is registered. Now the stack is empty again, so another Shift

4.1. DESCRIPTION 25

Operation Stack Input Created arc
() (1, 2, 3, 4, 5, 6)

1 SH (1) (2, 3, 4, 5, 6)
2 LA () (2, 3, 4, 5, 6) (1←2)
3 SH (2) (3, 4, 5, 6)
4 LA () (3, 4, 5, 6) (2←3)
5 SH (3) (4, 5, 6)
6 SH (3, 4) (5, 6)
7 LA (3) (5, 6) (4←5)
8 RA (3, 5) (6) (3→5)
9 RE (3) (6)

10 RA (3, 6) () (3→6)

Table 4.1: Sequence of transitions to create the graph in Figure 4.1.

is performed. Following the sequence we see how the input string is gradually
shortened and that the sequence is ended when the input string is empty. The last
column in the table contains the collection of arcs created.

It might be intuitively realized that the graph in Figure 4.1can be described
by the sequence of transitions in Table 4.1. That is, a sequence of transitions
T = t1 . . .tn describe exactly one graphG.

Since the move from transitiontx to tx+1 corresponds to a change from config-
urationcx to cx+1, the sequencesc1 . . .cn andt1 . . .tn are just two ways to describe
the same graphG.

4.1.1 Nondeterminism

Most configurations make it possible to choose between more than one transi-
tion. In particular, since Shift is always applicable, every configuration without
an empty stack allows multiple transitions. Given only this, the parsing process
would be nondeterministic. To make it deterministic there need to be some unam-
biguous way to make the selection.

One simple way is to order the transitions with different priorities, e.g. always
considering them in the order Left-Arc, Right-Arc, Reduce, Shift and select the
first one that applies. By itself this rule would lead to the sequence Shift, Left-Arc,
Shift, Left-Arc . . . until the end of the input string is reached. For a meaningful
result there need to be more rules to override it.

26 CHAPTER 4. NIVRE’S PARSER

4.1.2 Manually improving the rule set

Studying Table 4.1, we see that in step 6 the repetition of Shift, Left-Arc is broken
by another Shift operation instead of Left-Arc as otherwisewould be. The tokens
for which this operation is performed is word 3 and 4. In Figure 4.1 we see that
these are the words ‘hit’ and ‘the’. Thus, we could have step 6performed if we
added a rule that no arc may be created between the words ‘hit’and ‘the’. With
this rule, when we come to step 6 and see ‘hit’ on the stack and ‘the’ as the
next input token we must not select Left-Arc or Right-Arc. Thenext operation in
priority order is Reduce, but that can not be performed as it requires the token on
the stack to have a dependency arc. So the first (and only) operation that applies
is Shift, just as we intended.

Since there would be many rules for many combinations of words, we could
try to generalize by looking at the part of speech of the wordsinstead of their lex-
ical values. So the rule would be that no dependency arc may becreated between
a verb and a determiner. This could make sense, since it seemscounterintuitive
that a determiner and a verb should be directly dependent on each other.

Going further down Table 4.1, to step 8, we find another deviation from our
method of simple priority order selection of transitions. Since the stack is not
empty, and the top token has no head node, a Left-Arc would apply, but a Right-
Arc is performed. Again, looking at Figure 4.1 we see that thetwo tokens in
question are 3 and 5, ‘hit’ and ‘ball’. These two words represent the main action
of the sentence, so intuitively it seems right that these twowords would have a
dependency. The action is ‘hit’, a verb, which is performed on the ball, a noun, so
we make another generalized rule that if a dependency arc canbe made between
a verb and noun token, it should be an arc from the verb to the noun, i.e. the noun
should be dependent of the verb.

We now have set of 3 rules:

(i) (det, noun): No arc. Apply first of RE, SH

(ii) (verb, noun): Arc from verb to noun

(iii) Apply first of LA, RA , RE, SH

With this list at hand, and using only the first applicable when parsing the
sentence in Figure 4.1, we get the sequence in Table 4.2.

In this case we managed to parse most of the sentence in the right way. This
is not surprising since the rules were made by analysing the correct sequence of
transitions for this sentence. If we added an overriding rule for the last step, verb
and punctuation, the parse would be perfect. This set of rules would probably not
suffice to parse any English sentence, and the question is if it would be possible
to extend this method of extracting more rules by analysing more sentences.

4.1. DESCRIPTION 27

Operation Stack Input Created arc Rule used
() (1, 2, 3, 4, 5, 6)

1 SH (1) (2, 3, 4, 5, 6) 3
2 LA () (2, 3, 4, 5, 6) (1←2) 3
3 SH (2) (3, 4, 5, 6) 3
4 LA () (3, 4, 5, 6) (2←3) 2
5 SH (3) (4, 5, 6) 3
6 SH (3, 4) (5, 6) 1
7 LA (3) (5, 6) (4←5) 3
8 RA (3, 5) (6) (3→5) 2
9 RE (3) (6) 3

10 LA () (6) (3←6) 3

Table 4.2: Sequence of transitions using the small rule set.

In a more general sense, we can view the selection of transition as a function
taking as input the current parser configuration and perhapssome other state infor-
mation and output one of the four transitions. The perfect, never failing, version
of this function could be calledoracle. Since this function most likely is unattain-
able we could try to approximate it with a function calledguidewith the goal to
be as close to an oracle as possible. A minimal version of the algorithm in pseudo
code is.

while more_input()

transition = select_transition(configuration, state)

perform_transition(transition, configuration)

As previously mentioned a configuration with an empty stack is the only one
with a single choice of transition. The algorithm could thusbe elaborated to:

while more_input()

if stack_empty()

transition = Shift

else

transition = select_transition(configuration, state)

perform_transition(transition, configuration)

The implementation of the functionselect_transition() need some strat-
egy to make a correct choice for every configuration and state. As long as the
directions for when each transition is possible are followed this strategy will not
change the fact that the parser will always generate a connected, projective graph.

28 CHAPTER 4. NIVRE’S PARSER

4.2 Inductive dependency parsing

The example above can be viewed as a very simple example of data-driven pars-
ing. Starting with a simple assumption, rules are added or modified to improve
the match between the analysis and annotations. However, tomake it a strong,
real world parser it is useful to take a step back and start with some theoretical
ground. A solid foundation for the algorith is presented in Nivre (2005), and most
of the formal reasoning in this section is extracted from that work.

The parsing method for Nivre’s Parser is called Inductive Dependency Parsing.
The terminductiverefers to the possibility to make generalized decisions from a
finite set of samples. In this case methods of mapping the textTt = (x1, ...,xn)
from the languageL to the right analysis, using only annotated sample text from
the language.

In general, for data-driven parsing, the parser can be divided into three com-
ponents:

(i) A formal modelM defining permissible analyses for sentences inL.

(ii) A sample of textTt = (x1, . . . ,xn) from L, with or without the correct anal-
ysesAt = (y1, . . . ,yn).

(iii) An inductive inference schemeI defining actual analyses for the sentences
of any textT = (x1, . . . ,xn) in L, relative toM andTt (and possiblyAt).

The modelM could actually be a grammar. In that case the analyses are con-
strained by a formal grammar. This is the case for PCFG which only will generate
analyses according to the rules of a context-free grammar. But in data-driven
parsing a formal grammar is not needed. In our case the model should be any
system that guarantees that the result is a valid dependencygraph compliant with
the constraints single head, acyclic, connected and possibly projective.

The sample text is usually called training data or training corpus. It is usually
taken from a treebank, which also contains annotations. Theprogram is trained
from a sample of the treebank and is then used to classify unannotated text.

Regardless of how the inductive inference scheme is implemented it must be
able to make a selection among several possible analyses by assigning each a
probability score. Thus, the training phase must consist ofa method to trim some
set of parameters which then will be used to assign the score to unseen text.

More formally the inductive inference scheme can be considered to consist of
three main elements:

(i) A parameterizedstochastic model MΘ , assigning a score,S(x,y) to each
analysisy of sentencex, relative to a set of parametersΘ.

4.2. INDUCTIVE DEPENDENCY PARSING 29

(ii) A parsing method, computing the best analysisy of x according toS (and
an instantiation ofΘ).

(iii) A learning method. A method for instantiatingΘ based on inductive infer-
ence from the training sampleTt .

A common kind of parameterized stochastic model is the history-based model.
In such a model there is a mapping of each pair(x,y) of an input stringx, and an
analysisy to a sequence of decisions,D = (d1,d2..dn). This sequence uniquely
defines the analysis, and each decision has a probability. The joint probability is
then by the chain rule:

P(y | x) = P(d1, . . . ,dn | x) =
n

∏
i=1

P(di | d1 . . . ,di−1,x)

Each decision has a probability conditioned on the decisions up to that point in
the sequence. This conditioning context,d1 . . .di−1, is called the history. Usually
histories are then grouped into a set of equivalence classesby a functionΦ:

P(y | x) = P(d1, . . .dn | x) =
n

∏
i=1

P(di |Φ(d1 . . .di−1,x))

For Nivre’s Parser the decision sequence correspond to the transition sequence
C0,n = (c0, . . . ,cn) where each sequence represents one analysis which defines
exactly one dependency graphG.

In the transition sequence each move from configurationci−1 to ci is repre-
sented by transitionti, thusci = ti(ci−1).

The equation can now be expressed as:

P(G | x) = P(c0, . . .,cn | x) =
n

∏
i=1

P(ti | c0, . . .,ci−1,x)

As mentioned previously the sample text is usually annotated. In that case we
also would like to have that knowledge about the text, i.e. the annotationsAx,
available as condition variables during the training:

P(G | Ax) = P(c0, . . .,cn | Ax) =
n

∏
i=1

P(ti | c0, . . .,ci−1,Ax)

Just as in the general case with decision sequences above, wewould like to
make the set of parameters manageable by grouping them into equivalence classes.
We also make the simplifying assumption that a transition isconditioned on the
current configuration state only, not the full sequence. In other words

P(ti | c0, . . .,ci−1) = P(ti | ci−1).

30 CHAPTER 4. NIVRE’S PARSER

Since we know that each configuration contains the current state of the stack,
input string and all arcs so far, representing the partiallyconstructed graph, this
might be sufficient history anyway. Our equivalence classeswill be pairs of(c,Ax)
grouped by the functionΦ:

P(G | Ax) = P(c0, . . .,cn | Ax) =
n

∏
i=1

P(ti |Φ(ci−1,Ax))

In the terminology of Nivre’s Parser the pair(c,Ax) is calledparser condition.
The equivalence functionΦ defines equivalence classes of parser states from these
parser conditions.

The model parameters,Θ, are the conditional probabilitiesP(t | Φ(c,Ax)) for
each combination of possible transition and parser state.

The functionselect_transition() above would be able to use these pa-
rameters to select, from the possible transitionsTR, the best transitiont ∈ TR for
every parser stateΦ(c,Ax). The ideal implementation of this function will always
select the correct transition while building the graph representing the correct anal-
ysis. This is what is called the oracle function above. While this would be the best
solution, we don’t know how to implement such a function. Thebest we can do is
to approximate is as well as possible.

4.3 Gold standard parsing

We don’t know how the oracle function is constructed but we have some output
from it. A gold standard is a hand annotated text. This can be considered being a
sample of text analysed by an oracle function. If we have a large enough sample
we can try to extract parameters from it to approximate the function.

As mentioned previously this is a common case for machine learning. Since
the transitions are a discrete set and the parser states are also a discrete set, it
is useful to view the problem as a classification problem, selecting one of the
transitionst ∈ TR as classifier for each parser state,Φ(c,Ax).

We have an annotated sample text, but what we really need for training the
classification is a way to extract samples of transitions fordifferent parser states
from these samples. This would represent the selections made by the oracle func-
tion. In this way we could calculate the probabilitiesP(t |Φ(c,Ax)). At this point
we might realize that a major part of approximating the oracle function is how to
implement the equivalence functionΦ. This will be addressed below.

Formally, we need to extract the set of pairs(c, t) from the sample textTt :

Dt = {(c, t) | oracle(c,Ax) = t,c∈C}

4.3. GOLD STANDARD PARSING 31

where C is the set of configurations occuring in the training set.
We can then use different implementations/parameterizations ofΦ to get train-

ing sets:
DΦ = {(Φ(c,Ax), t) | (c, t) ∈ Dt}

Thus

(i) Derive the setDt from the training corpusTt .

(ii) Define the parameterization ofΦ and derive the training setsDΦ from Dt .

(iii) Induce a guide function fromDΦ using inductive learning.

Deriving the setDt from the training corpus can be done with an algorithm
quite similar to the guide function in the previous section:

gold_standard_parsing(W, Ax)

configuration = <nil, W, []>

while more_input()

if stack_empty()

transition = Shift

else

transition = oracle_select_transition(configuration, Ax)

add_to_training_instances(transition, configuration, Ax)

perform_transition(transition, configuration)

The change is that we store each pair of transition and configuration, and that
the transition function is replaced by an oracle-version. This function predicts the
next transition using the functionhead-of() which is part ofAx.

oracle_select_transition (configuration, Ax)

// configuration = (stack | j, i | input, h)

// j = top of stack, i = first input token

// Ax = {head-of(),...)

if head-of(i) = j

transition = LEFT-ARC

else if head-of(j) = i

transition = RIGH-ARC

else if is_in_stack(head-of(j)) or is_head_for_stack_member(j)

transition = REDUCE

32 CHAPTER 4. NIVRE’S PARSER

else

transition = SHIFT

return transition

Given the information in the configuration and the functionhead-of(), which
has the extracted information from the hand annotated sample text, the function
can always tell the correct transition. We know that the function is called as long
as there is some input left in the input string, and we also know that the function
is not called when the stack is empty, thus there are always one token on top of
the stack and at least one input token.

By looking at the top token on the stack,i, and the next input token,j, the
function can decide that ifj is the head ofi then the transition should be LEFT-
ARC. On the other hand ifi is the head ifj then the transition should be RIGHT-
ARC. If neither is the case, then the function has to look in the stack to see if it
contains ak which is the head ofj or has j as its head. If such ak is found the
transition is REDUCE. Because we know that the annotated dependency graph
is connected and projective we can be sure that the nodes in the stack above k
can safely be reduced without violating the requirement that the graph must be
connected. In this case each node above k must be on the stack as a result of a
RIGHT-ARC transition and has a dependency connection to the node immediately
below.

If none of the above apply, we know that we have not yet seen thehead of
eitheri or j. They must be further back in the input string so the transition must
be SHIFT.

4.4 Dependency labels

The annotations in a gold standard could contain not only information about head-
dependent relations. These relations can also be labeled with the type of the de-
pendency. The labeling is made according to systems defined by the annotators
and could theoretically follow any direction since their meaning is transparent to
the parser. However, usually the labels are used to depict a syntactic relation be-
tween the nodes. In light of this it can be useful to think of another, less common,
name for dependent:modifier. This name indicates that the head is determining
the behavior, and the dependent is the modifier, object or complement (Covington,
2001, p96).

Adding dependency types, the parser configuration is now(stack, input,

h, d).

4.5. FEATURES 33

4.5 Features

When training a program using supervised learning, it has to have information on
a number of parameters from the training sample and the correct classification for
each occurring sample. The task is then to, in different ways, extrapolate from the
training samples and correctly classify new samples which are not in the training
set. Different learning methods uses different algorithmsfor this, but in all cases
there needs to be a collection of parameters to train from. These parameters are
also known as features.

In our case the classification is the transition to be selected for a certain parser
configuration, and the features are extracted from that parser configuration at that
point. There are two kinds of features, static and dynamic.

Static features are features which are unchanged during theparsing process.
During annotation of the sample text every word and punctuation is assigned some
information. This can be lexical features such as the word itself, the word form,
but also suffixes, lemmatization and normalized word forms.Annotations usually
also contains a part of speech with some granuality. These features are constant
and bound to every particular node during parsing.

Dynamic features, on the other hand, are features that are likely to change
after each transition. These features are collected from the partially construted
dependency graph with, possibly labeled, head-dependent relations. Examples of
these features are the dependency label of a node, the part ofspeech of the head
for a node or the lexikal name of the leftmost child of a node.

4.6 Pseudo-projective dependency parsing

As mentioned previously the assumption that a dependency graph always is pro-
jective is an idealized constraint. Depending on the language there is a varying
percent of nonprojective constructs occurring in a typicaltext. This makes it im-
possible for dependency parsing based on the requirement ofprojectivity to reach
the ideal 100% match since, by definition, no resulting analysis graph will be non-
projective. Furthermore many treebanks are annotated witha certain amount of
nonprojective sentences. This will disturb the training phase for the parser. While
many machine learning algorithms are well suited to handle acertain degree of
errors in the training data, others are not.

One simple way to deal with the disturbance of the training phase is to ignore
every nonprojective sentence in the training data. This only solves one of the
problems, though.

Another solution is pseudo-projective dependency parsing(Nivre and Nilsson,
2005). The idea is to transform a nonprojective graph to a projective before train-

34 CHAPTER 4. NIVRE’S PARSER

ing and invert the transformation after parsing. To be able to restore a transformed
graph, traces will be left in the dependency labels. For thatpurpose the set of
labels are extended with additional labels containing information about both the
original label and the transformation that has been performed.

4.7 CoNLL

SIGNLL (pronounced signal) is the Special Interest Group onNatural Language
Learning of the Association for Computer Linguistics, ACL (http://www.aclweb.org).

The aim for SIGNLL is “the answering of fundamental scientific questions
about the nature of the human language acquisition process and the development
of practical NLL techniques for solving current problems across the full range of
Computational Linguistics, whilst admitting the widest possible range of compu-
tational approaches.”

Among other thing, this manifests itself in the aim to promote research in
automated acquisition of syntax, morphology, phonology, semantic / ontological
structure and inter-linguistic correspondences.

SIGNLL emphasizes paradigms which can be exploited automatically, such
as corpus based analysis including automated tagging and testing, learning in in-
teractive environments, unsupervised and implicitly supervised techniques etc.

CoNLL, Conference on Natural Language Learning, is SIGNLLs yearly meet-
ing. Although there were previous meetings with other names, the first CoNLL
meeting was in Madrid 1997. Starting with the 1999 meeting inBergen, CoNLL
included in the conference a shared task among the participants. The organizers
provided training and test data so that the participating systems could be evaluated
and compared in a systematic way. Descriptions of the systems and an evaluation
their performances are presented both at the conference andin the proceedings.

The tenth meeting in New York 2006, for anniversary reasons named CoNLL-
X, included the shared task Multi-lingual Dependency Parsing. The task was to
assign labeled dependency structures for a range of languages by means of a fully
automatic dependency parser.

One reason for the CoNLL shared task was to make it possible to compare the
performance of different parser solutions on the same data and on many languages.
Until a few years before, most parsers were usually tested ononly one or two
languages, one of them being English.

Training and test data for 13 languages was provided. This would allow partic-
ipants to tune their applications by adjusting parameters for particular languages.
The same applications should be used for all languages. The train data contained
sample text annotated with, among other things, wordform, lemma, part of speech,
head for each word and dependency label. The data format was unified but the

http://www.aclweb.org/

4.7. CONLL 35

systems for part of speech, dependency labels etc. were strictly different for each
language. 2 months later new test data for the languages was released and the
participants were expected to parse the data and submit the result to CoNLL. The
results were then evaluated using a script which measured the score for correct
head-dependent relations (unlabeled attachment score) and in addition correct de-
pendency labels (labeled attachment score). This script was published at the same
time as the initial training data.

For most languages the top two results for both labeled and unlabeled attach-
ment score were submitted by Ryan McDonald with MSTParser andJoakim Nivre
with MALT Parser, an implementation of Nivre’s Parser. MALTParser obtained
the second best overall score and achieved top results for 9 languages.

36 CHAPTER 4. NIVRE’S PARSER

Chapter 5

Method

The aim for this study is to make an investigation of the feature set, and try meth-
ods of finding an optimal set. The investigation will follow two different paths of
semi intuitive search and systematic search. When searchingfor the optimal set,
the search for a correctly connected graph is the primary goal and the search for
a correctly labeled graph is secondary. The rationale for this is the idea that if we
can achieve a correct graph in one pass it can be labeled in a second pass. This
idea is not pursued in this study, though.

5.1 The parser implementation

The parser used in this study is a rather straight forward implementation in C++. It
has been compiled and run on both Microsoft Windows and Linux. The majority
of the tests were run on a computer cluster. For training and testing the library
LibSVM (Chang and Lin, 2001) was used.

The parser can be run in a few modes, the most important ones being ‘train’
and ‘test’. All common parameters for these modes are supplied in a configuration
file.

In train mode a train corpus file is parsed using the gold standard parsing de-
scribed above, and three training files are composed, the action, left arc and right
arc file. The action file consists of one of the four actions/transitions and param-
eters from the parser configuration which are listed in the train/test configuration
file. The left and right arc files consist of the dependency label for an arc when
the respective arc action is selected and also the same parameters chosen for the
action file.

The parser is then trained on these three files which results in three model-files
for LibSVM.

In test mode a test corpus is parsed and the actions and arc labels are predicted

37

38 CHAPTER 5. METHOD

using the model files.
It is possible for the prediction of actions to suggest an action which could not

be performed. More precisely, this includes any action other than Shift when the
stack is empty. In that case the parser will perform a Shift action irrespectively on
what is suggested.

Other actions are possible to perform, but would lead to the final graph not
being connected. These actions are not prevented by the parser. Instead, spe-
cial parameters are possible to use as hints during trainingand testing. This is
described below.

To construct the parameters the parser keeps name tables forthe possible val-
ues of part-of-speech, dependency labels and lexical tokens. The first two consist
of a finite set of values as defined in the annotations of the corpus. The collection
of lexical tokens is constructed from the train corpus. Thiscollection is extended
with a pseudo token, UNKNOWN, which will be used for any token appearing
during testing which were not present in the train corpus andthus is not found in
the name table.

The name table for dependency labels is extended with the pseudo token
NOT_SET which means that there is a node as described by the parameter defini-
tion, but it is not bound by a dependency arc and thus it has notyet a dependency
label. An example of this is if the stack is not empty but the top node has no
head node then the part-of-speech will be known but the dependency label will be
NOT_SET.

Furthermore, all three name tables are extended with the pseudo token NOTH-
ING which will be used when a parameter value doesn’t exist inthe current parser
configuration, e.g. if the stack is empty, the part-of-speech value of the top of the
stack is NOTHING.

5.2 Parameter set

The parsers parameter format is derived in relevant parts from the format for Malt-
Parser 0.4 and extensions have been added.

The basis are the feature type, data structure and indexes. These are used to
indicate a particular feature of a certain node in the parserconfiguration.

Feature types are POS (part-of-speech), LEX (the lexical value) and DEP (de-
pendency label). There are two data structures STACK and INPUT. A data struc-
ture combined with a zero based index is a starting point for finding a node. Thus
STACK 1 indicates the second node on the stack and INPUT 0 indicates the first
input token.

Then up to four integers indicating are allowed:

• Relative offset, positive or negative, in the original string.

5.2. PARAMETER SET 39

• Positive offset of the HEAD function. Thus 2 means head of head.

• Offset of the leftmost child function (negative value) or rightmost child
function (positive value).

• Offset of the left sibling (negative value) or right sibling function (positive
value).

The default value for these parameters is 0 and if they are notused they can be
omitted.

This far the parameter set is compatible with the MaltParser0.4 parameter set.
The primary format for the current parser is another, callednavigational for-

mat, which uses a node as starting point and then stepwise instructions of how to
find a certain node.

This parameter format use the same first three parts, featuretype, data structure
and data structure index as described above. This could be the complete param-
eter and if so it indicates a node present in either the stack or input string. The
parameter can then contain a list of a number of navigationalsteps from this node.
These steps described how to move from the current node to thenext. Possible
steps are:

• h Move to theheadof the current node.

• lc Move to theleftmost childof current node.

• rc Move to therightmost childof the current node.

• ls Move to theleft siblingof the current node.

• rs Move to theright siblingof the current node.

• pw Move to the node representing theprevious wordin the original string.

• fw Move to the node representing thefollowing wordin the original string.

If at any step the requested node doesn’t exist, the parameter description eval-
uates to NOTHING. This is the same as for the nodes in the data structures.

An example of a parameter is:

POS STACK 1 lc

This interpreted as: find the second node of the stack. Move tothe left child
of that node. Get the part-of-speech of that node.

A longer parameter is:

40 CHAPTER 5. METHOD

POS STACK 1 ls rc pw h

The easiest way to read this in common English is to read the feature and then
the rest of the line right to left, like so:

Get the part-of-speech
of the head
of the previous word
of the right child
of the left sibling
of the second node
of the stack.

In this way any node can be pinpointed if it exists. If the indicated node doesn’t
exist, the value of the feature of the parameter is NOTHING.

5.3 Investigations of the feature set

The investigation of the feature set for the parsing algorithm was done in two
ways. First a study of different combinations of parameterswas made and then a
systematic search method was constructed and tested.

The corpus used for the first study and part of the second studyis the Swedish
corpus used in CoNLL-X 2006, “conll06_data_swedish_talbanken05_train_v1.1”.
It consists of 11431 sentences, with 20057 unique lexical tokens. The annotations
uses 41 part-of-speech labels, POS, and 64 dependency labels, DEP labels.

The evaluation of each result was made with a script, eval.pl, which was pub-
lished as part of CoNLL-X. This script generates three resultvalues and some
diagnostic information. For this study the two interestingresults are:

Labeled attachment scoreThe proportion of tokens that are assigned both the
correct head and the correct dependency label.

Unabeled attachment scoreThe proportion of tokens that are assigned the cor-
rect head.

Chapter 6

Matrix study and intuitive search

In the first part of the study tests were made with different combinations of fea-
tures. For each combination a matrix of up to 8 stack tokens and up to 8 input
tokens were tested. Sentences were parsed in both Left-Rightand Right-Left di-
rections. Evaluations were made for both labeled and unlabeled graphs.

As an example, a table of the results for the simplest combination, the part-of-
speech for each node, is shown. The columns shows the number of input tokens
and the rows shows the number of tokens on the stack in each of the 64 tests.

Results for attribute POS, parsed in Left-Right direction areshown in Ta-
bles 6.1 and 6.2.

Stack\Input 1 2 3 4 5 6 7 8
1 58.43 61.06 61.20 61.44 61.68 61.86 62.14 62.02
2 63.41 67.02 67.44 67.42 67.74 67.56 67.64 67.78
3 63.31 67.12 67.56 67.6667.87 67.87 67.68 67.68
4 63.35 67.30 67.82 67.60 67.74 67.54 67.72 67.10
5 63.59 67.36 67.68 67.70 67.64 67.62 67.44 67.34
6 63.67 67.22 67.84 67.52 67.54 67.42 67.52 67.18
7 63.57 67.26 67.76 67.36 67.44 67.68 67.48 67.40
8 63.63 67.26 67.58 67.28 67.56 67.48 67.50 67.42

Table 6.1: Attribute POS. Labeled attachment score.

The top score for each matrix is indicated by the value in bold. When values
are equal, the combination requiring fewer number of parameters are selected.

For the labeled attachment score the best score is 67.87% correct arcs with
correct labeling. This result is achieved for the training using the POS values for
the first 5 nodes in the input string and the top 3 nodes on the stack, a total of 8
parameters. As described previously some of these nodes maybe missing at some

41

42 CHAPTER 6. MATRIX STUDY AND INTUITIVE SEARCH

Stack\Input 1 2 3 4 5 6 7 8
1 68.29 71.20 71.42 71.46 71.70 71.96 72.20 71.98
2 76.24 79.69 80.04 79.84 79.96 79.94 79.98 80.00
3 76.36 80.00 80.14 80.28 80.42 80.40 79.96 79.67
4 76.28 80.18 80.52 80.30 80.36 79.96 79.92 79.37
5 76.42 80.14 80.46 80.28 80.44 80.02 80.00 79.47
6 76.46 80.24 80.54 80.24 80.36 79.94 79.98 79.47
7 76.50 80.20 80.58 80.12 80.28 80.04 79.76 79.61
8 76.76 80.06 80.42 79.92 80.32 79.82 79.82 79.67

Table 6.2: Attribute POS. Unabeled attachment score.

stage during parsing, when the stack is too shallow or the remaining input string
is shorter than 5 nodes. In this case the missing node will be represented by the
pseudo value NOTHING. Apart from being the only value that can be returned
in this case it also indirectly reveals some information. For instance if a value
for input token 3 is NOTHING we are dealing with the two last two words in a
sentence (since the last token is the punctuation).

The unlabeled attachment score has a maximum value, 80.58% for the first 3
nodes in the input string and the top 7 nodes on the stack.

6.1 Parser hints

In the section about the parser implementation it was described that when the
stack is empty, the parser will override any other action than Shift, and perform a
Shift. This is simply because that is the only action that canbe performed. Other
actions are not inhibited even if they result in the graph being not connected. To
reduce this effect the parameters supplied during trainingdata can be extended
with boolean flags indicating whether the actions can be legally performed. It
turns out that usually it is sufficient to extend the parameter set with a single flag
to achieve this. The condition is that the parameter set contains a parameter which
indicates if the stack is empty or not. Such a parameter is either of POS or LEX of
the top of the stack, with the pseudo token NOTHING indicating an empty stack.
The overview in Table 6.3 indicates this. The stack has threemodes, top node has
head, top node has not head and stack is empty. It is assumed that there is always
an input node. The possibility to perform any of the four actions is directly related
to the three stack modes.

To the right is a column indicating the Boolean value for “stack is empty”.
This value in combination with either of canLeftArc or canReduce defines the

6.1. PARSER HINTS 43

stack canLA canRA canS canR stackEmpty
head F T T T F
no head T T T F F
empty F F T F T

Table 6.3: Overview of how the three modes of the stack affects the possibility to
perform the four transitions.

other three values.
canLA = not stackEmpty and not canR

canRA = not stackEmpty

canS = true

A new set of test was made with the same parameters as before, the part-of-
speech for each node, this time extended with the boolean parameter canReduce.
Table 6.4 contains the result for the unlabeled attachment score (UAS). For labeled
attachment score the results are similar.

Stack\Input 1 2 3 4 5 6 7 8
1 71.74 79.03 79.43 80.00 80.22 80.50 80.32 80.44
2 74.21 80.96 81.52 82.02 82.31 82.21 82.27 82.15
3 74.39 81.52 82.15 82.53 82.63 82.41 82.37 82.14
4 74.37 81.72 82.27 82.51 82.79 82.10 82.19 81.96
5 74.45 81.66 82.23 82.53 82.81 82.45 82.19 82.00
6 74.45 81.70 82.06 82.49 82.63 82.49 82.33 82.15
7 74.59 81.68 82.06 82.47 82.51 82.49 82.29 82.51
8 74.57 81.60 82.17 82.35 82.8582.89 82.33 82.49

Table 6.4: Attribute POS with CanReduce flag. UAS.

There is an overall improvement for every combination. The score for the pre-
vious best combination has increased from 80.58% to 82.06% and there is a new
best score of 82.89% for the combination 6 input and 8 stack nodes. Previously
the score for this combination was 79.82%.

This parameter obviously makes a big difference. Even though the impact is
expected to be less dramatic when the information is overlapped by other param-
eters, for instance using any parameter referring to the head of STACK 0, it was
decided to keep this parameter in all future parameter sets.

44 CHAPTER 6. MATRIX STUDY AND INTUITIVE SEARCH

6.2 Right to left parsing

While a sentence is usually parsed in the reading direction ofthe language, it
is interesting to compare the parser performance if the sentence is scanned in the
opposite direction. Table 6.5 shows the result for of POS when parsed right to left,
and the difference between right-left and left-right parsing is shown in Table 6.6.

Stack\Input 1 2 3 4 5 6 7 8
1 68.67 76.66 80.32 80.52 80.62 80.78 81.10 80.90
2 68.27 74.89 81.44 82.37 82.87 82.23 82.27 82.57
3 68.47 75.16 81.66 82.2382.75 82.08 82.02 82.53
4 68.51 75.18 81.52 82.49 82.12 82.15 82.33 81.94
5 68.45 75.16 81.62 82.49 82.49 82.06 82.23 82.00
6 68.41 74.97 81.46 82.47 82.10 82.19 82.14 81.78
7 68.75 75.22 81.44 82.45 82.25 82.15 82.04 81.82
8 68.51 75.26 81.36 82.35 82.12 82.00 82.04 81.70

Table 6.5: POS Right-Left. UAS

Stack\Input 1 2 3 4 5 6 7 8
1 -3.07 -2.37 0.89 0.52 0.40 0.28 0.78 0.46
2 -5.94 -6.07 -0.08 0.35 0.56 0.02 0.00 0.42
3 -5.92 -6.36 -0.49 -0.30 0.12 -0.33 -0.35 0.39
4 -5.86 -6.54 -0.75 -0.02 -0.67 0.05 0.14 -0.02
5 -6.00 -6.50 -0.61 -0.04 -0.32 -0.39 0.04 0.00
6 -6.04 -6.73 -0.60 -0.02 -0.53 -0.30 -0.19 -0.37
7 -5.84 -6.46 -0.62 -0.02 -0.26 -0.34 -0.25 -0.69
8 -6.06 -6.34 -0.81 0.00 -0.73 -0.89 -0.29 -0.79

Table 6.6: Attribute POS. Difference between Right-Left andLeft-Right parsing.
UAS

It can be seen that, at least for this parameter setting, the performance is
slightly worse in most cases and quite a bit worse when large stack depths and
1-2 input tokens are considered. The performance for labeled attachment score is
similar.

6.3. COMBINATIONS 45

6.3 Combinations

A series of combinations of parameters were tested. In the following the results
for unlabeled assignment score, left to right parsing is presented. If not indicated
otherwise the results for the labeled assignment score has asimilar pattern but
lower overall score. Furthermore the right to left parsing typically has results
2-3% lower in both cases.

The result for parsing based only on lexical tokens, parameter LEX, is shown
in Table 6.7. As expected the performance is not as good as when parsing only
with part-of-speech. Since there is a great possibility forunknown words to show
up in the test corpus the parser will not have been trained forthose and will simply
have to deal with them as UNKNOWN. However, a good training corpus should
contain most of the basic building stones of a language, common prepositions, de-
terminers, pronouns etc, so the parser will have a fair chance to recognize common
language constructs.

Stack\Input 1 2 3 4 5 6 7 8
1 54.57 61.86 66.52 66.92 68.43 68.87 69.55 69.33
2 55.85 64.89 68.51 69.77 70.30 69.79 70.17 69.83
3 56.50 66.42 69.85 70.94 70.66 70.42 70.64 70.23
4 57.48 67.58 70.74 71.36 71.04 70.76 70.66 70.60
5 58.39 68.59 71.74 71.62 71.42 70.82 70.72 70.46
6 59.47 69.51 71.92 72.08 71.28 70.86 70.68 70.15
7 60.49 69.93 72.04 72.08 71.14 70.94 70.50 69.99
8 61.44 70.19 72.44 72.20 71.30 71.28 70.74 70.11

Table 6.7: LEX Left-Right. UAS

A combination of POS and LEX parameters was tested. It was expected that
the performance of the POS parameter should be improved withthe guidance
from lexical values, while the unknown lexical values wouldnot have a negative
influence. The results are shown in Table 6.8.

The combination of POS and DEP is not shown. The impact is verysmall and
often negative. The reason may be that with this parameter setting the only nodes
that have a dependency arc are some of the nodes in the stack and in that case
the head of the dependency is the node one level down. This means that the POS
value for that node usually is among the parameters. Possibly there is a partial
overlap between the dependency label and the part-of-speech for the participants
in a dependency relation.

We will now continue by investigating the influence of parameters for the child
of a node. Table 6.9 contains the results for tests using parameters POS + POS

46 CHAPTER 6. MATRIX STUDY AND INTUITIVE SEARCH

Stack\Input 1 2 3 4 5 6 7 8
1 76.50 83.07 83.53 84.15 83.49 83.23 83.29 82.81
2 78.65 84.94 84.90 84.76 84.62 84.07 83.93 83.95
3 78.55 84.68 85.04 84.94 84.98 84.13 84.25 83.85
4 78.25 84.54 84.78 84.90 84.60 84.23 84.09 83.91
5 78.11 84.35 84.47 84.78 84.31 84.05 83.85 83.91
6 78.39 84.19 84.74 84.66 84.05 83.77 83.83 83.85
7 78.81 84.01 84.72 84.37 83.71 83.71 83.83 83.73
8 78.85 83.97 84.39 84.13 83.45 83.63 83.61 83.67

Table 6.8: POS + LEX Left-Right. UAS

of the leftmost child and in Table 6.10 the parameters used are POS + DEP of the
leftmost child. This time a smaller matrix is chosen.

Stack\Input 1 2 3 4 5 6
1 74.57 83.03 84.05 84.11 84.15 84.60
2 76.92 85.18 85.70 86.2686.44 86.40
3 77.24 85.32 85.82 86.60 85.88 86.24
4 77.10 84.88 85.74 85.58 85.64 85.78
5 77.45 84.80 85.36 85.80 86.34 86.00

Table 6.9: POS + POS lc. UAS

Stack\Input 1 2 3 4 5 6
1 75.08 83.37 84.29 84.84 84.72 84.68
2 77.18 85.26 86.32 86.3686.70 86.58
3 77.85 84.94 86.12 86.28 86.42 85.88
4 78.19 85.24 85.86 85.94 86.56 86.06
5 77.91 85.16 86.06 85.84 85.98 85.70

Table 6.10: POS + DEP lc. UAS

In both cases the additional parameter from the child has a positive impact.
The values are increased by on average 3.58 for POS of the leftmost child and
3.86 for DEP of the leftmost child. The corresponding valuesfor the labeled
assignment score are 5.04 and 5.25, respectively.

We combine the three values and investigate the parameter set POS + POS of
leftmost child + DEP of leftmost child.

6.3. COMBINATIONS 47

Stack\Input 1 2 3 4 5 6
1 75.30 83.43 84.17 84.74 84.35 84.62
2 77.75 85.02 86.70 86.91 86.91 86.50
3 78.79 85.58 86.34 86.32 85.96 85.94
4 78.15 85.36 85.74 86.36 85.74 85.86
5 78.15 84.86 85.60 85.82 85.66 85.66

Table 6.11: POS + POS lc + DEP lc. UAS

The additional value of using both POS and DEP of leftmost child is very low.
Compared to only POS the average increase is almost the same asfor either of the
child values, 3.89 for unlabeled and 5.26 for labeled assignment score. There is
obviously an overlap between POS and DEP in this case.

Well over 70 different parameter combinations were tested and the best score
for both labeled and unlabeled attachment was attained withparameter combina-
tion in Figure 6.1.

POS STACKs
LEX STACK s
POS STACKs lc
POS STACKs rc
POS INPUTi
LEX INPUT i
POS INPUTi lc
POS INPUTi rc

Figure 6.1: Parameters for best score. Parameters are for each stack nodes in
[0,1] and each input nodei in [0,1,2]. Note that parameters for child nodes for
input > 0 are omitted.

The results are shown in Table 6.12. The combination of parameters in Fig-
ure 6.1 applied to the 2 top stack nodes and the 3 first input nodes has the score
89.38% for unlabeled and 86.58% for labeled attachment score.

48 CHAPTER 6. MATRIX STUDY AND INTUITIVE SEARCH

Stack\Input 1 2 3 4 5 6
1 80.88 88.29 87.93 87.63 87.65 87.09
2 82.77 88.75 89.38 88.77 88.41 88.01
3 82.83 88.05 88.53 88.49 88.75 88.37
4 83.59 87.51 88.13 87.85 88.19 87.63
5 82.81 87.07 87.79 87.79 87.77 87.73

Table 6.12: Score for parameters in Fig. 6.1. UAS.

Chapter 7

Systematic exploration of the feature
space

It is often the case that, when results for dependency parsing is reported, the pa-
rameters are published but not how they were found. The previous chapter pre-
sented an intuitive search method guided to some degree by anattempt to analyze
the results with the hope to find indications on how to find a better parameter set.
It is a time consuming and tedious method and it’s hard to knowif one is on the
right track.

Admittedly we found useful results, but can we do better?
This chapter introduces and evaluates a simple method to iteratively search

systematically and automatically for the best parameter toadd to a parameter set.

7.1 Axis search

The search method is based on the assumption that if a featuremakes an important
contribution, then one or more neighboring features could also be important. The
neighbors considered are both in a feature and node sense. e.g. POS STACK 0
means the part-of-speech feature of the node on top of the stack. Neighboring
features are found in different directions from this node-feature. In this report
these directions are called axes and 4 of them are used.

The data structure axis. These are the nodes in the data structure, stack or input
stream, where the current node possibly resides. The immediate neighbors
are the nodes above or below in the stack or before and after inthe input
stream. The top node on the stack and the next input node have aspecial
connection since they are the ones used when building the graph. Therefore
these two are considered immediate neighbors to each other.

49

50 CHAPTER 7. SYSTEMATIC EXPLORATION OF THE FEATURE SPACE

For a node this axis may be missing. It may have been popped from the
stack.

The horizontal and vertical graph axes. These two axes traverse the partially
constructed graph. The horizontal axis is the direction between sibling
nodes, connected by a common parent. The immediate neighbors are the
nearest sibling to the left and the nearest sibling to the right.

The vertical axis is the direction between parent and child nodes. The im-
mediate neighbors are the parent node, the leftmost child node and the right-
most child node.

For a node this axis may be missing. It may not yet be part of thegraph.

The sentence axis.This direction traverses the nodes in the order they appear in
the original sentence. The input data structure overlaps bydefinition all or
the latter part of this axis. The immediate neighbors are theprevious and
following node in the sentence order.

In addition to this a particular feature has neighboring features consisting of
the set of remaining features belonging to the same node. This is not an axis since
all features are considered neighbors of each other.

7.2 Finding neighbors

For a particular feature, the neighbors are found using thismethod:

(i) Find the current node, which is the node that the feature belongs to.

(ii) Find all immediate neighbor nodes, when present, to thecurrent node along
the axes.

(iii) Neighboring features are all features of the current node and neighboring
nodes.

7.3 First evaluation on Swedish corpus

An evaluation of this method was made. The corpus used is the same as in the
previous investigation, conll06_data_swedish_talbanken05_train, but in this case
it was split into a train set and a development set. The split was made simply by
picking out every 10:th sentence from the train set and put them into the develop-
ment set. Training was then done on the train set and each result was evaluated

7.3. FIRST EVALUATION ON SWEDISH CORPUS 51

on the development set. The test set conll06_data_swedish_talbanken05_test was
used for reference measurement of how well the training generalized. The search
should be for the best unlabeled attachment score.

It was decided that one node should be the starting point. This node should be
evaluated as a single parameter and then this value should becompared with an
evaluation of this parameter in combination with each of itsimmediate neighbors.
The combinations generating the best results should be picked and then these
should be evaluated in combination with each one in the collection of immediate
neighbors of them, and so on.

In this report each iteration is called agenerationwhere generation 1 consists
of a single parameter. For each generation a new parameter isadded. These
parameters are called fixed parameters for the generation. The fixed parameters
are the collection which is tested with each one of the neighboring parameters.

As node for the starting point the first node of the input string was selected.
This is the only node which is certain to exist during parsing, simply because
parsing is defined to continue as long as the input is not empty. It is also very
probable that this node is important. Two tests were initiated, each one starting
off from one of the two static features of the input node, POS and LEX.

7.3.1 Rules for parameter selection

A set of rules derived from the axis search was compiled on howto select the set of
new parameters to add to the next generation. The rules are presented in Table 7.1.
The purpose is to avoid making recursive navigational paths. One example is to
notice that if we move to the left sibling of the right siblingof a node we return
to the original node. Depending of the kind of node to start from some of the
directions could be omitted since they were redundant. For instance if a node has
been brought in to the fixed parameter set as being a leftmost child of another
node in the fixed set, the head of that leftmost child-node is already in the fixed
set. Similarly if the node STACK 2 is in the fixed set it has been brought in as
being neighbor in the stack to STACK 1, so nodes above the current node in the
stack are omitted. In this way the search for neighbors alongthe axes is generally
reduced to only one direction depending on in what respect the node is defined in
the parameter.

7.3.2 The first generation

The parameters for the first test generation were found by applying the rules as
follows. The selected starting node is INPUT 0 and two tests were prepared, one
for POS and one for LEX. Beginning with the feature POS INPUT 0 as the fixed

52
C

H
A

P
T

E
R

7.
S

Y
S

T
E

M
AT

IC
E

X
P

LO
R

AT
IO

N
O

F
T

H
E

F
E

AT
U

R
E

S
P

A
C

E

PLD PLD PLD PLD PLD PLD
STACK n = 0 STACK n > 0 INPUT n = 0 INPUT n > 0 h lc, rc ls rs pw fw

PLD PLD PL PL h h h
PLD h PLD h lc lc lc lc lc
PLD lc PLD lc PLD lc rc rc rc rc rc
PLD rc PLD rc PLD rc ls ls ls ls ls
PLD ls PLD ls rs rs rs rs rs
PLD rs PLD rs pw pw pw pw pw
PLD pw PLD pw PLD pw fw fw fw fw fw
PLD fw PLD fw
PLD STACK n+1 PLD STACK n+1 PL INPUT n+1 PL INPUT n+1
PL INPUT 0 PLD STACK 0

Table 7.1: Rules for adding parameters for a new generation. For each node of typeT, in bold on row 2, add the features in
the column below. PLD = abbreviation for features POS LEX DEP.

7.3. FIRST EVALUATION ON SWEDISH CORPUS 53

parameter, we read the third row in the rules table and see that the neighboring
nodes we should add are

• POS and LEX of the node. We already have POS so we add LEX INPUT0.

• POS, LEX and DEP of the leftmost and rightmost child of the node.

• POS and LEX of the previous word in the original string. Since the input
string is the same as the rest of the original string, the ‘following word in
the original string’ is the same as the next input node, whichis added in the
next step. For that reason “following word” is not added.

• POS and LEX for the node INPUT n+1, in this case INPUT 1.

• POS, LEX and DEP for the STACK 0. This is the special rule that connects
the stack and input nodes.

As long as a node is still in the input string it can not have an arc to a head.
Therefore we don’t include the dependency for input nodes asa parameter.

The parameters found using this methods are listed in Figure7.1. Note that
PLD is an abbreviation for the tree parameters POS, LEX and DEP of a particular
node.

POS INPUT 0
LEX INPUT 0
PLD INPUT 0 lc
PLD INPUT 0 rc
PLD INPUT 0 pw
PL INPUT 1
PLD STACK 0

Figure 7.1: Parameters for the first generation, originating from POS INPUT 0.

The parameters for the other test case LEX INPUT 0 are almost the same. We
only have to switch place between LEX INPUT 0 and POS INPUT 0 inthe list.

The results of the two tests are shown in Table 7.2. At the headof each table is
the fixed parameter and then follows rows of the results of evaluation of unlabeled
and labeled attachment score for each of the neighboring parameters. The row
with a blank parameter represents the values for the fixed parameters only, and is
included for comparison. We can see that for unlabelled testthe best result was
the combination of POS INPUT 0 and POS STACK 0, which was evaluated to
74.02% correct. A great improvement compared to the result 43.49% for only

54 CHAPTER 7. SYSTEMATIC EXPLORATION OF THE FEATURE SPACE

POS INPUT 0. We can also see that for the two parameters at the end of the list
the result evaluated to a decreased result compared to only POS INPUT 0.

The second test, for LEX INPUT 0, have similar improvements.In this case
also, the most contributing parameter is POS STACK 0.

POS INPUT 0 LEX INPUT 0

UAS LAS UAS LAS
74.02 59.67 POS STACK 0 65.86 52.18 POS STACK 0
67.77 54.50 LEX STACK 0 58.59 45.51 LEX STACK 0
58.37 41.83 POS INPUT 0 pw 51.98 37.70 POS INPUT 0 pw
55.28 38.49 LEX INPUT 0 pw 50.44 29.71 POS INPUT 1
51.53 30.43 POS INPUT 1 50.38 35.24 LEX INPUT 0 pw
51.05 32.66 LEX INPUT 0 lc 49.37 32.27 POS INPUT 0
49.71 31.54 POS INPUT 0 lc 48.91 27.77 LEX INPUT 1
49.49 29.18 LEX INPUT 1 48.66 29.91 LEX INPUT 0 lc
49.37 32.27 LEX INPUT 0 47.25 28.92 LEX INPUT 0 rc
48.68 29.34 DEP STACK 0 47.09 28.65 POS INPUT 0 lc
48.47 30.84 LEX INPUT 0 rc 46.68 27.08 DEP INPUT 0 lc
46.77 26.86 DEP INPUT 0 lc 45.69 27.83 POS INPUT 0 rc
46.40 29.95 POS INPUT 0 rc 44.77 26.17 DEP STACK 0
43.49 26.45 44.43 26.47 DEP INPUT 0 rc
42.27 25.21 DEP INPUT 0 pw 42.76 23.56
41.04 26.56 DEP INPUT 0 rc 41.87 23.04 DEP INPUT 0 pw

Table 7.2: Results for the first generation of each of the two initial tests. The eight
best combinations (in bold) are selected for the next generation.

The training results are sorted by unlabeled attachment score. For each gen-
eration, except the first, the eight best results are selected as starting points for a
next test generation.

7.3.3 The second generation

For the first generation the combination of POS INPUT 0 and POSSTACK 0
gets the best score, 74.02%. This combination is selected asthe first of eight fixed
parameter sets for eight new tests in the next generation andthe neighboring nodes
are added.

Looking at the table of rules we see that for INPUT 0 the nodes to add are
precisely the same as before, except that now POS STACK 0 is part of the fixed

7.4. SECOND EVALUATION ON SWEDISH CORPUS 55

parameters, so it should not be added. Next we look at STACK 0 and see in the
first column that we should add:

• LEX and DEP for that node. These were added in the previous generation
so we don’t do that again.

• POS, LEX and DEP for the head of the node.

• In the same way POS, LEX and DEP for the leftmost and rightmost child,
the left and right sibling and the previous and following word In the original
sentence for that node.

• POS, LEX and DEP for the node on step down in the stack, STACK 1.

• By the special rule POS and LEX for INPUT 0 should be added. Since we
decided to start the tests with that node this is already in the collection.

The other seven tests were constructed in a similar way.
Table 7.3 contains the result for the combination of POS INPUT 0 and POS

STACK 0 in generation 2. This time all the best eight results belong to this collec-
tion, and the best score is achieved when the fixed parametersare combined with
POS INPUT 1.

In the results table is also shown for comparison not only theresult of evalua-
tion on the development set but also for the train set.

7.3.4 Results of first evaluation

A total of 16 generations were tested using the method described above. Table 7.4
shows a list of the best results for each generation.

We can see that the test set closely follows the development set with values
about 1% lower. The peak is at generation 12 after which the results for the test
set decreases and the development set continues to increase. This is the typical
indication of the point where overfitting occurs. Beyond thispoint the generaliza-
tion is degraded as shown by the continuously falling results for the test set.

The parameters generating the result for generation 12 is shown in Figure 7.5,
in order of being included in the set.

7.4 Second evaluation on Swedish corpus

The same method was then applied to the same corpus, but the search was for
the optimal labeled attachment sccore. In the first evaluation each the eight best
results for each generation were selected and tested in the next generation. The

56 CHAPTER 7. SYSTEMATIC EXPLORATION OF THE FEATURE SPACE

POS INPUT 0
POS STACK 0

Dev set Test set
UAS LAS UAS LAS
79.50 65.34 79.07 65.86 POS INPUT 1
78.73 66.98 76.04 64.51 LEX STACK 0 fw
77.42 63.08 74.63 61.86 LEX INPUT 1
77.06 64.54 75.28 62.90 LEX INPUT 0 pw
76.83 66.01 73.61 63.77 LEX INPUT 0
76.63 63.62 74.75 63.17 POS STACK 0 fw
76.44 64.24 74.09 62.02 LEX STACK 0
76.39 63.12 73.99 61.16 LEX INPUT 0 lc
76.25 62.51 73.87 61.08 LEX INPUT 0 rc
75.97 62.47 73.55 60.78 POS INPUT 0 lc
75.97 62.20 74.45 61.40 DEP STACK 0 fw
75.88 62.42 74.03 61.30 DEP INPUT 0 lc
75.75 62.11 73.53 60.76 POS INPUT 0 rc
75.74 62.08 73.59 61.06 DEP INPUT 0 rc
75.71 62.15 74.67 62.88 DEP INPUT 0 pw
75.55 61.37 73.81 60.96 POS STACK 1
75.51 62.22 74.85 62.24 POS INPUT 0 pw
75.22 61.08 73.83 60.98 POS STACK 0 pw
74.94 60.85 73.59 60.47 LEX STACK 0 pw
74.88 60.59 72.93 59.57 LEX STACK 1
74.81 60.56 72.77 60.03 DEP STACK 0 pw
74.58 60.44 72.50 59.89 POS STACK 0 h
74.56 60.12 72.42 58.81 DEP STACK 1
74.44 60.36 72.14 59.05 LEX STACK 0 rs
74.37 60.05 72.67 60.05 DEP STACK 0 rs
74.36 60.62 72.24 59.63 LEX STACK 0 lc
74.30 60.16 72.67 60.11 DEP STACK 0
74.24 59.87 71.78 58.65 POS STACK 0 ls
74.23 59.84 71.82 58.75 LEX STACK 0 ls
74.21 59.88 71.88 58.71 DEP STACK 0 ls
74.16 60.14 72.48 59.81 DEP STACK 0 lc
74.16 59.93 71.86 58.69 LEX STACK 0 h
74.15 59.88 71.84 58.61 POS STACK 0 rs
74.12 60.38 72.06 59.61 POS STACK 0 lc
74.09 60.53 72.38 60.11 POS STACK 0 rc
74.08 59.75 71.70 58.39 DEP STACK 0 h
74.02 59.97 72.10 59.15 DEP STACK 0 rc
74.02 59.67 71.60 58.37
74.00 60.71 72.38 59.77 LEX STACK 0 rc

Table 7.3: Results for the second generation with the fixed parameters POS IN-
PUT 0 and POS STACK 0.

7.4. SECOND EVALUATION ON SWEDISH CORPUS 57

Dev set Test set
Generation UAS LAS UAS LAS

1 74.02 59.67 71.60 58.37
2 79.50 65.34 79.07 65.86
3 83.58 71.76 82.75 70.98
4 85.96 76.03 84.82 74.75
5 87.23 77.32 86.34 76.52
6 88.23 79.28 87.21 78.29
7 88.42 80.00 87.67 78.99
8 89.43 81.56 88.09 80.26
9 89.84 83.20 88.69 82.33
10 90.23 83.89 89.17 83.31
11 90.49 84.31 89.58 83.85
12 90.73 84.47 89.66 83.83
13 90.81 84.60 89.52 83.75
14 90.81 84.70 89.32 83.73
15 90.85 84.67 89.13 83.21
16 90.84 84.68 88.65 82.75

Table 7.4: Best results for each generation. Swedish corpus,optimized for UAS.

POS INPUT 0
POS STACK 0
POS INPUT 1
LEX STACK 0 fw
LEX STACK 0
LEX INPUT 0 lc
POS STACK 1
LEX INPUT 1
LEX INPUT 0
DEP STACK 0 lc
POS STACK 0 fw
LEX STACK 0 fw ls

Table 7.5: Parameters used in generation 12 in Table 7.4.

58 CHAPTER 7. SYSTEMATIC EXPLORATION OF THE FEATURE SPACE

results showed that only the four best of these contributed to the best results in the
next generation. Therefore, in this evaluation, only the four best were selected.

The results of the 16 first generations are shown in Table 7.6.

Dev set Test set
Generation UAS LAS UAS LAS

1 74.02 59.67 71.60 58.37
2 78.73 66.98 76.04 64.51
3 83.58 71.76 82.75 70.98
4 85.92 76.28 84.39 74.57
5 86.61 78.71 85.22 77.02
6 87.62 80.86 86.26 79.21
7 88.81 82.22 88.23 81.40
8 89.23 83.24 88.61 82.63
9 89.97 83.93 89.07 83.41
10 90.30 84.44 89.34 83.97
11 90.55 84.83 89.58 83.85
12 90.62 84.98 89.62 84.13
13 90.78 85.17 89.68 84.19
14 90.88 85.31 89.54 84.21
15 90.99 85.41 89.29 83.91
16 90.95 85.45 89.56 84.09

Table 7.6: Best results for each generation. Swedish corpus,optimized for LAS.

The behavior is similar to that of the first evaluation. The train set follows the
development set with increasing values for each generationbut 1-2 % lower. The
optimal value seems to be in generation 14 with 84.21% for thetest set. After
that, the performance for the test set decreases. The parameters for generation 14
are shown in Table 7.7.

7.5 Evaluation on English corpus.

Finally, as a comparison, the method was applied to another corpus, the English
corpus from CoNLL 2008. This corpus contains sections from the Penn Tree-
bank. For training and development set the sections contains text from Wall Street
Journal. A test set with text from Wall Street Journal was also supplied. In addi-
tion, there was also a second test set from the Brown corpus which contains texts
from other fields. The intent was to investigate how well the parsers adapt to other
domains. As before, the four best results for each generation was selected to be

7.5. EVALUATION ON ENGLISH CORPUS. 59

POS INPUT 0
POS STACK 0
LEX STACK 0 fw
POS INPUT 1
LEX STACK 0
LEX INPUT 0
LEX INPUT 0 lc
LEX INPUT 1
LEX STACK 0 lc
POS STACK 1
LEX INPUT 0 pw
POS STACK 0 fw
POS INPUT 2
DEP INPUT 0 lc

Table 7.7: Parameters used in generation 14 in Table 7.6.

the starting point for the next. The tests were optimized forunlabeled attachment
score.

The results after 12 generations are shown in Table 7.8. It isinteresting to
notice that this time the results for the in-domain test corpus, WSJ, exceeds the
results for the train corpus. This indicates that the train corpus actually is harder
to classify than the test corpus and after training the parser is well equipped to
handle the train corpus. As expected, the results for the out-of-domain corpus are
quite a bit lower. After 12 generations there is still no signof overfitting, so the
best result is the last one 90.64% for in-domain test and 87.35% for out-of-domain
test. The parameters used for this score is shown in Table 7.9.

60 CHAPTER 7. SYSTEMATIC EXPLORATION OF THE FEATURE SPACE

Dev set Test set WSJ Test set Brown
Generation UAS LAS UAS LAS UAS LAS

1 64.42 55.64 64.71 56.44 71.29 62.41
2 78.62 68.77 78.99 70.30 78.67 65.17
3 81.83 76.67 82.46 77.82 80.57 72.95
4 84.43 79.78 84.89 80.88 84.03 76.99
5 85.95 81.60 86.61 82.93 84.55 77.80
6 86.95 82.73 87.73 84.09 85.26 78.48
7 88.03 83.62 88.52 84.74 85.66 78.73
8 88.61 84.97 89.15 86.20 86.29 79.86
9 89.09 85.43 89.47 86.60 86.43 80.02
10 89.54 85.87 90.25 87.40 87.00 80.75
11 89.95 86.21 90.63 87.77 86.87 80.46
12 90.26 86.56 90.64 87.80 87.35 80.86

Table 7.8: Best results for each generation. English corpus,optimized for UAS.

POS INPUT 0
LEX STACK 0
POS INPUT 1
LEX STACK 0 fw
POS STACK 0
DEP INPUT 0 lc
LEX STACK 1
LEX INPUT 1
LEX INPUT 0
POS INPUT 2
POS STACK 0 pw
POS INPUT 3

Table 7.9: Parameters used in generation 12 in Table 7.8.

Chapter 8

Conclusions

This report contains an investigation of the feature set forNivre’s Parser and de-
scribes two methods of searching for an optimal combinationused in training.
The method for intuitive matrix search uses a combination ofcomparing differ-
ent parameter settings and intuition. The method of systematic exploration uses a
set of rules founded on an initial assumption about neighboring features. In both
cases useful parameter combinations were found, but clearly the first method re-
quired more work and was less successful. In the cases described in this report
the advantage of a systematic search is clear. It can be fullyautomated, and no
linguistic knowledge of the language being trained for is required. The level of
greediness for the search can be adjusted by how many fixed parameter sets will
be used for each generation. In the evaluations reported it was found that eight
was unnecessary many, and four was a good value.

The results attained with this method compares well with other results. For
unlabeled attachment score it is 89.66%. In CoNLL-X the two best results were
89.54% and 89.50%. Our best results for labeled attachment score were 84.21%,
and the two best results in CoNLL-X were 84.58% and 82.55%. Whencompar-
ing, it is important to remember that although the training set was the same in
these cases, the results are based on different test sets. Our results for the English
corpus from CoNLL 2008 are based on unlabeled attachment score, 90.64% for
in-domain test and 87.35% for out-of-domain. There was no such category in the
competition. It was labeled attachment score only. In CoNLL 2007, though, the
two best scores were 90.63% and 90.13%. In this case it is evenmore important
to stress that the conditions are different. In our test it was found that the train set
was easier to classify than the train set, which resulted in very good scores. This
is usually not the case. A different corpus was used in ConNLL 2007.

Although the systematic search is automated and requires nointuitive guess-
ing, it is still time consuming. Depending on the size of the corpora a test can take
between 1 - 130 hours. This is to a large extent due to the learning algorithm used,

61

62 CHAPTER 8. CONCLUSIONS

SVM. The training takes a long time, but the results are usually superior to other
algorithms. Nevertheless there is a need to reduce the number of tests required.
The first generation contains ca 15 tests per fixed feature setand since parameters
are only added and not removed for every generation the number of tests can grow
to 100 at generation 10. With the method described in this report the starting node
is INPUT 0. This is an obvious choice, since it is the only nodethat is guaranteed
to always have a value other than NOTHING during the parsing process. The two
values POS and LEX were selected as starting features, and even if this was for
a reason of objectivity, we already knew from the very first tests made that LEX
can usually not outperform POS as the single parameter, which all our evaluations
confirmed.

An improvement to the method would be to analyze the behaviorof parameters
and investigate if any can be removed. One example of this is parameters referring
to the head of a node on the stack. If a stack node has a head, it is the node below
on the stack, and ether the parameter for theSTACK n+1 or STACK n h should be
removed. This could be extended to further investigate if there are other patterns
on features that always outperform others.

Another example of finding candidates for removal would be toinvestigate if
the age of a parameter has any influence. In this context, age refers to how many
generations the parameter has been in the parameter set. Thefirst generation a
parameter is brought in its age is 0. The next generation the parameter is 1, and so
on. A brief study of this was made and no obvious behavior could be discerned,
so a more thorough investigation would have to be done.

Bibliography

Chang, C.-C. and Lin, C.-J. (2001). LIBSVM: a li-
brary for support vector machines. Software available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm.

Charniak, E. (1993).Statistical Language Learning. MIT Press, Cambridge,
Massachusetts.

Chomsky, N. (1957).Syntactic structures. Mouton, The Hague.

Covington, M. A. (2001). A fundamental algorithm for dependency parsing. In
Proceedings of the 39th Annual ACM Southeast Conference, pages 95–102.

Keith, A. (2007). The Western Classical Tradition in Linguistics. Equinox Pub-
lishing Ltd, London.

Lin, D. (1998). Dependency-based evaluation of minipar. InWorkshop on the
Evaluation of Parsing Systems.

McDonald, R. (2006).Discriminative Training and Spanning Tree Algorithms for
Dependency Parsing. PhD thesis, University of Pennsylvania.

Mel’ čuk, I. A. (1988).Dependency Syntax: Theory and Practice. State University
Press of New York, Albany.

Mitchell, T. M. (1997).Machine Learning. McGraw-Hill Higher Education.

Nivre, J. (2003). An efficient algorithm for projective dependency parsing. In
Proceedings of the 8th International Workshop on Parsing Technologies (IWPT
03), pages 149–160, Nancy.

Nivre, J. (2005).Inductive Dependency Parsing of Natural Language Text. PhD
thesis, School of Mathematics and System Engineering, Växjö University.

Nivre, J. and Nilsson, J. (2005). Pseudo-projective dependency parsing. InPro-
ceedings of the 43rd Annual Meeting of the Association for Computational Lin-
guistics (ACL’05), pages 99–106, Ann Arbor.

63

http://www.csie.ntu.edu.tw/~cjlin/libsvm

	Introduction
	Background
	Two grammars
	Phrase-structure grammar
	Parsing phrase-structure grammars
	Ambiguity
	Dependency grammar
	Parsing dependency grammars
	Why dependency parsing?
	Grammar-griven vs. data-driven parsing
	Machine learning

	Previous work
	MiniPar
	Covington
	MSTParser

	Nivre's Parser
	Description
	Nondeterminism
	Manually improving the rule set

	Inductive dependency parsing
	Gold standard parsing
	Dependency labels
	Features
	Pseudo-projective dependency parsing
	 CoNLL

	Method
	The parser implementation
	Parameter set
	Investigations of the feature set

	Matrix study and intuitive search
	Parser hints
	Right to left parsing
	Combinations

	Systematic exploration of the feature space
	Axis search
	Finding neighbors
	First evaluation on Swedish corpus
	Rules for parameter selection
	The first generation
	The second generation
	Results of first evaluation

	Second evaluation on Swedish corpus
	Evaluation on English corpus.

	Conclusions

