

A Prototype to Extract and Visualize Information from Car
Accident Reports in Swedish

Per Andersson

Abstract

Per Andersson, Lunds Tekniska Högskola
Text-to-scene conversion of car accident reports

This Master’s Thesis is part of the CarSim (Dupuy et al. 2001) project that analyzes text
reports of car accidents and visualizes them in a three dimensional graphical simulation.
There are two main parts in the system. An information extraction module analyzes the text to
find the vital information about the accident and a graphical simulation module visualizes the
information. An XML template that is filled with information about an accident in a
structured way provides a link between the two modules.

The information extraction module fills the template and the graphical simulation module
reads it and uses the information to visualize the scene. This part of the system is designed to
be multilingual. Before, two versions had been developed: one to analyze texts in French and
the other for English texts.

This report describes the modifications I brought to the information extraction module and
the modules I developed:

• A graphical user interface, which now integrates uniformly the language analyzers for the

texts in French and English as well as the new analyzer for the texts in Swedish.
• An analyzer, which extracts information from Swedish texts about the scene of the

accident and the actors of the collision.

The analyzer detects the road configuration, the static objects and the dynamic objects. It

uses a domain ontology describing the roads, obstacles such as trees and the vehicles. Regular
expressions are used to match them in the texts. A local parser is used to identify the collision
verbs and the actors of the accident. The analyzer integrates the Granska part-of-speech tagger
and phrase-structure rules to describe noun and verb groups. I have developed and tested the
system using a corpus of 209 reports gathered from articles describing car accidents that were
published in Swedish newspapers.

Abstrakt

Per Andersson, Lunds Tekniska Högskola
Text-to-scene conversion of car accident reports

Detta examensarbete är utfört inom CarSim (Dupuy et al. 2001) projektet. Systemet
analyserar rapporter om bilolyckor och visualiserar dem i en tredimensionell grafisk
simulering. Systemet består av två huvuddelar: en modul som analyserar texten och letar efter
den information som är intressant och en modul för den grafiska simuleringen. En XML-mall
i vilken information kan lagras på ett strukturerat sätt utgör en länk mellan de två modulerna.

Den första modulen fyller mallen med information extraherad från texten och den andra
modulen läser mallen för att få den information den behöver för att kunna generera scenen
grafiskt. Modulen för att analysera texten var innan detta arbete uppdelad i två separata
versioner, en för att analysera franska texter och en för engelska texter.

Detta arbete är inriktat på att modifiera den del av systemet som extraherar information ur
texten.

De två tidigare versionerna för franska och engelska integrerades till att kunna användas i
samma grafiska användargränssnitt. Funktioner för att analysera svenska texter har också
utvecklats. Analysatorn för svenska texter har skapats med och testats på ett korpus bestående
av 209 rapporter som samlats från artiklar publiserade i svenska tidningar. Den tar fram
information om olycksplatsens utseende och om de inblandade parterna. Attribut som
systemet hittar är vägkonfigurationen samt statiska och dynamiska objekt. Ordklasstaggaren
Granska har integrerats i systemet och innehar en central roll i textanalysen. Denna rapport
beskriver de metoder jag utvecklat för att analysera texter skrivna på svenska.

 4

Contents

Chapter 1 Introduction... 7
1.1 Background... 7
1.2 Purpose and Goal ... 7
1.3 Material Description .. 7
1.4 Challenges ... 8
1.5 Planning... 8
1.6 Text-to-Scene Conversion Projects... 8
Chapter 2 Analyzing Swedish Texts... 9
2.1 The Structure of the Nyheter Corpus... 9
2.2 Reading the Swedish Texts .. 10
2.2.1 JAXP and the Document Object Model ... 10
2.2.2 Implementation... 10
2.3 The Template Structure... 11
2.4 Building the Semantic Lexicon.. 12
2.5 Colorization of the text .. 15
2.6 Extraction of the Static Objects and the Road Configuration 16
2.7 Extraction of the Words that Indicate Motion and Collisions 17
2.8 The Grammatical Analysis of the Text .. 18
2.8.1 The Sentenizer Class .. 18
2.8.2 The Granska Part-of-Speech Tagger .. 19
2.9 Finding Subject and Object By Phrase analysis.. 20
2.10 Patterns ... 21
2.11 How the Subjects and Objects are Extracted .. 22
2.12 Finding the Dynamic Objects.. 22
2.13 Accidents ... 23
Chapter 3 A Complete Example.. 25
Chapter 4 A New and Extensible Graphical User Interface 27
Chapter 5 Discussion .. 29
5.1 Result and Evaluation.. 29
5.2 Future Development... 32
Chapter 6 Conclusion .. 33
References.. 35
Abbreviations ... 36

Chapter 1 Introduction

1.1 Background

CarSim (Dupuy et al. 2001) is a text-to-scene converter. It analyzes texts from car accident
reports and creates three-dimensional simulations of the accidents. The first version was made
for reports written in French. Svensson and Åkerberg (2002) added a module to process
English texts. Schulz (2002) improved the graphical user interface to merge both the
information extraction part and the 3D generation into the same window.

CarSim consists of two main parts: the first part extracts information from the text and the
second part generates the 3D simulation. An XML template is used to handle the
communication between the two parts. The information extraction module fills the template
with information about the accident, for example the road configuration and information
about the vehicles. The 3D simulation module then animates the scene using information from
the template.

The two former versions use different techniques and programming languages to extract
information from the text. In the French version, the information extraction module is written
in Prolog and in the English version it is mainly written in Java. The two different versions
are thus separated in the information extraction part and use different graphical user
interfaces. The 3D simulation module is written in Java and is shared by all the information
extraction modules regardless of language. That means that, regardless of the language of the
report, the extracted information can be visualized by the 3D simulation module.

1.2 Purpose and Goal

The goal of this work is to develop:

• A graphical user interface, which now integrates uniformly the language analyzers for the

texts in French and English as well as the new analyzer for the texts in Swedish.
• An analyzer, which extracts information from Swedish texts about the scene of the

accident and the actors of the collision.

The purpose of doing a text-to-scene conversion is to make the course of the accident

easier and faster to understand. Texts can be quite complex, hard to read or understand and
contain extra information that is irrelevant in the context. A graphic simulation gives a good
idea of what actually happened.

1.3 Material Description

In order to develop a Swedish version of information extraction, we collected reports
describing accidents written in Swedish. The reports come from two different sources. The
first corpus contains 209 texts published in Swedish newspapers that have been gathered from
their Web sites. The other corpus consists of reports extracted from STRADA1, the accident
database of the Swedish traffic authority (Vägverket).

This module has been developed and tested mainly on the Nyheter corpus. Half of the
corpus was used during development and the other half was used for tests and evaluation of
the system.

1 Swedish Traffic Accident Data Acquisition.

1.4 Challenges

There are many problems to solve to have a working text-to-scene converter:

• Information extraction from real non-invented texts is a hard and challenging task. A
result in which just a few simple texts can be analyzed and simulated correctly is in itself a
major task.

• The corpus is limited in the way that the reports not always give the full story or contain
all the information that can be looked for. This means that some facts about what
happened might be missing and need to be guessed.

• The graphical module is limited and can only synthesize the objects that it finds in the
template. In addition, the number of graphical objects is limited. All cars are visualized by
the same type of graphical object and the only sign that can be shown is a stopsign.

• The current template is also limited by the fact that not all information about the accident
can be added. For example it is not possible to add information about the weather
conditions with the current template structure.

These limitations explain the challenges of text-to-scene conversion and the difficulty to

obtain a high percentage of correctly analyzed texts. To expect a high throughput might be
unrealistic during the timeframe of this work.

1.5 Planning

This work was divided into two major tasks. Chronologically, I started with the integration of
the analyzers for the French and English versions into the same graphical user interface. The
next step was to develop the analyzer for texts written in Swedish. First methods for finding
the static objects and the road configuration were developed. When that part was working
satisfactory the work with finding dynamic objects was started. Finally all the information
gathered has to be read and arranged in order to fill the template.

1.6 Text-to-Scene Conversion Projects

Other projects that work with conversion between text and pictures include:

• WordsEye (Coyne and Sproat 2001), a system that converts English texts into three-

dimensional static scenes that represent the text. WordsEye analyzes the text syntactically
and semantically and produces a description of the arrangement of the objects mentioned
in the text. The image is then generated from that description. To be able to generate many
different kinds of objects and pictures WordsEye uses a large database of graphical
objects.

• Nalig (Adorni et al., 1984; Di Manzo et al., 1986), a system that converts simple Italian
texts into two-dimensional pictures.

• CogViSys (Arens et al. 2002), a project whose main goal is to convert visual information
into a description in text.

 8

Chapter 2 Analyzing Swedish Texts

This chapter describes the development of a module for analyzing Swedish reports. The goal
with the analysis is to extract tabular data and fill a template. This data is used to synthesize
the scene with information.

2.1 The Structure of the Nyheter Corpus

We created a first corpus of Swedish texts consisting of articles about car accidents published
in Swedish newspapers. The articles were collected manually from the websites of the
newspapers.

In addition to the accident narrative, additional information provided by the newspapers
was kept. The file is built up by the attributes below. Not all attributes are always filled with
information or even added, since sometimes the information may not have been available for
that report.

The information to annotate the corpus consists of:

REPORT ID The number identifying the report.
TITLE The title of the article.
SUMMARY A short summary of the text.
LOCATION A specification of where the accident took place, typically a city.
FIGURE Information about the picture name and the author.
NARRATIVE The article containing the main text.
SOURCE The date, author and the newspaper.

XML (Bray et al. 2000) is a markup language developed for documents using structured

information. Unlike some other markup languages such as HTML, XML does not have a
predefined tag set. The reason why XML is used in this work is that it can represent richly
structured documents without limitations while still being relatively simple to implement.
HTML has limitations in what it can represent. Other more complex markup languages may
be able to represent the same data as XML, but are less common. XML is an accepted and
well-documented language used for storing information. There are also many existing tools
for manipulating XML files.

The former structure for storing the information in .ana and .ada files worked for the
relatively small number of reports available in the French and English versions. However, for
the Swedish version, with an initial access to over 200 reports, another structure was needed.
The idea to gather all reports in one XML file has several advantages and no real
disadvantages. It is easier to overview and find reports. It also makes the implementation
easier and cleaner.

The following text is the first report in the bilkorpus.xml file.

 9

<REPORT ID="R001">
<TITLE>En person till sjukhus efter olycka vid Lund</TITLE>
<SUMMARY>En bilolycka med tre bilar inträffade på motorvägen förbi

Lund på fredagseftermiddagen.</SUMMARY>
<NARRATIVE>Minst en person skadades och trafiken påverkas just nu

rejält. Enligt polisens första rapporter har ingen skadats
allvarligt.</NARRATIVE>

<SOURCE CLASSIFIED="NO" COPYRIGHT="YES" NAME="Sydsvenskan">
<DATE>29 november 2002</DATE>

</SOURCE>
</REPORT>

In the example above, the LOCATION and the FIGURE were not available from the

website and the tags are left empty and are not added.
The summary and narrative tags delimit the text that is analyzed by the program. That text

also needs to be editable in the same way as in the former versions. This means that the
program must allow the user to save, edit, delete and create new reports within the XML file.

2.2 Reading the Swedish Texts

This part covers how the program reads the Swedish texts.

2.2.1 JAXP and the Document Object Model

Starting with Java 1.4 JAXP, Java API for XML Processing was included in the core
platform. It contains packages for representing and modifying XML documents in Java. There
are four main packages that now are described.

• The Javax.xml.parsers package contains interfaces for instantiating SAX and DOM

parsers.
• The Javax.xml.transform package uses the XSLT standard for transforming XML

document content and representation.
• The org.xml.sax is an eventdriven API for parsing XML documents. A SAX parser does

not store or build any representation of the document. Instead, it uses a
ContentHandler object with methods that describe the content of the document.

• The org.w3c.dom package contains with interfaces for parsing XML documents. The
DOM, Document Object Model, parser reads the document and stores the content in a tree
of nodes. The generation of the tree requires the data being stored in memory, but once
stored the tree can be modified effectively and by any program.

2.2.2 Implementation

The class, XMLReportAnalyzer reads the report files. It contains the methods needed to
handle the functions for the new XML-structure. It uses two of the packages in the JAXP,
namely Javax.xml.transform and org.w3c.dom including their subpackages.
Comparing SAX and DOM gives that SAX is faster for scanning the documents while DOM
is more suitable for doing modifications to a document once it is scanned. This application
demands many modifications to be done to the document, which makes DOM the preferred
choice for handling the parsing.

 10

The XMLReportAnalyzer.GenerateReportTextFromXMLFile() method
scans the file containing the reports and builds a tree of org.w3c.dom.Node objects using
a DOM-parser. After the document has been converted into this structure, the information
extraction part begins. The
XMLReportAnalyzer.GenerateReportTextFromXMLFile() iterates through the
entire document and for every report finds the nodes which contain the SUMMARY and
NARRATIVE. The text inside these nodes are stored in a String array for later use.

The other two methods in XMLReportAnalyzer handle saving and deleting reports.
The same procedure as when reading the document is applied. First, the parsed document is
searched to find the correct report by looking for the node with the right number. Then, the
content in the SUMMARY and NARRATIVE nodes in that report are changed or removed.

The Javax.xml.transform package is used to transform the DOM document
representing an XML document back to XML again.

The process described is illustrated in Figure 1.

XML
Document

DOM
Tree

Modifications
inside
XMLReport
-
Analyzer

Transformer XML
Document

Figure 1. This picture shows the flow from the XML document to its DOM representation with modifications
inside the program and then transformation back to the XML format.

2.3 The Template Structure

The information extracted from the texts is stored into a template. It ties the language
processing and 3D-simulation modules together. It is a document in XML format that is filled
with the information extracted from the text. The template consists of three main parts: static
objects, dynamic objects and collisions. The objects added to the template must follow the
DTD, Document Type Definitions. The DTD specifies which attributes the objects in the
XML document must have and which values they can have.

An example of a static object is road configuration, which can be straightroad, crossroads,
turn_left or turn_right. Other static objects are signs, traffic lights and obstacles such as trees.
The only sign that can be displayed in the graphical simulation is a stop sign. Traffic lights
have an id and a colour that can be red, green, orange or inactive. All obstacles and signs
other than stop signs are graphically represented as trees and have ids. The id numbers are
needed to distinguish between different obstacles and to give them different coordinates. All
the static objects, except the road configuration, have coordinates indicating where they are to
be placed in the graphical simulation.

The dynamic objects are the moving objects, for instance cars and busses. A dynamic
object has an id and an attribute that shows what kind of vehicle it is. This attribute can be car
or truck. All large vehicles such as busses are set as trucks due to limitations in the graphical
simulation module. A vehicle must also have an initdirection that shows in what direction the
vehicle is initially travelling. The initial direction can be east, west, south or north. If the
name of the road that the vehicle is travelling on can be extracted from the text it is also added
as an attribute of the vehicle object. The final thing that is included in the dynamic object is a

 11

list of events the vehicle performs. These events can be driving_forward, turn_left, turn_right,
stop, overtake, change_lane_left and change_lane_right.

Id numbers are used to separate different vehicles of the same kind and to map them into
the next part of the template, the one concerning collisions.

A collision describes the crash between two dynamic objects or a dynamic object and a
static object. It has two elements, an actor and a victim. The names actor and victim do not
imply who is responsible for the accident, but is simply a way to name the participants. The
dynamic object that hits something is set to actor. The actor and the victim have the same
attributes: an id and a side. The side can be front, rear, left, right or unknown and is the part of
the object that hits into or that is hit in the collision.

The structure of the template can be seen in Figure 2.

Figure 2. The picture shows the template structure in the middle of the picture.

2.4 Building the Semantic Lexicon

The semantic lexicon contains the significant words that can be used to fill the slots of the
template. We classified them into five different categories, road words, obstacle words, road
configuration words, condition words and motion words.

The words that fall into the road words category are road names. Obstacle words can be
trees, poles, signs and other kind of static objects. Words that describe the weather for
example halt, “slippery”, fall into the condition words category. The road configuration words
describe the scene of the accident. It can be crossroads, straight road or a curve. Motion words
are divided into three subcategories, namely crash verbs, motion verbs and direction verbs.
Typical Swedish verbs that describe an accident, crash verbs, are krocka, “crash”, and

 12

kollidera, “collide”. The motion verbs are words that imply a sideways movement for
example sladda, “skid”. Direction verbs are verbs that often come in conjunction of a word
that gives a direction, jag färdades norrut, “I was travelling north.”

We used regular expressions to find the type of words that are fall into the defined
categories. A regular expression is a pattern that can be used to find many different words that
have a similar construction. The advantage is that with one pattern it is possible to find most
of the words of a certain category instead of having to build a large database with all the
words to look for. The words are found by searching the text for every regular expression. To
find the words the Java native classes Pattern and Matcher are used.

In a regular expression, symbols with special functions or meanings are used together with
literal characters. The following patterns mostly use the same special symbols and Table 1
shows a short description of the most common symbols.

Symbol Description
* Matches from zero to infinite number of occurrences of the previous

characters.
+ Matches from one to infinite number of occurrences of the previous

characters.
? Matches one or zero occurrences of the previous characters.
\s Matches white space character.
\S Matches non-white space character.
[abc] Matches a or b or c.
0-9 Matches any digit.
[^abc] Matches any character except a, b or c.

Table 1. Symbols used in regular expressions.

For the road words category, there are five different patterns as seen in Table 2. To help

understanding the patterns, the first one is now explained:

"E\\s?[0-9]+[^,\\!\\s\\.]*"

The first E means that the first letter of the word should be an E. The following \\s?

indicates an optional white space character. After the E and optional white space, comes one
or more figures from the [0-9]+ part of the pattern. Finally the end of the word or sentence is
found with the [^,\\!\\s\\.]* part of the pattern.

 13

Pattern Description Example
"E\\s?[0-9]+[^,\\!\\s\\.]*" This pattern searches for

words that start with E and
that are then followed by one
or more numbers.

E4 and E22.

“([A-
Z]|[ÅÄÖ])\\S+väg[^,\\!\\s
\\.]*(\\s|\\.|,|\\!)[^(0-9)]”

This pattern searches for
words that ends with väg,
road, and that starts with a
capital letter.

Östanväg.

"\\S+gatan[^,\\!\\s\\.]*" This pattern searches for all
words that contain gatan, the
street.

Södergatan and Tingsgatan.

"\\S*[Vv]äg\\s?[0-9]
+[^,\\!\\s\\.]*"

This pattern searches for
words with structure väg
followed by a number.

länsväg 12, riksväg 11.

"\\s([a-z]|[åäö])\\S+vägen
[^,\\!\\s\\.]*"

This pattern searches for
words that ends with vägen.

Magistratsvägen.

Table 2. Patterns and descriptions for regular expressions and road words.

For the obstacle words category there are two different patterns as seen in Table 3.

Pattern Description Example
"\\s[Tt]räd[,\\s\\.\\!]" This pattern searches for

words that contain träd,
tree.

Träd.

"[^,\\!\\s\\.]*([Ss]tolpe|([Tt]rafikljus)|
(([Ss]topp)+(skylt|likt)))[^,\\!\\s\\.]*"

This pattern searches for
words that contain stolpe,
pole, and skylt, sign.

stoppskylt

Table 3. Patterns and descriptions for regular expressions and obstacle words.

For the weather condition words category there is one pattern as seen in Table 4.

Pattern Description Example
"[^,\\!\\s\\.]*(vattenplaning|halka|halt|torrt|regn)
[^,\\!\\s\\.]*"

This pattern finds
words that describe
the weather condition
for the road.

halka and regn

Table 4. Patterns and descriptions for regular expressions and condition words.

For the road configuration words category there is one pattern as seen in Table 5.

 14

Pattern Description Example
"[^,\\!\\s\\.]*((korset|korsning|korsa|(vänsterkurva(n?))
|((höger)?kurva(n?)))[^,\\!\\s\\.]*)"

This pattern finds
words that describe
the road
configuration. The
configuration can
be crossroad,
straightroad or a
bend.

korsning,
högerkurva

Table 5. Patterns and descriptions for regular expressions and road configuration words.

For the motion words category, there is one pattern as seen in Table 6.

Pattern Description Example
"(([^,\\!\\s\\.]*(krock|krasch|ramma|toucha|studsa|påkör|kolli|
(kör[^,\\!\\s\\.]* in i)|(for
emot)|törnade)[^,\\!\\s\\.]*)|([^,\\!\\s\\.]*
(volta|(kör[^,\\!\\s\\.]* av vägen)|kör[^,\\!\\s\\.]* på|(slog
runt)|(slog emot)|(slå runt)|(slå
emot))[^,\\!\\s\\.]*)|([^,\\!\\s\\.]*
(slunga[^,\\!\\s\\.]*|sladda[^,\\!\\s\\.]*|braka[^,\\!\\s\\.]*
|kana[^,\\!\\s\\.]*|rände|ränna|törna[^,\\!\\s\\.]*|smäll
[^,\\!\\s\\.]*|for|fara|slog|slå|dunsa
[^,\\!\\s\\.]*)[^,\\!\\.]*(in i)[^,\\!\\s\\.]*))"

This pattern
searches for
words that
indicate some
kind of
movement.

sladda

Table 6. Patterns and descriptions for regular expressions and motion words.

2.5 Colorization of the text

The graphical user interface colorizes the words interactively as the texts are selected. The
idea behind displaying certain words in predefined colors is to simplify the reading of the
reports. In order to quickly understand the course of the accident without reading the whole
report, it is possible to just look for the colored keywords. This, in combination with the
graphical simulation, simplifies and speeds up the understanding of the accident described in
the report. It also helps the reader to identify the interesting parts of the text. Some reports
contain a lot of text that does not provide any information about the configuration of the scene
or the actors. Typically, these texts involve injuries and casualties as a result of the collisions.

Currently the colorization of the words indicating the weather condition is the only part of
the program that takes those variables into account.

Table 7 shows the defined colors for the different word type categories.

 15

Category Color
Road words Yellow
Obstacle words Green
Road configuration words Pink
Condition words Magenta
Motion words Red

Table 7. Definitions of colors for different types of words.

An example of a text that has been colored can be seen in Figure 3.

Figure 3. The picture shows the coloring of the text.

2.6 Extraction of the Static Objects and the Road Configuration

This section describes how the static objects and the road configurations are extracted from
the reports. This part has been developed in parallel with the colorization of keywords in the
text. The regular expressions used to find words describing static objects are used both to
colorize and to fill the template with the information about these objects. During development
of the program, the colorization of the words has made it easier to verify that the text analysis
part actually finds the right words.

 16

Static objects are objects that have a passive role in accidents. They can be hit but cannot
hit anything since they cannot move. Static objects that are searched for in the text are trees,
stopsigns, trafficlights and obstacles such as poles. Limitations in the graphical simulation
module make all obstacles appear as trees in the graphic simulation. This does however not
affect the filling of the XML template.

The road configuration is basic information about the scene of the accident. To find it, a
list of words was manually extracted from the corpus by reading it and finding the words that
describe crossings and turns. There are four different possibilities: it can be a crossing, a
straight road or a road that turns either left or right. If a word indicating a turning road is
found, the sentence is searched for words that indicate whether it is a left- or rightturn. For
example in the sentence Bussen kraschade in I ett träd på höger sida om vägen, “The bus
crashed into a tree on the right side of the road”, the word höger, “right” indicates that the bus
left the road to the right and that the tree should be placed on that side. If no such word is
found it is defaulted to a rightturn since it has to be set in order for the program to function.
The same technique is used for trying to find what side of the road that for example a tree is
situated at.

If a static object is found it is added to the static objects part of the template in XML
format. If several trees are found in the same text, they are given different coordinates. Road
configuration is set to straightroad as default if no other type is found.

For the colorization the regular expressions are used to find words describing roads and
roadnames. For this application that information is not useful. A roadname such as
Strandvägen gives no information about the type of road.

2.7 Extraction of the Words that Indicate Motion and Collisions

The technique that is used to find the static objects with regular expressions is also used to
find the words indicating motions and collisions. To find these words and develop regular
expressions, the development corpus has manually been read and searched for such words.
After the manual extraction, a list of words has been found. The actual list of patterns to
search for becomes shorter after including some regular expressions.

Being able to find the words that describe motions and accidents, gives a method to find
the sentences that are of importance to extracting information about the dynamical objects.

Verbs that indicate a crash, crash verbs, are important for finding the participants in an
accident, ie. the subject and object of the sentence. The structure that needs to be found is:
<subject>, <crash verb> and <object>.

Here is an example:

Bilen krockade med en buss
“The car collided with a bus.”

In the example, the car is the subject, the bus is the object, and collided is the crash verb.

The generalized pattern is <subject> collided with <object>.
In a sentence, it is possible to find the subject and object if the verb is known. This is

accomplished by applying different rules, but requires a grammatical analysis of the text. The
verbs that indicate motion can give information about the direction of the vehicle or in what
direction it left the road.

Bilen färdades västerut på vägen.
“The car was traveling west on the road.”

 17

Bilen sladdade till höger och lämnade vägen.
“The car skidded to the right and left the road.”

The lists of words that imply collisions or motions are stored in text files that are read by

the program. Hence it is easy to modify and enlarge the list of words to search for in a future
development of the database of reports.

2.8 The Grammatical Analysis of the Text

When a word describing a motion or a collision is found, the next step is to find the subject
and the object in the same sentence as the found word. To do this we carry out a grammatical
analysis of the text that consists of three steps. The text is split into sentences. Every sentence
is tagged by a part-of-speech tagger. Finally grammatical rules are applied to find noun
groups that are annotated as subject and object

2.8.1 The Sentenizer Class

The Sentenizer class is responsible for tokenizing and dividing the text into sentences.
This is needed in order to be able to use the Granska part-of-speech tagger. Granska analyzes
and tags one sentence at a time and cannot handle the full text. A full report is split into
sentences, which are then analyzed one by one by the tagger. To split the text into sentences
the JDK, Java Development Kit, class BreakIterator is used. The BreakIterator
class has methods for finding locations of boundaries within texts. The sentence boundary
analysis gives the correct location for the boundaries between the sentences in most cases. It
handles quotation marks, parentheses and abbreviations.

Only one construct that does not give a correct location of the sentence boundary has been
found in the corpus Nyheter. This means that it is necessary to search for that kind of
structure. When a sentence starts with a dash after another sentence as in the following
pattern, “sentence. - sentence” it is wrongly seen as one sentence. Here follows two examples
taken from the corpus. They both have the structure that the BreakIterator class cannot
handle.

Innan han hann reagera körde Niklas i 90 kilometer i timmen rakt in i en parkerad
bil. - Jag hade inte en chans att bromsa när jag insåg att bilen stod parkerad, och att
svänga över till höger körfält var en omöjlighet eftersom trafiken var så tät, berättar
han.

“Before he could react Niklas crashed into a parked car at 90 kmph. –I had no chance
to break when I realized that the car stood parked and to turn over to the right lane
was impossible because of the heavy traffic, he says.”

Den omkomne 20-åringen var ensam i sin bil och körde i riktning mot Borgholm. I en
mötande bil åkte tre kvinnor och fyra män. - Det finns uppgifter om att den ensamme
förarens bil har kommit över på fel sida av vägen, men det är någonting vi
fortfarande utreder, säger närpolischef Sven-Erik Karlsson vid Kalmarpolisen till TT.

“The 20-yearold that died was alone in his car and was driving towards Borgholm.
Three women and four men were traveling in a car in the opposite direction. –There
are statements that the driver of the car traveling towards Borgholm came over to the

 18

wrong side of the road, but that is still under investigation, says the policeofficer
Sven-Erik Karlsson of the Kalmar police to TT.”

The two sentences and any other sentence after them that starts with a dash are seen as one

sentence while they in fact are not. The solution to this problem is to check every sentence
received from BreakIterator for the “. - [A-Z]” structure with a regular expression and
if it is found to split it into two or more sentences. The pattern that is used to find the structure
in a sentence that BreakIterator fails to divide properly looks like this: "."+" "+"-"+" ".

2.8.2 The Granska Part-of-Speech Tagger

Granska (Domeij et al. 1999) is a program for computer-aided examination of language. It is
being developed at KTH in Stockholm. It looks like a regular text editor, but also has
functions for evaluating the written texts and giving suggestions to correct errors. It will find
both spelling errors and grammatical errors.

Granska uses a set of rules to find grammatical errors for example in Swedish an adjective
in singular may not be followed by a noun in plural.

A part-of-speech tagger is included in the Granska program (Carlberger and Kann, 1999).
It analyzes one sentence at a time and marks every word with its part-of-speech and
morphological tags.

The Granska POS tagger has been integrated into the CarSim system and tested both in
Windows and Unix runtime environment. The program is written in C++ and therefore
introduces some minor portability issues to the CarSim system. To be able to tag the full text
from the report, the text first has to be split into sentences by the Sentenizer class. After
that the first sentence is temporarily stored on disk in a text file. Granska is then told to
analyze the text file and the CarSim program reads the output. The tagged sentence is then
ready for further analysis and the next sentence is saved on disk for tagging. Figure 4 shows
the flow from a full report that is sent to the sentenizer and split into sentences and then
analyzed by the Granska tagger.

 Report

The full text.
Sentenizer
Splits text into
sentences.

Granska
Analyzes and tags
every sentence.

Tagged sentences
Ready for further
analysis.

Figure 4. The picture shows the flow through the system for a sentence getting tagged.

The following text shows the tagged version of the sentence:

En allvarlig bilolycka inträffade vid åttatiden på tisdagskvällen på Linnégatan i
Limhamn.

“A serious car accident occurred around 8 pm on Tuesday evening at Linnégatan in
Limhamn.”

En <dt.utr.sin.ind> allvarlig <jj.pos.utr.sin.ind.nom> bilolycka
<nn.utr.sin.ind.nom> inträffade <vb.prt.akt> vid <pp> åttatiden
<nn.utr.sin.def.nom> på <pp> tisdagskvällen <nn.utr.sin.def.nom> på <pp>
Linnégatan <pm.nom> i <pp> Limhamn <pm.nom> . <mad>

 19

The tags use the SUC, Stockholm-Umeå Corpus, tag set. It takes too much space and

makes the text hard to overview to print out the full names of the tags for every word, so
abbreviations are used. Table 8 shows the tags and their meaning for the given example
sentence.

Word Tags Meaning
En dt.utr.sin.ind determiner.utrum.singular.indefinite
allvarlig jj.pos.utr.sin.ind.nom adjective.positive.utrum.singular.indefinite.nominative
bilolycka nn.utr.sin.ind.nom noun.utrum.singular.indefinite.nominative
inträffade vb.prt.akt verb.preterite.active
vid pp preposition
åttatiden nn.utr.sin.def.nom noun.utrum.singular.definite.nominative
på pp preposition
tisdagskvällen nn.utr.sin.def.nom noun.utrum.singular.definite.nominative
på pp preposition
Linnégatan pm.nom pronoun.nominative
i pp preposition
Limhamn pm.nom pronoun.nominative
. mad Marks the end of the sentence.

Table 8. A tagged sentence explained.

2.9 Finding Subject and Object By Phrase analysis

A sentence can be divided into different kinds of phrases, for example noun phrases, verb
phrases, prepositional phrases, and adverb phrases. The phrases are well defined and can be
extracted from a text that has been tagged by a part-of-speech tagger.

If the crash verb in a sentence is known, the possible subject and object can be searched by
finding the noun phrases of the sentence. A noun phrase is defined to follow one of three
patterns (Megyesi and Rydin, 1999):

1. It can be a single pronoun.

[PRON]
2. It can also be an optional determiner followed by one or more optional numerals followed

by an optional adjective phrase followed by one or more optional numerals followed by at
least one noun.
(DET)([NUM]+)(AP)([NUM]+)[NOUN]+

3. Finally, it can be an optional determiner followed by a possessive pronoun followed by an
optional adjective phrase followed by at least one noun.
(DET)POSSPRON(AP)[NOUN]+

Once all the noun phrases are found, they create a list of possible subjects and objects.

However, only noun phrases that are not part of a prepositional phrase can be subjects or
objects. A prepositional phrase has a structure of a preposition followed by a noun phrase or a
preposition followed by a conjunction followed by a preposition followed by a noun phrase.

 20

The conclusion here is that it is enough to search for the first possible word preceding a
noun phrase and see if it is a preposition to determine if it can be a subject or object to the
crash verb.

Here is an example of a sentence tagged with the Granska tagger:

En bil färdades västerut på Strandvägen kom över till vänster och krockade med ett
träd.

“A car was traveling west on Strandvägen, came over to the left and collided with a
tree.”

And this is how is looks like after it has been tagged with the Granska part-of-speech tagger:

En <dt.utr.sin.ind> bil <nn.utr.sin.ind.nom> färdades <vb.prt.sfo> västerut
<ab>på <pp> Strandvägen <pm.nom> kom <vb.prt.akt> över <pl> till <pp>
vänster <nn.utr.sin.ind.nom> och <kn> krockade <vb.prt.akt> med <pp> ett
<dt.neu.sin.ind> träd <nn.neu.sin.ind.nom> . <mad>

In this case, the crash verb is krockade and the noun phrases are:

Vänster, “left”
En bil, “a car”
ett träd, “a tree”

Here, the only noun phrase not preceded by a preposition is En bil, “a car”, and is hence by

the above rules the only possible subject or object to the crash verb krockade, “collided”.

2.10 Patterns

There are certain constructs and patterns of sentences that are common and that can be found
for different words with similar meaning. For more information about the technique see
FrameNet (Johnson et al. 2002).

We have manually designed a set of patterns using the development part of the Nyheter
corpus. Table 9 lists the structures we found relevant where *fill1 is the set {våldsamt, häftigt,
kraftigt, därvid, in} and *fill2 is {annat, annan, mötande, andra, tredje, två, framför}.

 en
1. Participant 1 crash verb fill1* med ett fill2* participant 2
 den
 en
2. Participant 1 crash verb fill1* mot ett fill2* participant 2
 den
3. Participant 1 crash verb fill1* i en fill2* participant 2
 ett

Table 9. Extraction patterns.

Example sentences from the three different main cases:

 21

1. Bilen krockade våldsamt med en mötande buss.

The car crashed into the meeting bus.
2. Lastbilen kolliderade därvid med den andra stolpen.

The truck then collided with the other pole.
3. Bussen körde in i staketet.

The bus drove into the fence.

The fill1 and fill2 lists and the “en, ett, den” are optional and do not have to be a part of the

sentence for the pattern to be fulfilled. From these patterns, it is obvious that the words before
and after the crash verb likely are the subject and object of the sentence. But in some cases
these patterns break the rules stated above about noun phrases not being part of a
prepositional phrase. Therefore the program looks for these patterns and if they are found
adds the objects to the list of possible objects and subjects even though they are not supposed
to be that according to the rules above.

2.11 How the Subjects and Objects are Extracted

To find the subject and the object in a sentence, even when the verb is known, is a hard task.
The rules above with phrase analysis and common patterns give two lists of candidates: one
with subjects and one with objects. We applied general topological rules governing the place
of the subject and object relative to the verb in Swedish. There are some rules that can be
applied to where the subject and object can be placed relative to the verb and to each other.
Here we use a combination of grammatical and semantic heuristics.

The sentences should have one of the following structures:

• Subject verb object.
• Subject object verb.
• Verb subject object.

The two lists are iterated and every word is checked against a list of words describing

vehicles and static crashable objects like trees and poles. Words not found in the lists are
disregarded. This makes the two lists shorter, since the ones not matching words describing
vehicles and static objects are removed. If there are no words filling all the criteria the lists
may be empty.

The algorithm works as follows: If both the lists of candidates before and after the verb are
nonempty, the first words, ie. the ones closest to the verb, is set as subject and object in case
of a crash verb. If it is a motion verb the subject is be set as the first candidate before and then
the sentence is searched for a word describing a direction. If one list is empty and the other
list contains two or more candidates it may add the two closest words in the nonempty list as
subject and object.

2.12 Finding the Dynamic Objects

Once the relevant parts have been extracted from the sentences found by searching for crash
verbs and motion verbs, they have to be saved in some kind of data structure. To handle this
the class VerbPhrase2 is used. It holds information about the verb, the subject, the object
and the full text of the sentence. In the case of a motion verb, the object contains information
about the direction, while it describes a vehicle or a static object in the case of a crash verb.
The VerbPhrase2 class also has methods for finding what are the parts of the vehicles that

 22

were involved in the collision and for finding directions. This can be found by searching for
words in the sentence that says what part is involved.

For example, if it is given in the text that a car traveling west crashed into the left side of
another car it is assumed that the second car was driving north if no other information about
its direction is given.

The simulator needs an initial direction for all the dynamic objects in order to know where

to place them and in what direction they should initially move.

2.13 Accidents

When all the text is analyzed and the VerbPhrase2 frames are filled with information from
sentences with crash verbs and motion verbs, the dynamic objects and collision structure need
to be created. The class DynamicObject holds information about the name of the road the
vehicle starts on, what kind of vehicle it is (car or truck), its initial direction, the real word
found in the text (for example Volvo), a list of events that the dynamic object carries out and a
boolean parameter that tells if the dynamic object is involved in a collision or not. When an
object of type DynamicObject is created it has none of this information but the class has
methods for finding it. For example, if the subject is called Volvo it is matched against a list of
words that describes cars and when the match is found it is set to car. If no match is found it is
instead set as truck. Not all objects from the verb phrases are dynamic objects since they can
also be directions or static objects.

The program uses a simple algorithm to identify the dynamic objects and resolve the co-
references. It goes through the verb phrases and identifies dynamic objects from the subjects
and objects. The dynamic objects are added to a list after a check that they have not already
been created. Dynamic objects and static objects are linked together by their id numbers if
they are involved in a collision. The dynamic objects also get events added to their event lists
according to the information in the verb phrases that contain motion verbs.

After all information is extracted and filled into the XML template, the graphical
simulation module reads the template and creates a visualization of the scene. When the
simulation button is pressed a new window, shown in Figure 5, is opened. There are two
buttons in that window, one for starting the simulation and one for stopping it. If the play
button is pressed the simulation starts and the crash is shown. This is shown in Figure 6.

 23

Figure 5. The window shows the graphical simulation of the accident.

Figure 6. The result after a simulation is run, a crash.

 24

Chapter 3 A Complete Example

To show how the system works, an example is now given that shows the entire process from
start to end.

The text below describes the accident that is analyzed in this example.

En person skadades lindrigt vid en bilolycka på Slottsgatan. Bilen körde in i ett träd
på vänster sida av vägen av okänd anledning. En person satt i bilen och skadades
lindrigt. Någon brottsmisstanke finns inte, men polis och ambulans larmades till
olycksplatsen strax innan halv två i natt. Man spekulerar i att olyckan orsakats av
halka i kombination med en skarp vänsterkurva.

“One person sustained minor injuries after a car accident on Slottsgatan. The car
crashed into a tree on the left side of the road by unknown reason. One person was in
the car and was slightly injured. There is no suspicion of crime, but the police and an
ambulance were called to the scene of the accident just a moment before half past one
last night. The accident was likely due to slippery conditions in combination with a
sharp left turn.”

The analysis starts with extracting the static objects and coloring the keywords in the text.

In this case, the word vänsterkurva, “left turn”, in the last sentence describes the road
configuration and it is set to turn_left. In the same sentence, the word halka implies slippery
conditions and is therefore colored with magenta. The word Slottsgatan is found by the third
regular expression that looks for road names and is displayed in yellow colour. There is only
one sentence with a crash verb and a motion verb, namely the second one. The words körde
in, “drove into”, from the second sentence are marked in red to show that they describe a
crash and motion. A tree is added as a static object from the word träd, “tree”, in the second
sentence.

The sentence

Bilen körde in i ett träd på vänster sida av vägen av okänd anledning.
“The car crashed into a tree on the left side of the road by unknown reason.”

is taken from the text by the Sentenizer, saved on disk in a text file, and then be tagged by
Granska. The tagged sentence is analyzed and the word Bilen is added to the subject candidate
list after the phrase analysis and the word träd is added to the object candidate list when going
through the common pattern technique. Since both lists are non-empty and both Bilen and
träd match the lists for possible subjects and objects they result in a verb phrase with Bilen,
körde, träd where körde is a crash verb.

Since the verb körde also matches a motion verb another verb phrase is created with Bilen,
körde, vänster.

When analyzing the verb phrases and trying to create the dynamic objects and resolve the
collision, the verb phrases are used. From the first verb phrase, a dynamic object with real
name Bilen is added as a car since it matches one of the words in the list describing cars. The
id number of the dynamic object and the id number of the tree are linked together as being
involved in a collision. When analyzing the second verb phrase the subject has the same

 25

realword, Bilen, as an already existing dynamic object and no new object is therefore created.
However the event change_lane_left is added to the existing dynamic object.

The dynamic object finds the road name Slottsgatan as the road it is initially driving on and
it is also displayed as an attribute.

 VerbPhrase2

(Bilen, körde, träd)

VerbPhrase2
(Bilen, körde, vänster)

DynamicObject
Type=car
Id=car1
Eventlist
Driving_forward+
change_lane_left

Collision
Actor=car id=car1
Victim=tree id=tree1

Figure 7. The picture shows the information that is extracted in the example and how it is represented.

 26

Chapter 4 A New and Extensible Graphical User Interface

When this project started, there were two modules for text analysis: one for French texts and
one for English texts. They had separate graphical user interfaces, which meant that they
could not be run in the same program. In order to make the system more user-friendly and to
simplify future expansions, it was necessary to integrate all modules for text analysis into the
same interface. The program developed for the English version was used as a basis to create a
more generic version.

The previous user interface made it possible to choose a report from a list showing all the
reports, edit a report, save a report, create a new report and to generate the XML template
from the report. Another list holds all the already generated XML templates and there are
buttons for saving, creating and for validating the selected XML template. There are also four
drop down menus with various options and functions, such as selecting language, exiting the
program, saving and editing files and for starting the three dimensional simulation.

The English reports were read from a hard coded folder name containing text files named
*.ana. The generated template files were saved in the same folder and named *.ade. The
French texts were also stored using this structure. The corpus consisting of reports about car
accidents collected from Swedish newspapers use a different structure. The Swedish reports
are all stored in one XML file. To be able to read the reports and generate the template it is
necessary to know what type of structure the reports are stored in.

To make the program more general, a new drop down menu consisting of two parts was
added. In the first part, it is possible to select the corpus from which the reports should be
listed and in the second what tool to use for analyzing the chosen reports. When the program
starts, all subfolders to the folder carsimdata, which is located in the root directory, are
examined. If they are not empty, they are added to a list in the menu with the same names as
the found folders. This makes it easy to add a folder containing a new corpus to the program
without editing the code. The tools to read and analyze the selected type of reports are static
but there can be several different tools for each type of report and language.

Figure 8 and Figure 9 show the functionality added to the graphical user interface. In
Figure 8, the menu shows the four corpuses the user can choose: MAIF, NTSB, Nyheter, and
Strada. Figure 9 shows that there are two different tools for English, one tool for Swedish, and
one for French.

The XML template generation is started by pressing a button in the graphical user
interface. If no tool is selected a message appears and asks the user to select one. When a user
selects a report type from the menu, the folder containing the selected reports is examined.

Different techniques for reading the report are used depending on if they are stored in
XML or .ana format. A folder may contain several XML files, but also some .ana files. This
does not affect the program however and all files regardless of format are added to the visible
list of reports. The elements in the list are named by the file they come from. If a report comes
from an XML file it is given a number that indicates where in the XML file it is located. For
example an XML file named corpus.XML may contain ten reports. The third report in the
file will then get the name corpus.XML.3 since the numbering starts at one and increases
by one for every read report.

 27

Figure 8. The picture shows the dropdown menu that is used for choosing what corpus to work on.

Figure 9. The Figure shows the dropdown menu for selecting what tools to use.

 28

Chapter 5 Discussion

5.1 Result and Evaluation

During the development of the program only half of the 209 reports in the corpus Nyheter
were used. All the algorithms and methods were run and tested on these reports. Even though
the methods are written in a general way to work for all kinds of text, it is natural to expect a
higher amount of reports that can be correctly analyzed among those reports compared to
another set of reports. Among the reports used during development four are in full correctly
analyzed. Some reports are close to being correctly analyzed but have some error in the
representation.

To evaluate how well the system works the program was run for the other half of the
corpus Nyheter. The result can be compared to the numbers achieved with the development
half of the corpus and give a measure of how general and robust the system is. One report
from the half not used during development is correctly analyzed. A number of other reports
are close to being correctly analyzed. It is likely that additional development on this part of
the corpus will yield a number of correctly analyzed reports.

Table 10 shows the results from running the first 30 reports in the corpus Nyheter. The
symbols and headings used are first explained:

The text The report that is run.
Actors Shows if the number of actors is correctly extracted.
Crash Shows if the crash is correctly extracted.
Events Shows if the events of the dynamic objects are correct.
Initial direction Shows if the initial direction is correctly extracted.
Coordinates Shows if the coordinates of the static objects are correct.
Static objects Shows if the static objects are correctly extracted.
Number of elements found Shows how many objects that are found in the text.
Correct IE Shows if the information extracted is correct.
Correct without the events Shows if the information extracted is correct if the events are

not considered.
Realistic Shows if the template is correctly filled and if the graphical

simulation is correct.

A one indicates that the category is correctly extracted and a zero that it is not. If the

information cannot be found in the text, then it is indicated by a question mark.

 29

The text Actors Crash Events Initial
directions

Coordinates Static
objects

Number of
elements found

Correct
IE

Correct without
the events

Realistic

Bils.xml.0 0 0 0 ? ? 1 0 0 0 0
Bils.xml.1 0 0 0 0 ? 1 2 0 0 0
Bils.xml.2 0 0 0 0 ? 1 1 0 0 0
Bils.xml.3 0 1 1 1 1 0 3 0 0 0
Bils.xml.4 0 0 0 ? 1 1 1 0 0 0
Bils.xml.5 0 0 0 ? ? 1 0 0 0 0
Bils.xml.6 0 1 1 1 1 1 4 0 0 0
Bils.xml.7 0 0 0 0 ? ? 0 0 0 0
Bils.xml.8 0 0 0 ? ? 1 1 0 0 0
Bils.xml.9 0 0 0 0 1 1 1 0 0 0
Bils.xml.10 0 0 0 0 0 1 0 0 0 0
Bils.xml.11 0 0 0 1 0 1 1 0 0 0
Bils.xml.12 0 ? ? ? ? 1 0 0 0 0
Bils.xml.13 0 0 0 0 0 1 0 0 0 0
Bils.xml.14 0 0 0 ? ? 1 2 0 0 0
Bils.xml.15 0 0 0 ? ? 1 0 0 0 0
Bils.xml.16 0 0 0 ? ? 1 1 0 0 0
Bils.xml.17 0 0 0 0 0 0 0 0 0 0
Bils.xml.18 0 0 0 0 1 1 2 0 0 0
Bils.xml.19 0 0 0 1 ? 1 1 0 0 0
Bils.xml.20 0 0 0 0 ? 0 5 0 0 0
Bils.xml.21 0 0 0 0 ? 1 3 0 0 0
Bils.xml.22 0 0 0 0 ? 1 2 0 0 0
Bils.xml.23 0 0 0 0 ? 0 4 0 0 0
Bils.xml.24 0 0 0 0 0 0 4 0 0 0
Bils.xml.25 1 0 0 0 ? 1 2 0 0 0
Bils.xml.26 0 0 0 0 ? 1 0 0 0 0
Bils.xml.27 1 1 1 1 ? 1 2 1 1 1
Bils.xml.28 0 0 0 0 ? 1 1 0 0 0
Bils.xml.29 0 0 0 0 ? 1 6 0 0 0
Bils.xml.30 0 0 0 0 0 0 3 0 0 0

Table 10. The table shows information about how well the system analyzes reports.

bils.xml.0 There is no crash verb in the text so no accident or actors are found.
bils.xml.1 The system finds two dynamic objects but there is only one mentioned in the

text. It finds the road configuration and the road name.
bils.xml.2 The text does not contain a crash verb and the accident is not found.
bils.xml.3 The crash is found correctly, but the system fails to find one dynamic object

not involved in the accident. The road configuration is also found, but two trees
are found where it should only be one.

bils.xml.4 The text does not contain information about the vehicle that crashes into a tree.
bils.xml.5 The system fails to find the actors and the collision.
bils.xml.6 The road configuration is correctly found. Also the static object traffic light is

extracted with the correct colour. The system finds the dynamic objects and the
collision, but adds one dynamic object that is not supposed to be there.

bils.xml.7 No keywords are found in the text and the default XML template is generated.
bils.xml.8 The text is hard and contains several collisions.
bils.xml.9 The vehicle that crashes is not mentioned. The system cannot handle sentences

like "The man crashed into the tree".
bils.xml.10 The system fails.
bils.xml.11 This is a long text and the system fails.
bils.xml.12 No keywords are found in the text and the default XML template is generated.
bils.xml.13 The only information found is about the roadconfiguration and a roadname.
bils.xml.14 The system finds the wrong actors even though the number is correct. A

collision is found, but not correct. Road configuration and roadname are
correct.

bils.xml.15 No keywords are found in the text and the default XML template is generated.
bils.xml.16 The system finds one of three dynamic objects and fail to realize the collision.
bils.xml.17 This is a long and hard text and the system fails.
bils.xml.18 This is a long and hard text that contains several different accidents and the

system fails.
bils.xml.19 The vechicle that crashes is not mentioned. The system cannot handle

sentences like "The man crashed into the tree".
bils.xml.20 This is a long and hard text that contains several different accidents and the

system fails.
bils.xml.21 This is a long and hard text that contains several different accidents and the

system fails.
bils.xml.22 The text describes a complex accident involving three cars and the system fails.

The road configuration and roadnames are correctly extracted.
bils.xml.23 This is a long and hard text that contains several different accidents and the

system fails.
bils.xml.24 This is a long and hard text that contains several different accidents and the

system fails.
bils.xml.25 The actors are found, but the initial directions and the events are wrong.
bils.xml.26 The text does not contain any crash verbs and no dynamic objects are found.
bils.xml.27 The information is correctly extracted from this report.
bils.xml.28 This is a complex text and the system fails.
bils.xml.29 This is a long and hard text that contains several different accidents and the

system fails.
bils.xml.30 This is a long and hard text that contains several different accidents and the

system fails.

5.2 Future Development

There are two main parts of the system that need improvements: the template structure and the
information extraction.

The current template does not contain all the different scenarios and objects that are needed
to give a more correct and reasonable representation of the accident. With more objects and
information added to the template, the simulation will be more accurate in the cases where
that information can be extracted from the text. All parts of the template would not be filled
for every text because sometimes the information is not given. Giving more information about
the accident might also attract people working with traffic safety by analyzing accidents. If
more information is given and shown about the accident it is easier to draw conclusions about
the cause of the accident.

New attributes describing information about the road could be added to the template. They
could show the weather condition, temperature, time and light conditions. Other issues that
might be of interest are if the road is on a slope and what material is on the surface of the
road. Also many active and passive objects could be added such as pedestrians, animals, elks,
birds, and other obstacles.

A new more exhaustive template will demand a reworking of the graphical simulation
module to be able to represent the new objects and to read the new template structure.
Currently there is for example only one car model. One possibility is to add a specific car
model for every brand.

The other part of this work, the information extraction module, has room for many
improvements. The template is the link between the two main modules and the proposed
changes will also affect the information extraction module. New attributes added to the
template means that methods for extracting that information from the text must be
implemented.

The current extraction of information from the Swedish texts also has room for
improvements. There are cases the system cannot handle, for example the sentence:

Två bilar körde in i varandra.
“Two cars crashed into each other.”

The system will in this case fail to find that it is two cars and only find one actor, bilar,

“cars”, and the crash verb körde, “drove”, but no victim.

 32

Chapter 6 Conclusion

This report starts by generally describing language processing and the CarSim system. Then it
describes in detail how the language analyzers were integrated into the same graphical user
interface and how the tools for analyzing Swedish texts were developed and how they work.
The report covers the use of regular expressions and the part of speech tagger Granska.

The methods for finding the information and the structures that store information are
described. An example describes step by step how a given text is transformed to a graphical
simulation.

In the end of the report, the results are presented and suggestions for future improvements
are discussed.

 33

References

Giovanni Adorni, Mauro Di Manzo, Fausto Giunchiglia, Natural language driven image
generation. In Proceedings of COLING 84, Stanford, California, 495-500, 1984

Ola Åkerberg, Hans Svensson, Development and Integration of Linguistic Components for an
Automatic Text-to-Scene Conversion System, Lunds universitet, LTH, MSc. Thesis, Lund,
August, 2002.

Michael Arens, Artur Ottlik, Hans-Hellmut Nagel, Natural language texts for a cognitive
vision system. In van Harmelen, F., ed.: ECAI2002, Proceedings of the 15th European
Conference on Artificial Intelligence, Lyon, 455 459, 2002.

Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, Extensible Markup Language
(XML) 1.0, Second Edition, W3C Recommendation, 6 October 2000,
http://www.w3.org/TR/REC-xml

Johan Carlberger, Viggo Kann, Implementing an efficient part-of-speech tagger, Software
Practice and Experience, 29, 815-832, 1999.

Bob Coyne, Richard Sproat, Wordseye: An automatic text-to-scene conversion system. In
Proceedings of the Siggraph Conference, Los Angeles, 2001.

Mauro Di Manzo, Giovanni Adorni, Fausto Giunchiglia, Reasoning about scene descriptions,
IEEE Proceedings, Special Issue on Natural Language, 74, 1013-1025, 1986

Rickard Domeij, Ola Knutsson, Johan Carlberger, Viggo Kann, Granska – ett effektivt
hybridsystem för kontroll av svensk grammatik, NoDaLiDa’99, 49-56, December 1999.

Sylvain Dupuy, Arjan Egges, Vincent Legendre, Pierre Nugues, Generating a 3D Simulation
of a Car Accident From a Written Description in Natural Language: The CarSim System, in
Proceedings of The Workshop, on Temporal and Spatial Information Processing, pp. 1-8,
ACL 2001 Conference, Toulouse, 7 July 2001.

Christopher R. Johnson, Charles J. Fillmore, Miriam R. L. Petruck, Collin F. Baker, Michael
Ellsworth, Josef Ruppenhofer, Esther J. Wood, FrameNet: Theory and Practice, Version 1.0,
Printed September 13, 2002,
http://www.icsi.berkeley.edu/~framenet/book/book.html

Beáta Megyesi and Sara Rydin, Towards a Finite State Parser for Swedish, Proceedings
NoDaLiDa’99, Trondheim, Norway, December 1999.

Bastian Schultz, Development of an Interface and Visualization Components for a Text-to-
Scene Converter, Lunds universitet, LTH, MSc. Thesis, Lund, 2002.

Abbreviations

DOM Document Object Model
DTD Document Type Definitions
JAXP Java API for XML Processing
JDK Java Development Kit
KTH Kungliga Tekniska Högskolan
SAX Simple API for XML
SUC Stockholm-Umeå Corpus
XML eXtensible Markup Language
XSLT Extensible Stylesheet Language Transformations

 36

	Abstract
	Abstrakt
	Contents
	Chapter 1 Introduction
	1.1 Background
	1.2 Purpose and Goal
	1.3 Material Description
	1.4 Challenges
	1.5 Planning
	1.6 Text-to-Scene Conversion Projects

	Chapter 2 Analyzing Swedish Texts
	2.1 The Structure of the Nyheter Corpus
	2.2 Reading the Swedish Texts
	2.2.1 JAXP and the Document Object Model
	2.2.2 Implementation

	2.3 The Template Structure
	2.4 Building the Semantic Lexicon
	Description
	Description
	Example
	Description
	Description

	2.5 Colorization of the text
	Color

	2.6 Extraction of the Static Objects and the Road Configurat
	2.7 Extraction of the Words that Indicate Motion and Collisi
	2.8 The Grammatical Analysis of the Text
	2.8.1 The Sentenizer Class
	2.8.2 The Granska Part-of-Speech Tagger
	Tags

	2.9 Finding Subject and Object By Phrase analysis
	2.10 Patterns
	2.11 How the Subjects and Objects are Extracted
	2.12 Finding the Dynamic Objects
	2.13 Accidents

	Chapter 3 A Complete Example
	Chapter 4 A New and Extensible Graphical User Interface
	Chapter 5 Discussion
	5.1 Result and Evaluation
	5.2 Future Development

	Chapter 6 Conclusion
	References
	Abbreviations

