An Experimental Study of Nivre’s
Parser

Peter Nilsson

Examensarbete for 30 hp
Institutionen for datavetenskap, Naturvetenskapligalfaken, Lunds Universitet

Thesis for a diploma in computer science, 30 ECTS credits
Department of computer science, Faculty of science, Lunsddsity

Abstract
In most fields within computer linguistics it is essentialnave access to high-

quality syntactic parsing. During the previous 10-15 yegesaat improvements
have been made in development of parsing algorithms. |sicrgly, the approach
is to use algorithms to train the parser from annotated @xtpdes. This report
studies one of the most successful parser algorithms andrespnethods of how

to find optimal training parameters.

Sammanfattning
For de flesta omraden inom datalingvistiken &r det av avgtirdetydelse att

ha tillgang till en syntaktisk parser med hog prestanda. @wste 10-15 aren
har stora framgangar uppnatts inom utvecklandet av pagseitaner. | allt ho-
gre grad anvands tillvagagangssattet att trana parserreregdpel av uppmarkt
text. | denna rapport studeras en av de mest framgangsnigarpégoritmerna och
undersoker olika satt att finna de basta parametrarna fiingga

Contents

lL__Introduction| 5
2__Background 7
1 Twogrammals 7
2.2 Phrase-structure grammnar 7
2.3 Parsing phrase-structure grammars 9.
R4 _Ambiguity 11
2.5 _Dependency grammar 12
[2.6 _Parsing dependency grammars 14
[2.7__Why dependency parsing? 14
2.8 Grammar-griven vs. data-driven parsing 15
2.9 Machinelearningo 15
13__Previous work 19
Bl MiniPak 19
B2 Covingtoh, 19
B3 MSTParser 20
4 Nivre's Parsef 23
4.1 Description 23
411 NondeterminiSm 25
4.1.2 Manually improving the rule set 26
4.2 Inductive dependency parsing. 28
43 Goldstandardparsing 30
4.4 Dependencylabéls 32
A5 Featurds oo 33
4.6 Pseudo-projective dependency pafsing 33
W7 CoNLL 34

4 CONTENTS

he first generation 51
he second generation 54
[7.3.4 Results of firstevaluation 55
7.4 _Second evaluation on Swedish cofpus 55
7.5 Evaluation on Englishcorplis. 58
8__Conclusions 61
Acknowledgements

| would like to thank my supervisor Pierre Nugues for manyiriag discussions
and his always encouraging support.

Chapter 1

Introduction

One of the activities that distinguishes man from othenlivbeings is the use of
language. Most humans can handle at least one language. \\hgrow up we
gradually build an infallible sense for how our native laaga is constructed and
what constructs belong and does not belong to it.

The linguist tries to describe how this sense works. The comidea is to
describe the language constructs using a set of rules calgdmmar. These
rules shall define how different parts of the language areected. Usually it is
required that, to be called a grammar, the rules should lie datailed at the level
of single and groups of words as parts of a sentence.

Thus, using the rules in grammar we can describe all posséiéences in
a language. Ideally such a grammar should be able to desevirg possible
sentence in the language and at the same time not describavahyg sentence.
In this way we can use the grammar to answer the question “Daogsentence
belong to the language?”.

The notion of a grammar in the western culture goes back teeanGreece
and Alexandria. It includes the concept ért of speechas constituents of a
sentence, e.g. nouns and verbs. There have been differemrcgpon exactly
what those parts are, but the basic set has remained ptictinahanged to the
present day.

It is of course interesting to compare the difficulty, or imspibility, of con-
structing a perfect grammar to the ease with which a childitiwely learns its
native language without any theoretical aid. It is not kndwmw the human sense
for right and wrong in a language works. The construction gfeanmar is an at-
tempt to define the exact rule set that seems to be used whenailanguage. It
iIs comparable to other situations where an observer triemie@ a model describ-
ing a phenomenon in nature. The grammar constructor doesoéssarily have
to believe that this is the exact working of the human mindpanticular since a
native speaker usually exceeds a grammar in performance.

5

6 CHAPTER 1. INTRODUCTION

Much of the refinement of traditional grammar was made wheslieg to
Greek and classical Latin being taught and studied as sdaogdage. This was
the case in Alexandria around 100 BC and in Rome ca 300/ AD (K2@@7, p.
11).

The termparsingis originally used to denote the act of reading a text and
describing how it is constructed using a grammar. The medmas been slightly
generalised to indicate a method of consuming a text andetedine or more
analyses. It is not mandatory that the analysis is based aarangar. Other
means are also possible.

During the latter part of the twentieth century it has beamhecally feasible
to handle very large amounts of text. The mere differencevden the size of
how much text is accessible and how fast it can be processag tmmpared to
50 years ago makes a considerable change to the value stistdtanalysis of
the data. Large sets of text are collected as base for asalgsich a collection
is called a corpus. The text can also be annotated accordiaggtammar. A
text corpus with syntactically annotated sentences iedaltreebank If the
annotations are made by hand it is also referred togmddastandard

Besides the corpora there is also a huge amount of text ablessi the In-
ternet which can be used for statistical analysis.

This report presents a study of one of the most successfsépatgorithms
today.

Chapter 2

Background

2.1 Two grammars

This chapter will briefly describe two of the most common gnaains during the
previous half century or more. They represent two diffeegiroaches on how to
describe the sentence structure of a natural language.

The phrase-structure grammaronsiders a sentence to be built from phrases
which in turn is built from smaller constituents, where timeadlest is the actual
word. For this reason it is also callednstituent grammar

The dependency grammaon the other hand, is focused on the relations (or
dependencies) between the individual words without argrinédiate representa-
tions.

These are by no means totally incompatible approaches tanigeage, and
there are ways to view one in the perspective of the othertraditionally there
has been a polarization between the two.

2.2 Phrase-structure grammar

The prevailing theory for a grammar during the second hatiefprevious century
is the phrase-structure grammar. One of the most infludmgulists in this field

is Noam Chomsky. lisemantic Structur&.hgmskﬂlklfa_dﬂ presents a grammar of
phrase-structure rules. A simple example is the very snmnathgnar in Figuré Z2]1
(Chomsky| 1957, p. 26).

Each rule with the formX—Y should be read as “rewrit& asY”. Thus,
according to the first rule, a Sentence can be rewritté¥iRa& Noun Phrase) and
VP (a Verb Phrase).

Figure[2.2 shows what is called a derivation of the sentdi@eman hit the
ball. Starting with the Sentence, each following line is a remgif the previous

7

CHAPTER 2. BACKGROUND

(i) Sentence- NP+VP
(i) NP—T+N

(i) VP—V +NP

(iv) T—the

(v) N— man, ball, etc
(vi) V— hit, took, etc

Figure 2.1: A simple grammar.

Sentence

NP+VP (i)
T+N+VP (ii)
T+N+V+NP (iii)
the+N-+V +NP (iv)
the + man+V + NP (v)

the + man + hit-NP (vi)
the + man + hit+-T +N (i)
the + man + hit + thertN (iv)

the + man + hit + the ball (v)

Figure 2.2: Derivation of the sententae man hit the ball

2.3. PARSING PHRASE-STRUCTURE GRAMMARS 9

using one of the rules (as indicated in parentheses). le&r ¢hat a sentence is
considered being composed of smaller constituents, “pkfasJsing the rewrit-
ing rules each constituent is replaced by its constituemdistiais procedure con-
tinues until no more replacement can be done and the actudbwothe sentence
remains. The bottom row of Figure 2.2 is said to be terminaded it is called a
terminal string. The terminal strings for a language is pas6ibly infinite) set of
valid strings for that language.

2.3 Parsing phrase-structure grammars

A parser would read the sentence and, using the rules, dgenleesanalysis shown
as a graph in Figurie 2.3. This can be done in different waytsthiay are mainly
divided into two categories, top-down and bottom-up.

Sentence

P VP

A[N

The an hit Ithe ball

Figure 2.3: Tree structure dhe man hit the ball

The behavior for the top-down parser is to take the rule teatdbes the full
sentence and then gradually try to unfold the structure Ipyyapy the rewriting
rules. Another way of saying this is that a top-down parsardes the rules from
the left side of the arrow to the right.

In the example sentendlke man hit the balabove, the top-down parser will
start with the first rule where Sentence can be rewritteNRs-V P. It will then
look for all possible rewritings oNP and find rule (ii). The right side of rule (ii)
iIs T + N. Once again it will take the first part, T, and try to find rewngs of this.
It will find rule (iv) and see thaT can be rewritten as the wotle This matches
the first word in the sentence to be parsed, so this is a matehpadrser will then
go back to rule (ii) and try to find rewritings of ti¢in T +N. In a similar manner
it will find that N can be the wordnanand there is once again a match. Since all

10 CHAPTER 2. BACKGROUND

of the right side of rule (ii) now is matched, tiNFP in rule (i) is matched and the
parser continues to try to find a match for the remaining v,

The bottom-up parser goes the other way. It starts with tiseviord in the
sentence and tries to match the rewriting rules backwadis the right side to
the left. In that process it will group smaller parts intagar units.

With our example sentence it starts with the wadné and looks for a rule
where a rewriting can bethe It finds rule (iv) wherel — the The parser will
search for a rule that can be rewrittenTggout will not find any. Continuing with
the wordmanit finds that it can be alN. Now it hasT + N, and will find rule
(i) where they can be collapsed MP. Eventually it will have parsed the full
sentence and arrive at the final reducingNét+V P to Sentencén rule (i).

In both cases with this very small grammar the parser will imdatch at once,
but in a real world situation there can be a large amount esridnd several rules
that have the same left part of the rule, that is alternatwveitings of the same
expression. In that case the parser will have to try manysratel backtrack on
failure. If the full sentence is parsed successfully, theesgce is said to be part
of the language described by the grammar, and the parsenavd generated an
analysis.

The analysis can also be illustrated graphically as in g8 and is in that
case for obvious reasons callecparse tree It differs from the derivation in
Figurd 2.2 in that a parse tree doesn’t show the order in whiehules are applied.
The same tree could have been the result of top-down andnbatfoparsing or
yet another parsing method.

A grammar is also intended to be used for generating all plessentences of
the language. For instance, in addition to our example seatthe grammar in
Figure[2.1 can generate, among othéng, man hit the marthe ball hit the ball
andthe ball hit the man

This report presents only the basic idea of the phrasetateigrammar with
a simple example. To make it a useful theory it has to be erima several
ways. Among other things the rules must be adjusted so teadifferent parts
of a sentence match regarding gender, number and time. &npthblem is to
handle the fact that the complexity of a grammar can grow insaly if every
possible rewriting is covered.

As can be seen in the grammar, a symbol on the left can alwaysayéten
irrespective of where it occurs in a rewriting rule. For thedison this particular
kind of grammar is called a context-free grammar. There B@®a@her kinds, for
instance the context-sensitive grammar that contains fikie

a+NP+b—a+T+N+b

meaning that in this caseNP can be rewritten a$ + N only if it is surrounded
by the symbols andb.

2.4. AMBIGUITY 11

2.4 Ambiguity

(i) Sentence-~ NP+VP
(i) NP—T+N
(i) NP—T+N+PP
(iv) VP—V+NP
(v) VP—V+NP+PP
(viy PP—P+NP
(vi)y T—the
(vii) N— man, ball, etc
(ix) V— hit, took, etc
(x) P— with, of, etc

Figure 2.4: An extended simple grammar.

One of the hardest problems in parsing is how to handle antpigun Fig-
ure[2.4 our simple grammar has been slightly extended tagoniles for prepo-
sitional phrase®P and preposition®. With this grammar we can construct the
sentence “The man hit the ball with a bat”. This can be parseéti@analysis in
Figure[2.5 and also as the analysis in Fiduré 2.6. While masiams wouldn't
even consider any interpretation other than Fidguré 2.5 bo#lyses are correct
according to the grammar. Similarly if we exchange “bat”‘fdot” and get “the
man hit the ball with a dot”, the analysis in Figurel2.6 seemtural to most
people.

Sentence
NP VP
T
T/\N \ NP PP
T/\N P NP
F
The man hit the ball with a b;t/dot

Figure 2.5: Tree structure dhe man hit the ball with a bat

One way to handle disambiguation is to use probability. obpbilistic context-
free grammar, PCFG, each rule is assigned a probability (@ikart993). Prob-

12 CHAPTER 2. BACKGROUND

Sentence
NP VP
N
T/\N V NP
T
T N PP
P NP
o
The man hit the ball with ' a b;t/dot

Figure 2.6: Tree structure dfhe man hit the ball with a dot

abilities are collected from a treebank. There are diffenays to do this, but one
simple example is this:

1. Parse the text and follow the annotations to construdysesfor each sen-
tence.

2. Count the total number of times each rule is used in all tladyans.

3. For every group of rules that has the same left side (8@— ...): Sum
the total and give each rule a probability that correspondist relative
proportion of the sum.

Parsing is the performed in the same way as described abdiehe addition
that each time a rule is applied it is counted. The probatdiit a particular parse
tree is then the joint probability of each rule used in the trehere each rule is
counted as many times at it occurs. If a parse results in nmanme éne possible
analysis, the most probable analysis is selected.

While being an improvement to the non-probabilistic confesé grammar
in some areas, PCFG has some weaknesses. By its nature it ésdrapérase
structure statistics and does not account for the lexicalerd, which could be a
better guide for disambiguation.

2.5 Dependency grammar

Historically there are many names from different times asged with a the con-
cept of a dependency grammar. There has been a diversitya$ i@bout what

2.5. DEPENDENCY GRAMMAR 13

Al

-Root- he the ball

Figure 2.7: Dependency graph féhe man hit the ball

comprises the grammar. Nevertheless there are a few fundaléeas which
are mostly agreed on.

The structure of a sentence consists of elements and thegiores. The only
elements are the terminal words. The relations between tindsaare asymmet-
rical connections, arcs, where one edge is cdilealdand the othedependenor
modifier With one exception, every word has exactly one head and @anzero
or more dependents. One word in the sentence has no headspetial relation
calledRoot This is the main word of the sentence.

A typical graphical representation is illustrated in Figit7. Analogous to
the phrase-structure parse tree this is calleatependency grapbr sometimes
dependency treand is equivalent to an analysis of the sentence.

There are four properties which are required of a dependgraph:

Single head. Every node shall have exactly one relation to a head.

Acyclic. The graph must be acyclic. That is, the head for a node caneot b
depending on that node directly or indirectly. Put in anothkay, if we start
at any node and traverse the relations from dependent toit&zall not be
possible to arrive at any node a second time. In graph thémsys known
as a directed acyclic graph, DAG.

Connected. The graph must be connected. This means that all nodes exwept
must have a connection to a head.

Projective. A graph is projective if no connections are crossed. Thismadhat
for any two words that are connected in a sentence, all watigden them
must be connected to each other or any of the two words. Theseme
disagreement over this constraint, partly because a \&@petcent of sen-
tences in a language must be described by a graph that isro@cive.
This is dealt with in different ways as described later, ardagally the
requirement for a graph to be projective is accepted.

14 CHAPTER 2. BACKGROUND

2.6 Parsing dependency grammars

Parsing a text using a dependency grammar is usually a maigrgforward
procedure than the corresponding ways to parse using agpbtagture grammar.
This is because there is no need to build an intermediateafostnucture but
simply find a connection for each word. Parsing can be donéeffiereint ways,
but similar to phrase-structure parsing we can discern pypsaaches, attacking
the problem from different sides.

1. Parsing the words in a sentence one by one and try to addhacioon with
one or more of the previously parsed words until a dependgragh is
built.

2. Start by making every possible connection between altlg;aand then re-
move them one by one until a dependency graph remains.

Just as in the case of phrase-structure parsing there isdbkem of selecting
the best among many possible analyses, and the solutioe gathe: using hand
crafted rules or statistics or a mixture of both.

2.7 'Why dependency parsing?

According toLQoﬂgIdnL(;Oﬂ)l) constituent grammar appearsave been in-
vented only once, by the ancient Stoics, and has been padssedh formal logic
to linguists of modern times. On the other hand, dependeraygar seems to
have been invented many times in many places (Covington/, 20(5). Never-
theless the constituent based view has for the major palteoptevious century
overshadowed every other view of syntactic representation

Mel' cuk makes an argument that this can be partially explainethéyact
that the phrase-structure view is particularly suitableEaglish, and this is the
mother tongue of the founding fathem@, p. 4).

Furthermore MeEuk summarizes a few reasons why the dependency model
is preferrable:

1. A phrase-structure tree focus on grouping of the wordschvivords go
together in the sentence, but does not give a represents#tibie relations
between the words.

2. A dependency tree is based on relations. It shows whickdsvare related
and in what way. The sentence is “built out of words, linkeddapen-
dencies”. The relations could be described in more detagibiyng them
meaningful labels.

2.8. GRAMMAR-GRIVEN VS. DATA-DRIVEN PARSING 15

3. A dependency tree also represents grouping. A phrasernesented by a
word and its entire sub-tree of dependents.

4. In a phrase-structure tree usually most nodes are noinigimepresenting
intermediate groupings. A dependency tree consists oftenfginal nodes.
There is no need for abstract representation of grouping.

5. In a phrase-structure tree the linear order of the nodedasant. It must
be kept to retain the meaning of the sentence. In a dependeecthis is
not important. All information is preserved in the, posgildbeled, con-
nections.

2.8 Grammar-griven vs. data-driven parsing

We have described previously that parsing can be driven bp@mmar, but this

method can be extended. For instance, in probabilisticextifitee grammar the
disambiguation is resolved by using statistics from a @e&b The use of tree-
banks and other large corpora can be drawn much further asctme the main

guide for the parser. In this way the rules can be said to bextdiered” by ana-

lyzing the annotated text. These two categories for perfogrparsing are usually
called grammar-driven parsing and data-driven parsinge@s/ely. These are the
extremes. Many parsing methods use a mix of the two.

2.9 Machine learning

For data-driven parsing, the “discovery” part is made usiaghods in the field of
machine learning. This is a large field, and only a brief dpion will be made
here since it will be referred to later.

Machine learning could be described as “any computer proginat improves
its performance through experienc ||, 1997, p. B) generate experi-
ence the program is usually constructed to makg@othesisabout the solution
to a problem, and is given the possibility to compare thatoliygsis to the ex-
pected, correct, one. This type of learning is caBe@ervised learningoecause
the program can supervise its progress.

A common use of this method, and the one of current interegtignreport,
is when the hypothesis is a classification of the sample. ildase the sample
should be classified from a finite set of classifications. By garmg the hypoth-
esis with the correct classification in the training sampke program can adjust
parameters to improve its performance. This is calledrdiaing phase

16 CHAPTER 2. BACKGROUND

Figure 2.8: Hypothesis for classification as a straight line

When the degree of classification is considered good enohighmethod can
be used to classify unknown samples.

A simple instructive example is visualized in Figure12.8 eTyure shows a
set of 12 sample dots in a coordinate system. The relatiomdaet the color of a
dot and its position is made according to a system which ismowk to us. The
collection of 12 dots is the training set. The learning alipon is presented the
training data in the form of a list containing the détay, color} for each of the 12
dots. The training task is to learn to classify new dots gieely the coordinates
x andy of the dot.

Since we don't know the system for coloring the dots, we haveéke an
attempt to approximate it using some assumption. This gsamis crucial to
the success of the task. If we suspected that the colors esignad at random
we could do no better than to guess with a 50% chance to bectoifae only
thing we know is that there are equally many black and whits dothe training
set, and that seems to be the distribution. The assumptienlitmits how we
can express our hypothesis for the classification. The atadie of all possible
hypotheses that are possible to express based on such ampéssus called the
hypothesis space

In Figure [2.8 is shown the assumption that the dots can bsifitasdepend-
ing on whether they are positioned above or below a straigét [The possible
hypotheses can then be expressed as different values fslofieand y-intercept
of the line. During training the algorithm will use the datarh the train set to
adjust these values until all or a sufficiently large parheftrain set are classified
correctly.

2.9. MACHINE LEARNING 17

Figure 2.9: Hypothesis for classification as a curve.

As we can observe by looking at Figure 2.8 it will not be polestb make a
perfect classification of the samples using a straight liireeachieve this we will
need to be able to make a more expressive hypothesis, fanocest combination
of lines or a curve. Depending on the nature of the problemrywéotsolve we
can either change our assumption to get better train resulscept the results
from using the straight line. Perhaps we know that the tingjiata may contain
a certain degree of errors.

Figure[2.9 shows the same training set where the hypotlsesistirve. In this
case the curve has been trimmed to fit the area of the blackelgtsvell. Without
any other information there is no way to know if this is a veopd approximation
of the unknown coloring system or not. To get an indicatiow lygmod approxi-
mation a hypothesis is the usual method is to set aside pénedfaining set to
a development setDuring training optimal hypothesis is searched for anahthe
the hypothesis is applied to the development set. The exgdxthavior is that
as the results for the training set improves the resultsh®development set will
follow but be a bit lower. At a certain point the results foetdevelopment set
will decrease while the training set will still increase. et point the training
hypotheses will be optimized for the particular instanaethe training set and
cease to be generally useful. This phenomenon is calleditting

As illustrated above a more expressive hypothesis spaceris mclined to
overfitting. We could consider an even more expressive lngsis space where
the hypothesis was a collection of coordinates and colorafposition. Such
hypotheses would be able to adapt perfectly to any trainetg lsut would be
useless for anything else since it would not give us any cfugow to classify

18 CHAPTER 2. BACKGROUND

a new dot. The hypotheses would contain exactly the samemiattton as we
already have in the training set. The strength of a good Ingsi$ space is the
ability to learn from specific instances and make generiaiza that apply well
to unknown instances.

Chapter 3

Previous work

In this chapter we briefly present a few well-known depenggracsers. Together
they serve as examples of the variety of approaches thaplgedpo the parsing
problem.

3.1 MiniPar

MiniPar m@) uses a hand-crafted grammar, represieas a network with
grammatical categories as nodes and types of dependeatigmslas links. Gram-
matical rules are implemented as constraints associatachailes and links. The
parser contains a huge lexicon (approximately 130000em)trivhere each entry
contains all possible part of speech of the word. This is a twdyandle lexical
ambiguities.

During parsing all possible analyses are generated andhthevith the highest
ranking is selected. While the grammar is constructed manubaé ranking is
based on statistics acquired from parsing a very large (1GBuS.

3.2 Covington

Covingtons parsek (QQvingﬂdn, 2£|)01) presents some strateEpieprove a brute-
force search of head-dependency pairs. For instance, mtegst is to set aside
all words that already are dependents and not consider thiose searching for
dependents of a word.

For this purpose the parser maintains two list during pgrsiordListand
HeadList TheWordListcontains all words parsed so far, and theadListcon-
tains all of those words which lack a head. For both lists wark inserted at
the front, meaning that when reading the list the most recesatrted words are
encountered first.

19

20 CHAPTER 3. PREVIOUS WORK

The parser reads words one by one from the beginning of thersem For
each wordV\ the following is done:

(i) Add the word to the front of th&VordList Search the rest &ordListfor a
word that can be the headf. If such a word is found, add a dependency
arc from that word t&, otherwise adV to the front ofHeadList

(i) Look through theHeadListfor an words that can haW¥ as head. For every
such word, add a dependency arc friévhto that word, and remove that
word fromHeadList

The efficiency of this method is then further improved by addimitations
enforced by the requirement of projectivity.

For item (i) the search for a possible head Wérends when an unbounded
word is encountered. This is because all words betWéamd its head must have
arcs betweekllV and its head. Otherwise the arcs would cross.

For item (ii) the search for a dependentibis ended as soon as a word is
found that is not dependent 8f. The reason for this is the same as for item (i).

3.3 MSTParser

Itis probably safe to say that the majority of the most susitgparsers or parsing
methods used for dependency parsing today are based on twae sthte-of-the-
art parsing algorithms. One is the main topic of this studyr&ks Parser, and the
other is McDonalds MSTParser (McDonald, 2006).

The approach of the MST parser is to view the problem of findiregright
dependency graph for a sentence as the problem of findingakanum spanning
treefor the graph.

The initial stage is a graph with words of a sentence as nagelsgependency
connections in both directions from every node to everyotBach connection
has been assigned a score. By removing connections until veeghaonnected
graph with no cycles we get a spanning tree. The sum of thesdor each con-
nection in the score of the spanning tree. There are manyg®spanning trees
for each sentence, and the one with the hightest score isdikarmam spanning
tree.

The problem with this method is of course to find the tree with highest
score. If we simply select the connection with the highestescoming to each
node it could result in a spanning tree (which then would leentlaximum), but it
could also result in a graph containing cycles.

MST uses the Chu-Liu-Edmonds algorithm for finding the maximgpanning
tree. It will not be decribed in detail here. In short, it werks described above

3.3. MSTPARSER 21

by first greedily selecting the incoming connection with tinghest score for each
node. If there is a cycle it will be contracted into a new sengbde, and in the
new node the connection to remove while keeping the bese saitirbe found.
This could possibly be a recursive process. The end reslilba&vthe maximum
spanning tree.

22

CHAPTER 3. PREVIOUS WORK

Chapter 4

Nivre's Parser

4.1 Description

Nivre’s Parser@B) is an algorithm for extractthg dependency graph
for a sentence. The algorithm uses a stack and an input striitglly the input
string consists of tokens representing the words, delmiéad punctuations of
the sentence. The algorithm then performs a series of vediiheld operations on
the first token in the input string and the top token of the lstécany. These
operations are: moving the first input token to the top of tiaels removing the
token on top of the stack and creating a dependency arc betiwesfirst input
token and the token on top of the stack. In this way the depwydgraph is
created.

More formally, the parser configuration is described agéetki S, 1, A> where
Sis a stack/ a string of input tokens and the set of arcs between the tokens.
The initial state of the configuration isnil, W,0> meaning an empty stack, an
input string of tokensW, and an empty set of arcs. The parsing process consists
of a series of four possible transitions, described belad the parsing terminates
when the configuration state 4sS, nil, A>.

The transitions involve possible operations on the tokenopnof the stack
and the next token in the input string. Each transition isvedent to a change of
configuration state, thus transitigns equivalent to the change from configuration
Ci_1tog.

The transitions are:

Left-Arc. Adds an arc¢ < | between the token on top of the stack, i, and the next
input token,j. The token on top of the stack is then popped.

This transition is possible only if the stack is not empty #mel set of arcs
does not contain an arc makingependent of another token.

23

24 CHAPTER 4. NIVRE'S PARSER

Al |

-Root- man hit the ball .
1 2 3 4 5 6

Figure 4.1: Dependency graph fohe man hit the ball

Right-Arc. Adds an ard — | between the token on top of the stackand the
next input tokenj. The tokenj is then removed from the input string and
pushed onto the stack.

This transition is possible only if the stack is not empty.

Reduce. Pops the token on top of the stack,This transition is possible only if
the stack is not empty and the set of arcs contains an arc giatt@pendent
of another token.

Shift. Removes the next input tokep,from the input string and pushes it on the
stack. This transition is always possible providing theuingiring is not
empty.

The transitions Left-Arc and Reduce reduces the size of thekstand the
transitions Right-Arc and Shift reduces the size of the irgitihg. Because of
the conditions for the different transitions the termioatistate will always be
reached, and it can be easily proven that the algorithm tertes after at most
2n — 1 transitions|(Nivre 5, p. 79), whereis the number of tokens in the
input string.

As an example, the graph in Figurel4.1 is created using theitrans in Ta-
ble[4.1. Each word and punctuation in the sentence is repexsdy a node
numbered from 1 and upwards. The first row in Tdblé 4.1 showsritial con-
figuration, an empty stack and an input string containingibees 1-6. The fol-
lowing rows shows the sequence of transitions, with theatpms abbreviated as
LA, RA, RA, and SH, and the arc created, if any. For visibilitasens the stack
is shown right to left, with the top token on the right, and ith@ut string is shown
left to right, with the first token to the left.

The first operation is inevitably Shift, since the stack isatly empty. Now
the stack contains the first node and the rest are in the ityug.s

In the second step a LeftArc is performed, so the top stack oplopped and
the created arc 4 2 is registered. Now the stack is empty again, so anothet Shif

4.1. DESCRIPTION 25

Operation Stack Input Created arc
0O (1,2,3,4,5,6)

1 SH 1) (2,3,4,5,6)
2 LA 0 (2,3,4,5,6) (2-2)
3 SH (2) (3,4,5,6)
4 LA 0 (3,4,5,6) (2-3)
5 SH (3) 4,5,6)
6 SH (3,4) (5,6)
7 LA (3) (5,6) (4-5)
8 RA (3,5) (6) (3-5)
9 RE (3) ()

10 RA 3,6) () (3-6)

Table 4.1: Sequence of transitions to create the graph &1

is performed. Following the sequence we see how the inpgsis gradually
shortened and that the sequence is ended when the inpgtistempty. The last
column in the table contains the collection of arcs created.

It might be intuitively realized that the graph in Figlrel44n be described
by the sequence of transitions in Table]4.1. That is, a seguehtransitions
T =t;...t, describe exactly one grajgh

Since the move from transitidgtoty,; corresponds to a change from config-
urationcy to ¢, 1, the sequencas ... c, andt; .. .t, are just two ways to describe
the same grapB.

4.1.1 Nondeterminism

Most configurations make it possible to choose between ni@re bne transi-

tion. In particular, since Shift is always applicable, gveonfiguration without

an empty stack allows multiple transitions. Given only thige parsing process
would be nondeterministic. To make it deterministic thezedhto be some unam-
biguous way to make the selection.

One simple way is to order the transitions with differenbpgties, e.g. always
considering them in the order Left-Arc, Right-Arc, ReduceiftSind select the
first one that applies. By itself this rule would lead to theussgce Shift, Left-Arc,
Shift, Left-Arc ... until the end of the input string is reath For a meaningful
result there need to be more rules to override it.

26 CHAPTER 4. NIVRE'S PARSER

4.1.2 Manually improving the rule set

Studying Tabl€4]1, we see that in step 6 the repetition df, 3faft-Arc is broken
by another Shift operation instead of Left-Arc as otherwiseild be. The tokens
for which this operation is performed is word 3 and 4. In Fefdr]l we see that
these are the words ‘hit’ and ‘the’. Thus, we could have st@eBormed if we
added a rule that no arc may be created between the wordsffdt'the’. With
this rule, when we come to step 6 and see ‘hit’ on the stack #rel as the
next input token we must not select Left-Arc or Right-Arc. Text operation in
priority order is Reduce, but that can not be performed agitires the token on
the stack to have a dependency arc. So the first (and onlyxt@ethat applies
is Shift, just as we intended.

Since there would be many rules for many combinations of wjongk could
try to generalize by looking at the part of speech of the wardtead of their lex-
ical values. So the rule would be that no dependency arc mayeaged between
a verb and a determiner. This could make sense, since it seamsgerintuitive
that a determiner and a verb should be directly dependeracmather.

Going further down Table 4.1, to step 8, we find another dmndrom our
method of simple priority order selection of transitionsince the stack is not
empty, and the top token has no head node, a Left-Arc woultyamut a Right-
Arc is performed. Again, looking at Figufe 4.1 we see thattthe tokens in
guestion are 3 and 5, ‘hit’ and ‘ball’. These two words repréghe main action
of the sentence, so intuitively it seems right that these wsads would have a
dependency. The action is ‘hit’, a verb, which is performadtee ball, a noun, so
we make another generalized rule that if a dependency arbeamade between
a verb and noun token, it should be an arc from the verb to tha,ne. the noun
should be dependent of the verb.

We now have set of 3 rules:

(i) (det, noun): No arc. Apply first of RE, SH
(ii) (verb, noun): Arc from verb to noun
(i) Apply first of LA, RA, RE, SH

With this list at hand, and using only the first applicable whmarsing the
sentence in Figuie 4.1, we get the sequence in Table 4.2.

In this case we managed to parse most of the sentence in tiievay. This
is not surprising since the rules were made by analysing dhect sequence of
transitions for this sentence. If we added an overriding fat the last step, verb
and punctuation, the parse would be perfect. This set of mutaild probably not
suffice to parse any English sentence, and the questiontisvduld be possible
to extend this method of extracting more rules by analysingensentences.

4.1. DESCRIPTION 27

Operation Stack Input Created arc Rule used
0O (1,2,3,4,5,6)
1 SH 1) (2,3,4,5,6) 3
2 LA 0 (2,3,4,5,6) (2-2) 3
3 SH (2) (3,4,5,6) 3
4 LA 0 (3,4,5,6) (2-3) 2
5 SH (3) (4,5,6) 3
6 SH (3,4) (5,6) 1
7 LA (3) (5,6) (4-5) 3
8 RA (3,5) (6) (3-5) 2
9 RE (3) (6) 3
10 LA O (®) (3—6) 3

Table 4.2: Sequence of transitions using the small rule set.

In a more general sense, we can view the selection of transas a function
taking as input the current parser configuration and perbape other state infor-
mation and output one of the four transitions. The perfestenfailing, version
of this function could be calledracle Since this function most likely is unattain-
able we could try to approximate it with a function callgdidewith the goal to
be as close to an oracle as possible. A minimal version oflgoithm in pseudo
code is.

while more_input()
transition = select_transition(configuration, state)
perform_transition(transition, configuration)

As previously mentioned a configuration with an empty stacke only one
with a single choice of transition. The algorithm could tieselaborated to:

while more_input ()
if stack_empty()
transition = Shift
else
transition = select_transition(configuration, state)
perform_transition(transition, configuration)

The implementation of the functiaselect_transition() need some strat-
egy to make a correct choice for every configuration and stAtlong as the
directions for when each transition is possible are folldwras strategy will not
change the fact that the parser will always generate a cteshgurojective graph.

28 CHAPTER 4. NIVRE'S PARSER

4.2 Inductive dependency parsing

The example above can be viewed as a very simple exampleafdaen pars-
ing. Starting with a simple assumption, rules are added atiiled to improve
the match between the analysis and annotations. Howeverake it a strong,
real world parser it is useful to take a step back and statt some theoretical
ground. A solid foundation for the algorith is presente M), and most
of the formal reasoning in this section is extracted front tiark.

The parsing method for Nivre’s Parser is called Inductive&elency Parsing.
The terminductiverefers to the possibility to make generalized decisionsfeo
finite set of samples. In this case methods of mapping theTtext(xy, ..., Xn)
from the languagé to the right analysis, using only annotated sample text from
the language.

In general, for data-driven parsing, the parser can be elividto three com-
ponents:

() A formal modelM defining permissible analyses for sentences.in

(i) A sample of textT; = (X1,...,Xn) from L, with or without the correct anal-
ysesAt = (Y1,---,¥n)-

(i) An inductive inference schemiedefining actual analyses for the sentences
of any textT = (Xg,...,Xn) in L, relative toM andT; (and possiblyA;).

The modeM could actually be a grammar. In that case the analyses are con
strained by a formal grammar. This is the case for PCFG whighwill generate
analyses according to the rules of a context-free grammat. irBdata-driven
parsing a formal grammar is not needed. In our case the mbdeld be any
system that guarantees that the result is a valid dependgapi compliant with
the constraints single head, acyclic, connected and pggssitjective.

The sample text is usually called training data or trainiagpas. It is usually
taken from a treebank, which also contains annotations. pfbgram is trained
from a sample of the treebank and is then used to classifynotated text.

Regardless of how the inductive inference scheme is implesdeahmust be
able to make a selection among several possible analysessipnang each a
probability score. Thus, the training phase must consiatrokthod to trim some
set of parameters which then will be used to assign the soaredeen text.

More formally the inductive inference scheme can be comsitleo consist of
three main elements:

(i) A parameterizedstochastic model i, assigning a score&g(x,y) to each
analysisy of sentence, relative to a set of parametegs

4.2. INDUCTIVE DEPENDENCY PARSING 29

(i) A parsing methodcomputing the best analysysof x according toS (and
an instantiation 00).

(ii) A learning method A method for instantiating® based on inductive infer-
ence from the training sample.

A common kind of parameterized stochastic model is the hidbased model.
In such a model there is a mapping of each paiy) of an input stringk, and an
analysisy to a sequence of decisiord,= (di,d..dy). This sequence uniquely
defines the analysis, and each decision has a probabiliwyjoiiit probability is
then by the chain rule:

n
P(y|X) = P(dy,...,dn | X) = rlP(di | dy...,di 1x)
=

Each decision has a probability conditioned on the decssigmto that pointin
the sequence. This conditioning contekt, .. d;_1, is called the history. Usually
histories are then grouped into a set of equivalence clégsagunction®d:

P(y|X) =P(dy,...dn | X) = IE!P(di | D(d1...di_1,X))

For Nivre’s Parser the decision sequence correspond toahsition sequence
Con = (Co,...,Cn) Where each sequence represents one analysis which defines
exactly one dependency gra@h

In the transition sequence each move from configuratjon to ¢; is repre-
sented by transitioty, thusc; = tj(¢j_1).

The equation can now be expressed as:

P(G|x) =P(cg,...,Cn | X) = |j Pt | co,...,Ci—1,X)

As mentioned previously the sample text is usually anndtdtethat case we
also would like to have that knowledge about the text, i.ee dhnotationg\,
available as condition variables during the training:

n
P(G|Ax) =P(co,...,Cn | Ax) = I_lp(ti | co,. -+ Ci—1,AX)
i=

Just as in the general case with decision sequences aboweowe like to
make the set of parameters manageable by grouping thenquitcaéence classes.
We also make the simplifying assumption that a transitiocoisditioned on the
current configuration state only, not the full sequence.theowords

P(ti | co,...,Ci—1) = P(ti | ci—1).

30 CHAPTER 4. NIVRE'S PARSER

Since we know that each configuration contains the currerte sif the stack,
input string and all arcs so far, representing the partiedigstructed graph, this
might be sufficient history anyway. Our equivalence classkbe pairs of(c, Ax)
grouped by the functiom:

P(G| Ax) =P(co,...,Cn | Ax) = .IE!P(ti | D(Ci_1,Ax))

In the terminology of Nivre’s Parser the p&a; A) is calledparser condition
The equivalence functio® defines equivalence classes of parser states from these
parser conditions.

The model parameter@), are the conditional probabilitig®(t | ®(c,Ax)) for
each combination of possible transition and parser state.

The functionselect_transition() above would be able to use these pa-
rameters to select, from the possible transitibpsthe best transitioh € Tg for
every parser stat®(c,Ay). The ideal implementation of this function will always
select the correct transition while building the graph esenting the correct anal-
ysis. This is what is called the oracle function above. Wiils tvould be the best
solution, we don’t know how to implement such a function. Blest we can do is
to approximate is as well as possible.

4.3 Gold standard parsing

We don’t know how the oracle function is constructed but weehsome output
from it. A gold standard is a hand annotated text. This candosidered being a
sample of text analysed by an oracle function. If we havegelanough sample
we can try to extract parameters from it to approximate tinetion.

As mentioned previously this is a common case for machinmileg. Since
the transitions are a discrete set and the parser state$sara discrete set, it
is useful to view the problem as a classification problemed#lg one of the
transitions € Tg as classifier for each parser statéc, Ax).

We have an annotated sample text, but what we really needdioirtg the
classification is a way to extract samples of transitiongdifierent parser states
from these samples. This would represent the selections mathe oracle func-
tion. In this way we could calculate the probabilitieg | ®(c,Ax)). At this point
we might realize that a major part of approximating the ardchction is how to
implement the equivalence functign This will be addressed below.

Formally, we need to extract the set of pdicst) from the sample text:

D: = {(c,t) | oracle(c,Ax) =t,c € C}

4.3. GOLD STANDARD PARSING 31

where C is the set of configurations occuring in the trainitg s
We can then use different implementations/parameteoizabf® to get train-
ing sets:
D¢’ = {(CD(C’AX)vt) | (Cvt) € Dt}

Thus
(i) Derive the seD; from the training corpug;.
(i) Define the parameterization @f and derive the training seBx from Dy.
(i) Induce a guide function fronD¢ using inductive learning.

Deriving the seD; from the training corpus can be done with an algorithm
quite similar to the guide function in the previous section:

gold_standard_parsing(W, Ax)
configuration = <nil, W, []>
while more_input ()
if stack_empty()
transition = Shift
else
transition = oracle_select_transition(configuration, Ax)
add_to_training_instances(transition, configuration, Ax)
perform_transition(transition, configuration)

The change is that we store each pair of transition and caatign, and that
the transition function is replaced by an oracle-versidms Tunction predicts the
next transition using the functidgread-of () which is part ofAy.

oracle_select_transition (configuration, Ax)

// configuration = (stack | j, i | input, h)
// j = top of stack, i = first input token
// Ax = {head-of(),...)

if head-of(i) = j
transition = LEFT-ARC
else if head-of(j) = i
transition = RIGH-ARC
else if is_in_stack(head-o0f(j)) or is_head_for_stack_member (j)
transition = REDUCE

32 CHAPTER 4. NIVRE'S PARSER

else
transition = SHIFT
return transition

Given the information in the configuration and the functiead-of (), which
has the extracted information from the hand annotated sategt, the function
can always tell the correct transition. We know that the fiomcis called as long
as there is some input left in the input string, and we alsankiinat the function
is not called when the stack is empty, thus there are alwaggaken on top of
the stack and at least one input token.

By looking at the top token on the stadk,and the next input token, the
function can decide that if is the head of then the transition should be LEFT-
ARC. On the other hand ifis the head ifj then the transition should be RIGHT-
ARC. If neither is the case, then the function has to look in theksto see if it
contains & which is the head of or hasj as its head. If such kis found the
transition is REDUCE. Because we know that the annotated depepdyraph
is connected and projective we can be sure that the nodeg istdlck above k
can safely be reduced without violating the requirement tihe graph must be
connected. In this case each node above k must be on the stackeault of a
RIGHT-ARC transition and has a dependency connection to ttle momediately
below.

If none of the above apply, we know that we have not yet seeindlael of
eitheri or j. They must be further back in the input string so the tramsithust
be SHIFT.

4.4 Dependency labels

The annotations in a gold standard could contain not ontyrmétion about head-
dependent relations. These relations can also be labetadivei type of the de-
pendency. The labeling is made according to systems defypdidebannotators
and could theoretically follow any direction since theiraneng is transparent to
the parser. However, usually the labels are used to depigitactic relation be-
tween the nodes. In light of this it can be useful to think cbtwer, less common,
name for dependentnodifier This name indicates that the head is determining
the behavior, and the dependent is the modifier, object oplmnentn,
2001, p96).

Adding dependency types, the parser configuration is (@wvéck, input,
h, d).

4.5. FEATURES 33

4.5 Features

When training a program using supervised learning, it haste Imformation on
a number of parameters from the training sample and theaani@ssification for
each occurring sample. The task is then to, in different weytsapolate from the
training samples and correctly classify new samples whiemat in the training
set. Different learning methods uses different algorittionghis, but in all cases
there needs to be a collection of parameters to train fronesé¶meters are
also known as features.

In our case the classification is the transition to be salifctiea certain parser
configuration, and the features are extracted from thatpamnfiguration at that
point. There are two kinds of features, static and dynamic.

Static features are features which are unchanged duringaitsgng process.
During annotation of the sample text every word and puniinas assigned some
information. This can be lexical features such as the waelfitthe word form,
but also suffixes, lemmatization and normalized word forAmmotations usually
also contains a part of speech with some granuality. Thesarks are constant
and bound to every particular node during parsing.

Dynamic features, on the other hand, are features that laly lio change
after each transition. These features are collected franpértially construted
dependency graph with, possibly labeled, head-dependiions. Examples of
these features are the dependency label of a node, the mgréeth of the head
for a node or the lexikal name of the leftmost child of a node.

4.6 Pseudo-projective dependency parsing

As mentioned previously the assumption that a dependemphgalways is pro-
jective is an idealized constraint. Depending on the lagguhere is a varying
percent of nonprojective constructs occurring in a typteat. This makes it im-
possible for dependency parsing based on the requiremenojefctivity to reach
the ideal 100% match since, by definition, no resulting asialgraph will be non-
projective. Furthermore many treebanks are annotatedawiértain amount of
nonprojective sentences. This will disturb the traininggdnfor the parser. While
many machine learning algorithms are well suited to handlertain degree of
errors in the training data, others are not.

One simple way to deal with the disturbance of the trainingsghis to ignore
every nonprojective sentence in the training data. Thiy eolves one of the
problems, though.

Another solution is pseudo-projective dependency pal@lhg_e_and_Nilss_dn,
@). The idea is to transform a nonprojective graph to geptioe before train-

34 CHAPTER 4. NIVRE'S PARSER

ing and invert the transformation after parsing. To be ablestore a transformed
graph, traces will be left in the dependency labels. For phapose the set of
labels are extended with additional labels containingrmiation about both the
original label and the transformation that has been peradrm

4.7 CoNLL

SIGNLL (pronounced signal) is the Special Interest GroupNatural Language
Learning of the Association for Computer Linguistics, AGittp://www.aclweb.or)

The aim for SIGNLL is “the answering of fundamental scientifjuestions
about the nature of the human language acquisition procestha development
of practical NLL techniques for solving current problemsass the full range of
Computational Linguistics, whilst admitting the widest pide range of compu-
tational approaches.”

Among other thing, this manifests itself in the aim to proenog¢search in
automated acquisition of syntax, morphology, phonologwmantic / ontological
structure and inter-linguistic correspondences.

SIGNLL emphasizes paradigms which can be exploited auioaigt such
as corpus based analysis including automated tagging atidggelearning in in-
teractive environments, unsupervised and implicitly suviged techniques etc.

CoNLL, Conference on Natural Language Learning, is SIGNLLarlyemeet-
ing. Although there were previous meetings with other nartresfirst CoNLL
meeting was in Madrid 1997. Starting with the 1999 meetinBéngen, CoNLL
included in the conference a shared task among the partisipdhe organizers
provided training and test data so that the participatirsesys could be evaluated
and compared in a systematic way. Descriptions of the sys#em an evaluation
their performances are presented both at the conferende #mel proceedings.

The tenth meeting in New York 2006, for anniversary reas@msed CoNLL-
X, included the shared task Multi-lingual Dependency PaysiThe task was to
assign labeled dependency structures for a range of largimgmeans of a fully
automatic dependency parser.

One reason for the CoNLL shared task was to make it possiblentgpare the
performance of different parser solutions on the same aetaamany languages.
Until a few years before, most parsers were usually testedniyrone or two
languages, one of them being English.

Training and test data for 13 languages was provided. Thigdhadlow partic-
ipants to tune their applications by adjusting parametarpérticular languages.
The same applications should be used for all languages.raimedata contained
sample text annotated with, among other things, wordfoempha, part of speech,
head for each word and dependency label. The data format mifasdubut the

http://www.aclweb.org/

4.7. CONLL 35

systems for part of speech, dependency labels etc. wectystlifferent for each
language. 2 months later new test data for the languageseleesed and the
participants were expected to parse the data and submgshé to CoNLL. The
results were then evaluated using a script which measueeddbre for correct
head-dependent relations (unlabeled attachment scaie addition correct de-
pendency labels (labeled attachment score). This scrippwhlished at the same
time as the initial training data.

For most languages the top two results for both labeled afabaled attach-
ment score were submitted by Ryan McDonald with MSTParsedaakim Nivre
with MALT Parser, an implementation of Nivre's Parser. MAPErser obtained
the second best overall score and achieved top results &mgidges.

36

CHAPTER 4. NIVRE'S PARSER

Chapter 5
Method

The aim for this study is to make an investigation of the feaget, and try meth-
ods of finding an optimal set. The investigation will followd different paths of
semi intuitive search and systematic search. When seartinige optimal set,
the search for a correctly connected graph is the primary ywhthe search for
a correctly labeled graph is secondary. The rationale feristthe idea that if we
can achieve a correct graph in one pass it can be labeled icoag@ass. This
idea is not pursued in this study, though.

5.1 The parser implementation

The parser used in this study is a rather straight forwardampntation in C++. It
has been compiled and run on both Microsoft Windows and Lifiune majority
of the tests were run on a computer cluster. For training asting the library
LibSVM (Chang and Lin, 2001) was used.

The parser can be run in a few modes, the most important oneg tein’
and ‘test’. Allcommon parameters for these modes are seghplia configuration
file.

In train mode a train corpus file is parsed using the gold stahparsing de-
scribed above, and three training files are composed, ti@atdft arc and right
arc file. The action file consists of one of the four actioasisitions and param-
eters from the parser configuration which are listed in thmftest configuration
file. The left and right arc files consist of the dependencgllér an arc when
the respective arc action is selected and also the same @@ranchosen for the
action file.

The parser is then trained on these three files which resutltsee model-files
for LibSVM.

In test mode a test corpus is parsed and the actions and afs &b predicted

37

38 CHAPTER 5. METHOD

using the model files.

It is possible for the prediction of actions to suggest aioaawhich could not
be performed. More precisely, this includes any actionrotiien Shift when the
stack is empty. In that case the parser will perform a Shifoadrrespectively on
what is suggested.

Other actions are possible to perform, but would lead to the fyraph not
being connected. These actions are not prevented by therpdrstead, spe-
cial parameters are possible to use as hints during traemugtesting. This is
described below.

To construct the parameters the parser keeps name tablbe foossible val-
ues of part-of-speech, dependency labels and lexical sokére first two consist
of a finite set of values as defined in the annotations of theusorThe collection
of lexical tokens is constructed from the train corpus. Tublection is extended
with a pseudo token, UNKNOWN, which will be used for any tokepearing
during testing which were not present in the train corpustand is not found in
the name table.

The name table for dependency labels is extended with thedpstken
NOT_SET which means that there is a node as described by tampter defini-
tion, but it is not bound by a dependency arc and thus it hageta dependency
label. An example of this is if the stack is not empty but thp tmde has no
head node then the part-of-speech will be known but the dbey label will be
NOT_SET.

Furthermore, all three name tables are extended with thedpgeken NOTH-
ING which will be used when a parameter value doesn’t exigiécurrent parser
configuration, e.qg. if the stack is empty, the part-of-speedue of the top of the
stack is NOTHING.

5.2 Parameter set

The parsers parameter format is derived in relevant pams fhe format for Malt-
Parser 0.4 and extensions have been added.

The basis are the feature type, data structure and indexeseTare used to
indicate a particular feature of a certain node in the parsefiguration.

Feature types are POS (part-of-speech), LEX (the lexidakyand DEP (de-
pendency label). There are two data structures STACK and INRUlata struc-
ture combined with a zero based index is a starting point faliriig a node. Thus
STACK 1 indicates the second node on the stack and INPUT Oateldhe first
input token.

Then up to four integers indicating are allowed:

* Relative offset, positive or negative, in the original sty

5.2. PARAMETER SET 39

» Positive offset of the HEAD function. Thus 2 means head @fche

» Offset of the leftmost child function (negative value) eghtmost child
function (positive value).

 Offset of the left sibling (negative value) or right silddifunction (positive
value).

The default value for these parameters is 0 and if they araseut they can be
omitted.

This far the parameter set is compatible with the MaltPaiseparameter set.

The primary format for the current parser is another, cafladgational for-
mat, which uses a node as starting point and then stepwisaadtiens of how to
find a certain node.

This parameter format use the same first three parts, feigpeedata structure
and data structure index as described above. This couldebeotihplete param-
eter and if so it indicates a node present in either the stadhkpaoit string. The
parameter can then contain a list of a number of navigatstegls from this node.
These steps described how to move from the current node toetkte Possible
steps are:

* h Move to theheadof the current node.

* Ic Move to theleftmost childof current node.

rc Move to therightmost childof the current node.

Is Move to theleft siblingof the current node.
* rs Move to theright sibling of the current node.
* pw Move to the node representing theevious wordn the original string.

» fw Move to the node representing tfwlowing wordin the original string.

If at any step the requested node doesn't exist, the paranegeription eval-
uates to NOTHING. This is the same as for the nodes in the tlatetsres.
An example of a parameter is:

POS STACK 1lc

This interpreted as: find the second node of the stack. Moveetdeft child
of that node. Get the part-of-speech of that node.
A longer parameter is:

40 CHAPTER 5. METHOD

POS STACK 1Isrc pw h

The easiest way to read this in common English is to read tterfe and then
the rest of the line right to left, like so:

Get the part-of-speech
of the head

of the previous word
of the right child

of the left sibling

of the second node

of the stack.

In this way any node can be pinpointed if it exists. If the aaded node doesn’t
exist, the value of the feature of the parameter is NOTHING.

5.3 Investigations of the feature set

The investigation of the feature set for the parsing alparitvas done in two
ways. First a study of different combinations of parametes made and then a
systematic search method was constructed and tested.

The corpus used for the first study and part of the second sutlg Swedish
corpus used in CoNLL-X 2006, “conll06_data swedish_takead5 train_v1.1".
It consists of 11431 sentences, with 20057 unique lexid¢ars. The annotations
uses 41 part-of-speech labels, POS, and 64 dependency, IBlgd? labels.

The evaluation of each result was made with a script, evavipich was pub-
lished as part of CoNLL-X. This script generates three regallies and some
diagnostic information. For this study the two interestiagults are:

Labeled attachment scoreThe proportion of tokens that are assigned both the
correct head and the correct dependency label.

Unabeled attachment scoreThe proportion of tokens that are assigned the cor-
rect head.

Chapter 6

Matrix study and intuitive search

In the first part of the study tests were made with differembbmations of fea-
tures. For each combination a matrix of up to 8 stack tokenlsugnto 8 input
tokens were tested. Sentences were parsed in both Left-&ighRight-Left di-
rections. Evaluations were made for both labeled and ulddlgraphs.

As an example, a table of the results for the simplest contibimahe part-of-
speech for each node, is shown. The columns shows the nurhimgub tokens
and the rows shows the number of tokens on the stack in eable 6#ttests.

Results for attribute POS, parsed in Left-Right direction sinewn in Ta-
bles[6.1 and_6]2.

Stack\Input 1 2 3 4 5 6 7 8

58.43 61.06 61.20 61.44 61.68 61.86 62.14 62.02
63.41 67.02 67.44 67.42 67.74 67.56 67.64 67.78
63.31 67.12 67.56 67.6667.87 67.87 67.68 67.68

63.35 67.30 67.82 67.60 67.74 67.54 67.72 67.10
63.59 67.36 67.68 67.70 67.64 67.62 67.44 67.34
63.67 67.22 67.84 6752 67.54 67.42 67.52 67.18
63.57 67.26 67.76 67.36 67.44 67.68 67.48 67.40
63.63 67.26 67.58 67.28 67.56 67.48 67.50 67.42

coO~NOOUIT A WNPE

Table 6.1: Attribute POS. Labeled attachment score.

The top score for each matrix is indicated by the value in b@hen values
are equal, the combination requiring fewer number of pataraare selected.

For the labeled attachment score the best score is 67.87f%ctarcs with
correct labeling. This result is achieved for the trainirsgng the POS values for
the first 5 nodes in the input string and the top 3 nodes on #ek s total of 8
parameters. As described previously some of these nodebemajssing at some

41

42 CHAPTER 6. MATRIX STUDY AND INTUITIVE SEARCH

Stack\Input 1 2 3 4 5 6 7 8
68.29 71.20 71.42 7146 71.70 7196 72.20 71.98
76.24 79.69 80.04 79.84 79.96 79.94 79.98 80.00
76.36 80.00 80.14 80.28 80.42 80.40 79.96 79.67
76.28 80.18 80.52 80.30 80.36 79.96 79.92 79.37
76.42 80.14 80.46 80.28 80.44 80.02 80.00 79.47
76.46 80.24 80.54 80.24 80.36 79.94 79.98 79.47
76.50 80.20 80.58 80.12 80.28 80.04 79.76 79.61
76.76 80.06 80.42 79.92 80.32 79.82 79.82 79.67

O~NO O WNPEF

Table 6.2: Attribute POS. Unabeled attachment score.

stage during parsing, when the stack is too shallow or their@nyg input string
is shorter than 5 nodes. In this case the missing node wilepeesented by the
pseudo value NOTHING. Apart from being the only value that ba returned
in this case it also indirectly reveals some informationr fstance if a value
for input token 3 is NOTHING we are dealing with the two lasbtwords in a
sentence (since the last token is the punctuation).

The unlabeled attachment score has a maximum value, 80.&88ef first 3
nodes in the input string and the top 7 nodes on the stack.

6.1 Parser hints

In the section about the parser implementation it was desdrthat when the
stack is empty, the parser will override any other actiomt8hift, and perform a
Shift. This is simply because that is the only action thatlvaperformed. Other
actions are not inhibited even if they result in the grapmgeiot connected. To
reduce this effect the parameters supplied during traidieig can be extended
with boolean flags indicating whether the actions can belliegerformed. It
turns out that usually it is sufficient to extend the paramsée with a single flag
to achieve this. The condition is that the parameter seaousta parameter which
indicates if the stack is empty or not. Such a parameterhgedf POS or LEX of
the top of the stack, with the pseudo token NOTHING indiggain empty stack.
The overview in Tablg 613 indicates this. The stack has threges, top node has
head, top node has not head and stack is empty. It is assuatdtiehe is always
an input node. The possibility to perform any of the four@wsiis directly related
to the three stack modes.

To the right is a column indicating the Boolean value for “&té& empty”.
This value in combination with either of canLeftArc or canRee defines the

6.1. PARSER HINTS 43

stack canLA canRA canS canR stackEmpty

head F T T T F
no head T T T F F
empty F F T F T

Table 6.3: Overview of how the three modes of the stack affewet possibility to
perform the four transitions.

other three values.
canLA = not stackEmpty and not canR

canRA = not stackEmpty
canS = true

A new set of test was made with the same parameters as bdferpaitt-of-
speech for each node, this time extended with the booleamsder canReduce.
Tabld 6.4 contains the result for the unlabeled attachnoemegUAS). For labeled
attachment score the results are similar.

Stack\Input 1 2 3 4 5 6 7 8
71.74 79.03 79.43 80.00 80.22 80.50 80.32 80.44
7421 80.96 81.52 82.02 82.31 82.21 82.27 82.15
74.39 8152 82.15 8253 82.63 8241 8237 82.14
74.37 81.72 8227 8251 8279 82.10 82.19 81.96
74.45 81.66 82.23 8253 8281 82.45 82.19 82.00
74.45 81.70 82.06 82.49 82.63 82.49 82.33 82.15
7459 81.68 82.06 82.47 8251 8249 8229 82.51
7457 81.60 82.17 82.35 82.882.89 82.33 82.49

O~NO OIS~ WN P

Table 6.4: Attribute POS with CanReduce flag. UAS.

There is an overall improvement for every combination. Tdwras for the pre-
vious best combination has increased from 80.58% to 82.0G%4leere is a new
best score of 82.89% for the combination 6 input and 8 stadesioPreviously
the score for this combination was 79.82%.

This parameter obviously makes a big difference. Even thdhbg impact is
expected to be less dramatic when the information is ovpédjby other param-
eters, for instance using any parameter referring to thd bE&TACK 0, it was
decided to keep this parameter in all future parameter sets.

44 CHAPTER 6. MATRIX STUDY AND INTUITIVE SEARCH

6.2 Rightto left parsing

While a sentence is usually parsed in the reading directioth@flanguage, it
is interesting to compare the parser performance if theegeptis scanned in the
opposite direction. Table 8.5 shows the result for of POSnydaesed right to left,
and the difference between right-left and left-right pagss shown in TablE6l6.

Stack\Input 1 2 3 4 5 6 7 8

68.67 76.66 80.32 80.52 80.62 80.78 81.10 80.90
68.27 74.89 81.44 82.37 8287 8223 82.27 8257
68.47 75.16 81.66 82.2382.75 82.08 82.02 82.53

68.51 75.18 81.52 82.49 82.12 82.15 82.33 81.94
68.45 75.16 81.62 82.49 82.49 82.06 82.23 82.00
68.41 7497 81.46 82.47 8210 82.19 82.14 81.78
68.75 75.22 81.44 82.45 8225 82.15 82.04 81.82
68.51 75.26 81.36 82.35 82.12 82.00 82.04 81.70

oO~NOOUTh WN PR

Table 6.5: POS Right-Left. UAS

Stack\lnput 1 2 3 4 5 6 7 8

1 -3.07 -237 089 052 040 0.28 0.78 0.46
-5.94 -6.07 -0.08 0.35 0.56 0.02 0.00 042
-5.92 -6.36 -0.49 -0.30 0.12 -0.33 -0.35 0.39
-5.86 -6.54 -0.75 -0.02 -0.67 0.05 0.14 -0.02
-6.00 -6.50 -0.61 -0.04 -0.32 -0.39 0.04 0.00
-6.04 -6.73 -0.60 -0.02 -0.53 -0.30 -0.19 -0.37
-5.84 -6.46 -0.62 -0.02 -0.26 -0.34 -0.25 -0.69
-6.06 -6.34 -0.81 0.00 -0.73 -0.89 -0.29 -0.79

O~NO O WN

Table 6.6: Attribute POS. Difference between Right-Left &eét-Right parsing.
UAS

It can be seen that, at least for this parameter setting, ¢n®rmance is
slightly worse in most cases and quite a bit worse when laigek depths and
1-2 input tokens are considered. The performance for ldtatachment score is
similar.

6.3. COMBINATIONS 45

6.3 Combinations

A series of combinations of parameters were tested. In tha@nimg the results
for unlabeled assignment score, left to right parsing isg@néed. If not indicated
otherwise the results for the labeled assignment score lsasikar pattern but
lower overall score. Furthermore the right to left parsiggi¢ally has results
2-3% lower in both cases.

The result for parsing based only on lexical tokens, paramdEX, is shown
in Table[6.7. As expected the performance is not as good as pduesing only
with part-of-speech. Since there is a great possibilityuftknown words to show
up in the test corpus the parser will not have been trainethéme and will simply
have to deal with them as UNKNOWN. However, a good trainingpasrshould
contain most of the basic building stones of a language, comprepositions, de-
terminers, pronouns etc, so the parser will have a fair ahoneecognize common
language constructs.

Stack\Input 1 2 3 4 5 6 7 8
5457 61.86 66.52 66.92 68.43 68.87 69.55 69.33
55.85 64.89 6851 69.77 70.30 69.79 70.17 69.83
56.50 66.42 69.85 70.94 70.66 70.42 70.64 70.23
57.48 67.58 70.74 71.36 71.04 70.76 70.66 70.60
58.39 68.59 71.74 71.62 71.42 70.82 70.72 70.46
59.47 69.51 71.92 72.08 71.28 70.86 70.68 70.15
60.49 69.93 72.04 72.08 71.14 70.94 70.50 69.99
61.44 70.19 72.44 7220 71.30 71.28 70.74 70.11

O~NO O WN PP

Table 6.7: LEX Left-Right. UAS

A combination of POS and LEX parameters was tested. It wasa®d that
the performance of the POS parameter should be improvedthéttguidance
from lexical values, while the unknown lexical values woualat have a negative
influence. The results are shown in Tablg 6.8.

The combination of POS and DEP is not shown. The impact is sl and
often negative. The reason may be that with this parametigngéhe only nodes
that have a dependency arc are some of the nodes in the stédk Hrat case
the head of the dependency is the node one level down. Thissikat the POS
value for that node usually is among the parameters. Pgdibte is a partial
overlap between the dependency label and the part-of-sgeethe participants
in a dependency relation.

We will now continue by investigating the influence of paraeng for the child
of a node. Tablé 6l9 contains the results for tests usingmpateas POS + POS

46 CHAPTER 6. MATRIX STUDY AND INTUITIVE SEARCH

Stack\Input 1 2 3 4 5 6 7 8
76.50 83.07 83.53 84.15 83.49 83.23 83.29 82.81
78.65 84.94 8490 84.76 84.62 84.07 83.93 83.95
78.55 84.68 85.04 84.94 84.98 84.13 84.25 83.85
78.25 8454 84.78 84.90 84.60 84.23 84.09 83.91
78.11 84.35 84.47 84.78 84.31 84.05 83.85 8391
78.39 84.19 84.74 84.66 84.05 83.77 83.83 83.85
78.81 84.01 84.72 84.37 83.71 83.71 83.83 83.73
78.85 83.97 84.39 84.13 83.45 83.63 83.61 83.67

O~NO O WNPEF

Table 6.8: POS + LEX Left-Right. UAS

of the leftmost child and in Table 6110 the parameters use®@s + DEP of the
leftmost child. This time a smaller matrix is chosen.

Stack\Input 1 2 3 4 5 6
1 7457 83.03 84.05 84.11 84.15 84.60
2 76.92 85.18 85.70 86.2686.44 86.40
3 77.24 85.32 85.82 86.60 85.88 86.24
4 77.10 84.88 85.74 85.58 85.64 85.78
5 77.45 8480 85.36 85.80 86.34 86.00

Table 6.9: POS + POS Ic. UAS

Stack\Input 1 2 3 4 5 6
1 75.08 83.37 84.29 84.84 84.72 84.68
2 77.18 85.26 86.32 86.3686.70 86.58
3 77.85 8494 86.12 86.28 86.42 85.88
4 78.19 85.24 85.86 85.94 86.56 86.06
5 77.91 85.16 86.06 85.84 85.98 85.70

Table 6.10: POS + DEP Ic. UAS

In both cases the additional parameter from the child hassdiy®impact.
The values are increased by on average 3.58 for POS of tmedetftchild and
3.86 for DEP of the leftmost child. The corresponding valt@sthe labeled
assignment score are 5.04 and 5.25, respectively.

We combine the three values and investigate the parameteOse+ POS of
leftmost child + DEP of leftmost child.

6.3. COMBINATIONS 47

Stack\Input 1 2 3 4 5 6
1 75.30 83.43 84.17 84.74 84.35 84.62
2 77.75 85.02 86.7086.91 86.91 86.50
3 78.79 85.58 86.34 86.32 85.96 85.94
4 78.15 85.36 85.74 86.36 85.74 85.86
5 78.15 84.86 85.60 85.82 85.66 85.66

Table 6.11: POS + POS Ic + DEP Ic. UAS

The additional value of using both POS and DEP of leftmodtakivery low.
Compared to only POS the average increase is almost the sdoreeétber of the
child values, 3.89 for unlabeled and 5.26 for labeled assent score. There is
obviously an overlap between POS and DEP in this case.

Well over 70 different parameter combinations were testetithe best score
for both labeled and unlabeled attachment was attainedpathmeter combina-
tion in Figurd G.1L.

POS STACKs
LEX STACK s
POS STACKslc
POS STACKsrc
POS INPUTI
LEX INPUT i
POS INPUTI Ic
POS INPUTI rc

Figure 6.1: Parameters for best score. Parameters aredbrstéack nodes in
[0,1] and each input nodein [0,1,2]. Note that parameters for child nodes for
input > 0 are omitted.

The results are shown in Taklle 6.12. The combination of parars in Fig-
ure[6.1 applied to the 2 top stack nodes and the 3 first inpuésbds the score
89.38% for unlabeled and 86.58% for labeled attachmenescor

48

CHAPTER 6. MATRIX STUDY AND INTUITIVE SEARCH

Stack\Input 1

2 3 4 5 6

80.88
82.77
82.83
83.59
82.81

a s wnN Bk

88.29 87.93 87.63 87.65 87.09
88.75 89.38 88.77 88.41 88.01

88.05 88.53 88.49 88.75 88.37
87.51 88.13 87.85 88.19 87.63
87.07 87.79 87.79 87.77 87.73

Table 6.12: Score for parameters in Fig]6.1. UAS.

Chapter 7

Systematic exploration of the feature
space

It is often the case that, when results for dependency garsireported, the pa-
rameters are published but not how they were found. The quevthapter pre-
sented an intuitive search method guided to some degree &lyeampt to analyze
the results with the hope to find indications on how to find advgitarameter set.
It is a time consuming and tedious method and it’s hard to kii@mme is on the
right track.

Admittedly we found useful results, but can we do better?

This chapter introduces and evaluates a simple methodrativtely search
systematically and automatically for the best parametadtbto a parameter set.

7.1 AXxis search

The search method is based on the assumption that if a featikes an important
contribution, then one or more neighboring features coldd be important. The
neighbors considered are both in a feature and node semseP@S STACK 0
means the part-of-speech feature of the node on top of tle&. stdeighboring
features are found in different directions from this nodatéire. In this report
these directions are called axes and 4 of them are used.

The data structure axis. These are the nodes in the data structure, stack or input
stream, where the current node possibly resides. The inatgedeighbors
are the nodes above or below in the stack or before and aftbeimput
stream. The top node on the stack and the next input node hspecsal
connection since they are the ones used when building tiph giiderefore
these two are considered immediate neighbors to each other.

49

50 CHAPTER 7. SYSTEMATIC EXPLORATION OF THE FEATURE SPACE

For a node this axis may be missing. It may have been poppel tfie
stack.

The horizontal and vertical graph axes. These two axes traverse the partially
constructed graph. The horizontal axis is the directiorwben sibling
nodes, connected by a common parent. The immediate neglhberthe
nearest sibling to the left and the nearest sibling to thatrig

The vertical axis is the direction between parent and choldes. The im-
mediate neighbors are the parent node, the leftmost child and the right-
most child node.

For a node this axis may be missing. It may not yet be part ofjithph.

The sentence axis.This direction traverses the nodes in the order they appear i
the original sentence. The input data structure overlapselipition all or
the latter part of this axis. The immediate neighbors areptiegious and
following node in the sentence order.

In addition to this a particular feature has neighboringuess consisting of
the set of remaining features belonging to the same nods.iF hbt an axis since
all features are considered neighbors of each other.

7.2 Finding neighbors
For a particular feature, the neighbors are found usingnigghod:

() Find the current node, which is the node that the feateteriys to.

(i) Find allimmediate neighbor nodes, when present, tactireent node along
the axes.

(i) Neighboring features are all features of the curreati® and neighboring
nodes.

7.3 First evaluation on Swedish corpus

An evaluation of this method was made. The corpus used isame s in the
previous investigation, conll06_data_swedish_talbafiketrain, but in this case
it was split into a train set and a development set. The splg made simply by
picking out every 10:th sentence from the train set and prmthmto the develop-
ment set. Training was then done on the train set and each vessievaluated

7.3. FIRST EVALUATION ON SWEDISH CORPUS 51

on the development set. The test set conll0O6_data_swaedibanken05_test was
used for reference measurement of how well the training rgéimed. The search
should be for the best unlabeled attachment score.

It was decided that one node should be the starting poins Addle should be
evaluated as a single parameter and then this value shouldnyeared with an
evaluation of this parameter in combination with each oifltshediate neighbors.
The combinations generating the best results should besgiekd then these
should be evaluated in combination with each one in the cidtle of immediate
neighbors of them, and so on.

In this report each iteration is calledganerationwhere generation 1 consists
of a single parameter. For each generation a new parameéeldsd. These
parameters are called fixed parameters for the generatioe.fiXed parameters
are the collection which is tested with each one of the neghly parameters.

As node for the starting point the first node of the input gfnvas selected.
This is the only node which is certain to exist during parsisignply because
parsing is defined to continue as long as the input is not emptg also very
probable that this node is important. Two tests were igtlaeach one starting
off from one of the two static features of the input node, PO& l2EX.

7.3.1 Rules for parameter selection

A set of rules derived from the axis search was compiled ontb@elect the set of
new parameters to add to the next generation. The rulesesemted in Table 7.1.
The purpose is to avoid making recursive navigational pafhise example is to
notice that if we move to the left sibling of the right siblin§ a node we return
to the original node. Depending of the kind of node to stastrfrsome of the
directions could be omitted since they were redundant. isiance if a node has
been brought in to the fixed parameter set as being a leftnidst @f another
node in the fixed set, the head of that leftmost child-nodéresady in the fixed
set. Similarly if the node STACK 2 is in the fixed set it has beeoulght in as
being neighbor in the stack to STACK 1, so nodes above the munae in the
stack are omitted. In this way the search for neighbors albe@xes is generally
reduced to only one direction depending on in what respecttide is defined in
the parameter.

7.3.2 The first generation

The parameters for the first test generation were found biyegpthe rules as
follows. The selected starting node is INPUT 0 and two tesigevprepared, one
for POS and one for LEX. Beginning with the feature POS INPUE @he fixed

52 CHAPTER 7. SYSTEMATIC EXPLORATION OF THE FEATURE SPACE

STACKn=0

PLD
PLD h
PLD Ic
PLD rc
PLD Is
PLDrs
PLD pw
PLD fw

STACK n>0

PLD
PLD h
PLD Ic
PLD rc
PLD Is
PLD rs
PLD pw
PLD fw

INPUT n= 0
PL

PLD Ic

PLD rc

PLD pw

INPUT n>0

PL

PLD PLD PLD PLD PLD PLD

h Ic,rc s rs pw fw
h h h
Ic Ic Ic Ic Ic
rc rc rc rc rc
Is Is Is Is Is
rs rs rs rs rs
pw pw pw pw pw
fw fw fw fw fw

PLD STACK n+1l PLD STACKn+1 PLINPUT n+1 PLINPUT n+1

PL INPUTO

Table 7.1: Rules for adding parameters for a new generatimned&ch node of typé&, in bold on row 2, add the features in

PLD STACK O

the column below. PLD = abbreviation for features POS LEX DEP

7.3. FIRST EVALUATION ON SWEDISH CORPUS 53

parameter, we read the third row in the rules table and sedhbaneighboring
nodes we should add are

* POS and LEX of the node. We already have POS so we add LEX INRUT
* POS, LEX and DEP of the leftmost and rightmost child of thdeo

» POS and LEX of the previous word in the original string. Sirtlse input
string is the same as the rest of the original string, thdo¥ahg word in
the original string’ is the same as the next input node, wiicdded in the
next step. For that reason “following word” is not added.

e POS and LEX for the node INPUT n+1, in this case INPUT 1.

* POS, LEX and DEP for the STACK 0. This is the special rule tloeinects
the stack and input nodes.

As long as a node is still in the input string it can not have anta a head.
Therefore we don't include the dependency for input nodes@aameter.

The parameters found using this methods are listed in F[@dre Note that
PLD is an abbreviation for the tree parameters POS, LEX anid &fta particular
node.

POS INPUT O
LEX INPUT O
PLD INPUT O Ic
PLD INPUT O rc
PLD INPUT O pw
PL INPUT1
PLD STACK O

Figure 7.1: Parameters for the first generation, origiggtiom POS INPUT O.

The parameters for the other test case LEX INPUT 0 are alhestame. We
only have to switch place between LEX INPUT 0 and POS INPUT thénlist.

The results of the two tests are shown in Tablé 7.2. At the béadch table is
the fixed parameter and then follows rows of the results diueti@n of unlabeled
and labeled attachment score for each of the neighborirgnpeters. The row
with a blank parameter represents the values for the fixemhpaters only, and is
included for comparison. We can see that for unlabelledtkesbest result was
the combination of POS INPUT 0 and POS STACK 0, which was evatuso
74.02% correct. A great improvement compared to the ref149%%6 for only

54 CHAPTER 7. SYSTEMATIC EXPLORATION OF THE FEATURE SPACE

POS INPUT 0. We can also see that for the two parameters anthefeéhe list
the result evaluated to a decreased result compared to @8yIRPUT 0.

The second test, for LEX INPUT 0, have similar improvemeihsthis case
also, the most contributing parameter is POS STACK 0.

POS INPUT O LEXINPUT O

UAS LAS UAS LAS

74.02 59.67 POS STACK O 65.86 52.18 POS STACKO
67.77 54.50 LEX STACKO 58.59 4551 LEXSTACKO
58.37 41.83 POSINPUT O pw| 51.98 37.70 POS INPUT 0 pw
55.28 38.49 LEXINPUT O pw| 50.44 29.71 POSINPUT1
51.53 30.43 POSINPUT 1 50.38 35.24 LEXINPUT 0 pw

51.05 32.66 LEXINPUTOIc || 49.37 32.27 POSINPUTO
49.71 31.54 POSINPUTOIc| 48.91 27.77 LEXINPUT1
49.49 29.18 LEXINPUT 1 48.66 29.91 LEXINPUTOIc
49.37 32.27 LEXINPUTO 47.25 28.92 LEXINPUTOrc
48.68 29.34 DEP STACKO | 47.09 28.65 POSINPUTOIc
48.47 30.84 LEXINPUTOrc| 46.68 27.08 DEPINPUTOIc
46.77 26.86 DEPINPUTOIc| 45.69 27.83 POSINPUTOTrc
46.40 29.95 POSINPUTOrc|| 44.77 26.17 DEP STACKO
43.49 26.45 4443 26.47 DEPINPUTOTrc
42.27 25.21 DEPINPUT O pw 42.76 23.56

41.04 26.56 DEPINPUT Orc|| 41.87 23.04 DEP INPUT O pw

Table 7.2: Results for the first generation of each of the tit@lriests. The eight
best combinations (in bold) are selected for the next géioera

The training results are sorted by unlabeled attachmemesé@r each gen-
eration, except the first, the eight best results are seledestarting points for a
next test generation.

7.3.3 The second generation

For the first generation the combination of POS INPUT 0 and BJACK 0
gets the best score, 74.02%. This combination is selectde disst of eight fixed
parameter sets for eight new tests in the next generatiothantkighboring nodes
are added.

Looking at the table of rules we see that for INPUT 0 the nodeadd are
precisely the same as before, except that now POS STACK Oti®ptre fixed

7.4. SECOND EVALUATION ON SWEDISH CORPUS 55

parameters, so it should not be added. Next we look at STACKdGsag in the
first column that we should add:

» LEX and DEP for that node. These were added in the previonsrgéon
so we don’t do that again.

 POS, LEX and DEP for the head of the node.

* In the same way POS, LEX and DEP for the leftmost and rightrologd,
the left and right sibling and the previous and following @am the original
sentence for that node.

* POS, LEX and DEP for the node on step down in the stack, STACK 1.

» By the special rule POS and LEX for INPUT 0 should be addedcesime
decided to start the tests with that node this is alreadyarctilection.

The other seven tests were constructed in a similar way.

Table[7.B contains the result for the combination of POS INFRUand POS
STACK 0 in generation 2. This time all the best eight resultegto this collec-
tion, and the best score is achieved when the fixed paranstombined with
POS INPUT 1.

In the results table is also shown for comparison not onlyéiselt of evalua-
tion on the development set but also for the train set.

7.3.4 Results of first evaluation

A total of 16 generations were tested using the method desteabove. Table 7.4
shows a list of the best results for each generation.

We can see that the test set closely follows the developnemwith values
about 1% lower. The peak is at generation 12 after which theltsefor the test
set decreases and the development set continues to incrEaises the typical
indication of the point where overfitting occurs. Beyond fént the generaliza-
tion is degraded as shown by the continuously falling redolt the test set.

The parameters generating the result for generation 12wrsin Figurd 7.5,
in order of being included in the set.

7.4 Second evaluation on Swedish corpus

The same method was then applied to the same corpus, butahehseas for
the optimal labeled attachment sccore. In the first evalonaach the eight best
results for each generation were selected and tested inettteganeration. The

56 CHAPTER 7. SYSTEMATIC EXPLORATION OF THE FEATURE SPACE

POS INPUT O

POS STACK 0O

Dev set Test set

UAS LAS UAS LAS

79.50 65.34 79.07 65.86 POSINPUT 1
78.73 66.98 76.04 64.51 LEX STACKO fw
77.42 63.08 74.63 61.86 LEXINPUT 1
77.06 64.54 75.28 62.90 LEXINPUT O pw
76.83 66.01 73.61 63.77 LEXINPUTO
76.63 63.62 74.75 63.17 POS STACK 0 fw
76.44 64.24 74.09 62.02 LEXSTACKO
76.39 63.12 73.99 61.16 LEXINPUTOIc
76.25 62.51 73.87 61.08 LEXINPUTOrc
75.97 62.47 73.55 60.78 POSINPUTOIc
75.97 62.20 74.45 61.40 DEP STACK 0 fw
75.88 62.42 74.03 61.30 DEP INPUTOlc
75.75 62.11 73.53 60.76 POSINPUTOrc
75.74 62.08 73.59 61.06 DEPINPUTOrc
75.71 62.15 74.67 62.88 DEP INPUT 0 pw
75.55 61.37 73.81 60.96 POS STACK 1
75.51 62.22 74.85 62.24 POS INPUT 0 pw
75.22 61.08 73.83 60.98 POS STACK 0 pw
74.94 60.85 73.59 60.47 LEX STACK 0 pw
74.88 60.59 72.93 59.57 LEX STACK 1
74.81 60.56 72.77 60.03 DEP STACK 0 pw
74.58 60.44 72.50 59.89 POS STACK O h
74.56 60.12 72.42 58.81 DEP STACK 1
74.44 60.36 72.14 59.05 LEX STACKOrs
74.37 60.05 72.67 60.05 DEP STACKOrs
74.36 60.62 72.24 59.63 LEX STACKOlc
74.30 60.16 72.67 60.11 DEP STACKO
74.24 59.87 71.78 58.65 POS STACKOls
74.23 59.84 71.82 58.75 LEXSTACKOlIs
74.21 59.88 71.88 58.71 DEP STACKOls
74.16 60.14 72.48 59.81 DEP STACKOlc
74.16 59.93 71.86 58.69 LEXSTACKOh
74.15 59.88 71.84 58.61 POS STACKOrs
74.12 60.38 72.06 59.61 POS STACKOlc
74.09 60.53 72.38 60.11 POS STACKOrc
74.08 59.75 71.70 58.39 DEP STACK Oh
74.02 59.97 72.10 59.15 DEP STACKOrc
74.02 59.67 71.60 58.37

74.00 60.71 72.38 59.77 LEX STACKOrc

Table 7.3: Results for the second generation with the fixedrpaters POS IN-
PUT 0 and POS STACK 0.

7.4. SECOND EVALUATION ON SWEDISH CORPUS

Dev set
Generation UAS
1 74.02
2 79.50
3 83.58
4 85.96
5 87.23
6 88.23
7 88.42
8 89.43
9 89.84
10 90.23
11 90.49
12 90.73
13 90.81
14 90.81
15 90.85
16 90.84

LAS
59.67
65.34
71.76
76.03
77.32
79.28
80.00
81.56
83.20
83.89
84.31
84.47
84.60
84.70
84.67
84.68

Table 7.4: Best results for each generation

Test set
UAS
71.60
79.07
82.75
84.82
86.34
87.21
87.67
88.09
88.69
89.17
89.58
89.66
89.52
89.32
89.13
88.65

LAS
58.37
65.86
70.98
74.75
76.52
78.29
78.99
80.26
82.33
83.31
83.85
83.83
83.75
83.73
83.21
82.75

57

. Swedish cogptisnized for UAS.

POS INPUT O
POS STACK 0

POS INPUT

1

LEX STACK 0 fw
LEXSTACK O
LEXINPUT Olc
POS STACK 1
LEXINPUT 1
LEXINPUT O
DEP STACK Olc
POS STACK 0 fw
LEXSTACK Ofwls

Table 7.5: Parameters used in generation 12 in Table 7.4.

58 CHAPTER 7. SYSTEMATIC EXPLORATION OF THE FEATURE SPACE

results showed that only the four best of these contribute¢le best results in the
next generation. Therefore, in this evaluation, only the feest were selected.
The results of the 16 first generations are shown in Table 7.6.

Dev set Test set
Generation UAS LAS UAS LAS
1 74.02 59.67 71.60 58.37
2 78.73 66.98 76.04 6451
3 83.58 71.76 82.75 70.98
4 85.92 76.28 84.39 7457
5 86.61 78.71 85.22 77.02
6 87.62 80.86 86.26 79.21
7 88.81 82.22 88.23 81.40
8 89.23 83.24 88.61 82.63
9 89.97 83.93 89.07 8341

10 90.30 84.44 89.34 83.97
11 90.55 84.83 89.58 83.85
12 90.62 84.98 89.62 84.13
13 90.78 85.17 89.68 84.19
14 90.88 85.31 89.54 84.21
15 90.99 8541 89.29 8391
16 90.95 85.45 89.56 84.09

Table 7.6: Best results for each generation. Swedish cogptispized for LAS.

The behavior is similar to that of the first evaluation. Thaerirset follows the
development set with increasing values for each generhtiba-2 % lower. The
optimal value seems to be in generation 14 with 84.21% fortéseset. After
that, the performance for the test set decreases. The parsnf@ generation 14
are shown in Table~7.7.

7.5 Evaluation on English corpus.

Finally, as a comparison, the method was applied to anotiv@us, the English
corpus from CoNLL 2008. This corpus contains sections fromRenn Tree-
bank. For training and development set the sections cantex from Wall Street
Journal. A test set with text from Wall Street Journal wase aigpplied. In addi-
tion, there was also a second test set from the Brown corpushveointains texts
from other fields. The intent was to investigate how well taesprs adapt to other
domains. As before, the four best results for each generatas selected to be

7.5. EVALUATION ON ENGLISH CORPUS. 59

POS INPUT O
POS STACK 0
LEX STACK O0Ofw
POSINPUT 1
LEXSTACK O
LEXINPUT O
LEXINPUT Olc
LEXINPUT 1
LEXSTACK Olc
POS STACK 1
LEXINPUT O pw
POS STACK 0 fw
POS INPUT 2
DEP INPUT Olc

Table 7.7: Parameters used in generation 14 in Table 7.6.

the starting point for the next. The tests were optimizedufdabeled attachment
score.

The results after 12 generations are shown in TRble 7.8. ilttésesting to
notice that this time the results for the in-domain test aerpVSJ, exceeds the
results for the train corpus. This indicates that the trarpas actually is harder
to classify than the test corpus and after training the passeell equipped to
handle the train corpus. As expected, the results for th@bdbmain corpus are
quite a bit lower. After 12 generations there is still no sajroverfitting, so the
best result is the last one 90.64% for in-domain test ands8% f&r out-of-domain
test. The parameters used for this score is shown in Talle 7.9

60 CHAPTER 7. SYSTEMATIC EXPLORATION OF THE FEATURE SPACE

Dev set Test set WSJ Test set Brown
Generation UAS LAS UAS LAS UAS LAS
64.42 55.64 64.71 56.44 71.29 62.41
78.62 68.77 78.99 70.30 78.67 65.17
81.83 76.67 82.46 77.82 80.57 72.95
84.43 79.78 84.89 80.88 84.03 76.99
85.95 81.60 86.61 82.93 84.55 77.80
86.95 82.73 87.73 84.09 85.26 78.48
88.03 83.62 88.52 84.74 85.66 78.73
88.61 84.97 89.15 86.20 86.29 79.86
89.09 85.43 89.47 86.60 86.43 80.02
89.54 85.87 90.25 87.40 87.00 80.75
89.95 86.21 90.63 87.77 86.87 80.46
90.26 86.56 90.64 87.80 87.35 80.86

=
REBowo~vNoorwnek

Table 7.8: Best results for each generation. English coguitsnized for UAS.

POS INPUT O
LEXSTACK O
POS INPUT 1
LEX STACK 0 fw
POS STACK 0
DEP INPUT Olc
LEXSTACK 1
LEXINPUT 1
LEXINPUT O
POS INPUT 2
POS STACK 0 pw
POS INPUT 3

Table 7.9: Parameters used in generation 12 in Table 7.8.

Chapter 8

Conclusions

This report contains an investigation of the feature seiNigre’s Parser and de-
scribes two methods of searching for an optimal combinatieed in training.

The method for intuitive matrix search uses a combinationawhparing differ-

ent parameter settings and intuition. The method of sydieragploration uses a
set of rules founded on an initial assumption about neighlgdeatures. In both
cases useful parameter combinations were found, but gldelfirst method re-
quired more work and was less successful. In the cases bedan this report
the advantage of a systematic search is clear. It can bedutlymated, and no
linguistic knowledge of the language being trained for iguieed. The level of
greediness for the search can be adjusted by how many fixachpter sets will

be used for each generation. In the evaluations reportedstfaund that eight
was unnecessary many, and four was a good value.

The results attained with this method compares well witteotiesults. For
unlabeled attachment score it is 89.66%. In CoNLL-X the twst lbesults were
89.54% and 89.50%. Our best results for labeled attachncent svere 84.21%,
and the two best results in CoNLL-X were 84.58% and 82.55%. \\doampar-
ing, it is important to remember that although the trainieg was the same in
these cases, the results are based on different test seteeddlis for the English
corpus from CoNLL 2008 are based on unlabeled attachmeng,s806r64% for
in-domain test and 87.35% for out-of-domain. There was b sategory in the
competition. It was labeled attachment score only. In CoNDD?2, though, the
two best scores were 90.63% and 90.13%. In this case it israeea important
to stress that the conditions are different. In our test & feand that the train set
was easier to classify than the train set, which resultectg good scores. This
is usually not the case. A different corpus was used in ConNQQ.72

Although the systematic search is automated and requir@guitve guess-
ing, itis still time consuming. Depending on the size of tbegpora a test can take
between 1 - 130 hours. This is to a large extent due to theitepatgorithm used,

61

62 CHAPTER 8. CONCLUSIONS

SVM. The training takes a long time, but the results are Wgsalperior to other
algorithms. Nevertheless there is a need to reduce the numhibests required.
The first generation contains ca 15 tests per fixed featui@sksince parameters
are only added and not removed for every generation the nuofibests can grow
to 100 at generation 10. With the method described in thisrte¢pe starting node
is INPUT 0. This is an obvious choice, since it is the only ntid# is guaranteed
to always have a value other than NOTHING during the parsinggss. The two
values POS and LEX were selected as starting features, amdifethis was for
a reason of objectivity, we already knew from the very firstsgemade that LEX
can usually not outperform POS as the single parameterhvdiliour evaluations
confirmed.

An improvement to the method would be to analyze the behaviparameters
and investigate if any can be removed. One example of therapeters referring
to the head of a node on the stack. If a stack node has a hesithétmode below
on the stack, and ether the parameter folSMACK n+1 or STACK n h should be
removed. This could be extended to further investigatedafdtare other patterns
on features that always outperform others.

Another example of finding candidates for removal would bmvestigate if
the age of a parameter has any influence. In this context,edgesto how many
generations the parameter has been in the parameter sefirsitgeneration a
parameter is brought in its age is 0. The next generationdrenpeter is 1, and so
on. A brief study of this was made and no obvious behavioratbel discerned,
so a more thorough investigation would have to be done.

Bibliography

Chang, C.-C. and Lin, C.-J. (2001). LIBSVM: a i
brary for support vector machines Software available at
http://www.csie.ntu.edu.tw/"cjlin/libsvm.

Charniak, E. (1993). Statistical Language Learning MIT Press, Cambridge,
Massachusetts.

Chomsky, N. (1957)Syntactic structuresMouton, The Hague.

Covington, M. A. (2001). A fundamental algorithm for dependg parsing. In
Proceedings of the 39th Annual ACM Southeast Confergrages 95-102.

Keith, A. (2007). The Western Classical Tradition in LinguisticEquinox Pub-
lishing Ltd, London.

Lin, D. (1998). Dependency-based evaluation of miniparWarkshop on the
Evaluation of Parsing Systems

McDonald, R. (2006)Discriminative Training and Spanning Tree Algorithms for
Dependency Parsind®hD thesis, University of Pennsylvania.

Mel’ Cuk, I. A. (1988).Dependency Syntax: Theory and PractiState University
Press of New York, Albany.

Mitchell, T. M. (1997). Machine Learning McGraw-Hill Higher Education.

Nivre, J. (2003). An efficient algorithm for projective dewency parsing. In
Proceedings of the 8th International Workshop on Parsinghmelogies (IWPT
03), pages 149-160, Nancy.

Nivre, J. (2005).Inductive Dependency Parsing of Natural Language .T&tD
thesis, School of Mathematics and System Engineering,0/drjversity.

Nivre, J. and Nilsson, J. (2005). Pseudo-projective depeayl parsing. IrPro-
ceedings of the 43rd Annual Meeting of the Association for @dational Lin-
guistics (ACL'05) pages 99-106, Ann Arbor.

63

http://www.csie.ntu.edu.tw/~cjlin/libsvm

	Introduction
	Background
	Two grammars
	Phrase-structure grammar
	Parsing phrase-structure grammars
	Ambiguity
	Dependency grammar
	Parsing dependency grammars
	Why dependency parsing?
	Grammar-griven vs. data-driven parsing
	Machine learning

	Previous work
	MiniPar
	Covington
	MSTParser

	Nivre's Parser
	Description
	Nondeterminism
	Manually improving the rule set

	Inductive dependency parsing
	Gold standard parsing
	Dependency labels
	Features
	Pseudo-projective dependency parsing
	 CoNLL

	Method
	The parser implementation
	Parameter set
	Investigations of the feature set

	Matrix study and intuitive search
	Parser hints
	Right to left parsing
	Combinations

	Systematic exploration of the feature space
	Axis search
	Finding neighbors
	First evaluation on Swedish corpus
	Rules for parameter selection
	The first generation
	The second generation
	Results of first evaluation

	Second evaluation on Swedish corpus
	Evaluation on English corpus.

	Conclusions

