
INTEGRATION OF SEMANTIC
KNOWLEDGE TO ENABLE RE-USE OF

ROBOT PROGRAMS

Maj Stenmark
Master’s Thesis in Computer Science

Lund University, Sweden 2011

Abstract

To be able to compete globally, European production needs to increase its cost effi-
ciency and have manufacturing lines that can be easily adapted to different products.
Also, tasks that are mainly manual at present, such as the assembly of consumer elec-
tronics, should be automated. One solution is to develop robot systems that are able
to carry out more advanced actions, while autonomously improving the task and being
able to work safely side by side with human colleagues. To enable flexibility, the robots
should be easily instructed.

To simplify the robot programming, instructions should be high level, programs and
tasks should be re-usable and shared in a common online database and tasks should be
self-improving, optimized according to the platform.

The large European research project ROSETTA aims to develop architecture for
knowledge integration, learning and safety. The knowledge is stored in a database
called the knowledge integration framework and accessed by simulation and control
tools, here called the engineering system and the ROSETTA controller respectively.
This Master’s thesis project was carried out within the ROSETTA work groups devel-
oping the knowledge integration framework and the engineering system.

The master’s thesis investigates how robot skills, that is, an implementation of a
robot routine or action, can be shared and re-used. The following topics are addressed:
the types of knowledge that should be stored in framework to enable knowledge shar-
ing and re-use of skills and how this information can be communicated between the
knowledge integration framework and the engineering tool.

The types of knowledge that are considered are 1) state machines describing the
skills as a sequence of states where 2) each state has a set of parameter values that
should be annotated and 3) procedures written in programming code that are stored in
a re-usable way.

The result is a description of the structure for storing the information and the outline
of tools for adding and retrieving the information. The concepts are concretized by
demonstration tools.

Sammanfattning

För att möta den ökande konkurrensen inom tillverkningsindustrin behöver europeisk
produktion öka kostnadseffektiviteten, snabbheten och vara mer anpassad till en ökad
grad av variation bland produkterna. Områden som utförs manuellt i dagsläget, som
montering av konsumentelektronik, bör automatiseras.

Ett sätt att lösa problemet är att automatisera produktionen med flexibla och använ-
darvänliga robotsystem som gör det möjligt att snabbt växla mellan tillverkningsmetod
och som självständigt optimerar uppgiften för varje plattform. Robotarna ska tryggt
kunna arbeta sida vid sida med människor och vara lätta att instruera.

För att förenkla programmeringen av robotar bör instruktionerna fokusera på uppgiften
istället för detaljreglering. Uppgiftsbeskrivningar och data ska lagras i ett gemensamt
kunskapsbibliotek.

ROSETTA är ett europeiskt forskningssamarbete som utvecklar en arkitektur för
att integrera kunskap samt utvecklar lärande och säkerhetssystem. Examensarbetet
utfördes inom arbetspaketen som arbetar med att integrera kunskap och utveckla in-
genjörserktyg.

Examensarbetet undersöker hur implementationer av robotrutiner, så kallade skills,
kan lagras och återanvändas i en kunspasdatabas. Närmare bestämt: vilken kunskap
som ska integreras, hur denna ska lagras på ett återanvändbart sätt och hur kommu-
nikationen mellan datasen och ingenjörsverktyget kan se ut.

Tre typer av kunskap berörs, 1) tillståndsmaskiner som beskriver en uppgift och
där 2) varje tillstånd har en uppsättning parametrar som ska annoteras samt 3) hur
robotrutiner skrivna i programkod ska sparas på ett återanvändbart sätt.

Resultatet är en beskrivning av strukturen för hur denna information ska sparas i
databasen och designförslag på verktyg för att hämta och lägga till information. Kon-
cepten konkretiseras med demonstrationsverktyg.

i

Acknowledgments

The research in the ROSETTA project receives funding from the European Commu-
nity’s Seventh Framework Programme1.

I am grateful for all the help and support I have received from the members of the
ROSETTA work packages 1 and 6 at Lund University and ABB Corporate Research,
without whom the project would not have been possible.

To mention a few: Pierre Nugues, my supervisor at the department of computer
science at Lund University and leader of Work package 1, who introduced me to the
project in the first place and who guided me through the shadows of confusion to the
twilight zone. Mikael Hedelind, my supervisor at ABB Corporate Research, who with
angelic patience and humor endured my questions and lack of formality. Klas Nils-
son, my examiner, let the judgment fall. Jacek Malec, who took over the torch as
team leader after Pierre and always kindly reminded me to send him the reports I had
neglected. Anders Björkelund, who, like an oracle, knew the solution to any program-
ming problem.

Special thanks to Max, who gave brutally honest but constructive criticism on my
report, I will pay you back big time, brother.

Finally, I want to thank my fellow thesis workers, both in Lund and at ABB, for the
friendship and fun. I wish you all good luck.

1P7/2007-2013 – Challenge 2 – Cognitive Systems, Interaction, Robotics – under grant agreement No
230902 - ROSETTA.

ii

Preface

At 19, I wanted the same thing from life as any other teenager, that is, to play with
expensive toys while someone else pays the piper. The details were a bit fuzzy though
and while sorting them out, I decided to chill out studying engineering physics, so that
I, before going anywhere in the world, would know how it ticks. Following the path
of curiosity, I spent a year taking computer science classes in sunny California that
resulted in a specialization in software.

When the time came for the master’s thesis, I run into the ROSETTA project, which
fulfilled my requirements splendidly: it did fun stuff with expensive toys. That is, cre-
ating a collective consciousness for robots, with shared memory and reasoning, taking
us one step closer a dystopian society where the machines have conquered the world,
turning it into a robot anthill governed by a collective brain. Sweet.

This report is the product of that work. The target audience is other students that
are familiar with the basics of computer science. My goal was to avoid technical detail
and to explain everything in a clear and enjoyable manner.

Maj Stenmark, Lund, April 18 2011

iii

Contents

1 Introduction 1

1.1 The ROSETTA Project . 2
1.1.1 Background . 2
1.1.2 Goals . 2
1.1.3 Expected Outcome . 3
1.1.4 Research Areas . 3
1.1.5 Related Work . 5

1.2 Knowledge Integration Framework 5
1.3 The Thesis Project . 6

1.3.1 Purpose . 7
1.3.2 Delimitations . 7
1.3.3 Work method . 7

1.4 Structure of the Report . 8

2 Theoretical Background 9

2.1 Resource Description Framework 9
2.1.1 RDF-triples . 9
2.1.2 URI, Prefix and Context . 10
2.1.3 Inference, RDFS and OWL 11
2.1.4 Ontologies . 12

2.2 SPARQL Query Language . 12

3 Skill Requirements 15

3.1 Skills . 15
3.1.1 Word Definitions . 15

3.2 Types of Knowledge . 16
3.2.1 Finite-State Machines . 16
3.2.2 LabComm Samples . 16
3.2.3 Storing Robot Programs in KIF 16
3.2.4 Example of a Robot Program 18

4 Design 19

4.1 Basic Skills . 19
4.1.1 Classification and Description of Skills 19

iv

4.1.2 Input and Output Parameters 20
4.1.3 Relationships Between Skills 22
4.1.4 Summary of the RDF Representation 22

4.2 Composite Skills . 23
4.2.1 Argument Mapping . 25

5 Implementations 27

5.1 State Machine and LabComm Servlet 27
5.2 Robotstudio Plug-in . 29

6 Evaluation 35

6.1 Results . 35

7 Epilogue 38

7.1 Discussion . 38
7.2 Conclusions . 39
7.3 Future Work . 39

Bibliography 42

v

Chapter 1

Introduction

A spectre is haunting Europe – the spectre of automation. European industry is threat-
ened, production is moved to low-wage countries and unless something is done, Euro-
pean manufacturing will be diminished.

In addition to the global competition, future product lines will be more diverse,
products will have a shorter lifespan and come in various versions. This demands
more cost efficiency and higher levels of flexibility in the automated manufacturing
processes.

This challenge is met by a new generation of industrial robots, that will assist hu-
man workers by automating parts of the production. The objective is to develop flexi-
ble robot systems that can be easily instructed to handle new tasks and autonomously
improve its performance by learning. Also, the robots should be safe around human
colleagues, to enable human-robot collaboration.

The goal is also to simplify and speed up the robot programming, by using high
level instructions. Knowledge is to be stored in a common knowledge framework and
accumulated when working robots upload learned configurations and human program-
mers add task descriptions to a common repository.

The large European research project ROSETTA was launched in 2009, aiming at
developing a framework for knowledge integration and safe autonomous robot systems.
The objectives of the thesis project is to 1) describe what information regarding imple-
mentations of robot routines to store in the framework, 2) define how to store the data
in a generic and re-usable way, and 3) implement tools to demonstrate the concepts.

1

1.1 The ROSETTA Project

Can’t we talk to the humans and work together, now?

– from “Robots” by Flight of the Conchords

ROSETTA is the not entirely obvious acronym for RObot control for Skilled ExecuTion
of Tasks in natural interaction with humans; based on Autonomy, cumulative knowl-
edge and learning. It is a 4-year large-scale European research project that started in
March 2009. The project has a budget of 10 million Euro and is funded by the Euro-
pean Community’s Seventh Framework Programme (ROSETTA Project information,
2011). The project is carried out in co-operation between the following companies and
universities:

• ABB AB (Sweden) – Coordinator

• ABB AG (Germany)

• Dynamore GmbH (Germany)

• Fraunhofer IPA (Germany)

• K.U. Leuven (Belgium)

• Ludwig-Maximilians-Universität Munich (Germany)

• Lunds Universitet (Sweden)

• Politecnico di Milano (Italy)

that together form the project consortium (ROSETTA Consortium, 2011).

1.1.1 Background

The project is based on the belief that future factories will produce high volumes of
goods, but in many variants with short lifespan. Robot systems can provide such an
automated and flexible production line. However, to allow maximum flexibility, robots
and humans should be able to work side-by-side in a safe environment, where the robots
can perform standardized tasks while the human workers can do the more advanced (or
nonautomated) labor, thus complementing each other (ROSETTA Project information,
2011).

1.1.2 Goals

The robots should be able to perform complex tasks with flexibility and robustness and
it should be possible to change products fast, thus making the production efficient and
cost effective.

The robots should appear human-like and interact with the human co-workers in a
safe and intuitive manner, for example by using speech interaction, imitating human

2

motion patterns and avoid situations that can injure humans beings. The latter should
be done by sensor, control and decision making system to provide a safe physical en-
vironment for the human workers (ROSETTA Project presentation, 2010).

Programming the robot systems should be intuitive and related to the task and not
require an experienced robot programmer. Once the robot is programmed, it should be
able to improve the task autonomously. The parameters for the optimized task can then
be shared with other robots via a central server (ROSETTA Project information, 2011).
For the robot systems to be successful, the cost for the robots should match the price
for labor in a low-wage country.

1.1.3 Expected Outcome

The new robot systems will make it possible to automate the manufacturing of new
areas of production, especially where the products are frequently changed, for example
consumer electronics. This should boost the competitiveness of the European industry
by decreasing manufacturing cost and increasing production volume and quality.

Another outcome is the understanding of human-robot interaction in the industry,
for example, a classification of injury risk makes it possible to develop new standards
for robot safety in the industry (ROSETTA Project information, 2011).

1.1.4 Research Areas

The project is divided into four main research areas (ROSETTA Project presentation,
2010):

Intuitive robot

instructions

How to instruct robots on task level rather than programming them;
how to represent knowledge in a shared database and creating a sim-
ulation tool.

Learning Autonomous systems that can optimize tasks and share information.

Robot control Sensor integration and assembly operations.

Safety Human-robot interaction, supervision of the work area and injury
criterias.

Thus, this project does not develop the robots themselves, but use existing robot
platforms for testing.

Each area develops different tools that are dependent on each other, see the overview
in Figure 1.1. The knowledge integration framework, abbreviated KIF (see Section 1.2)
is a server where the knowledge about devices, their capabilities and injury criteria are
stored and reasoned upon. The ROSETTA controller is a platform-independent con-
troller, that imports knowledge from the server and sends it to either the platform de-
pendent robot controller or safety sensors (cameras etc). In turn, the robot controller
communicates directly with the robot, the ROSETTA project uses the ABB concept
robot FRIDA (FRIDA, 2011), seen in Figure 1.1. The engineering system is a tool for
station configuration and simulation, hence it runs a virtual controller.

3

Knowledge Integration Framework

Engineering System ROSETTA Controller

Robot Controller Safety Sensors

Virtual Controller

Figure 1.1: Overall architecture of the ROSETTA project. The robot photo is
provided by ABB (FRIDA, 2011).

4

1.1.5 Related Work

There are several other ongoing large scale projects addressing the same issues of in-
formation sharing and re-use as the ROSETTA project. To mention two:

RoboEarth aims at letting robots perform complex tasks in a dynamic environment
and share re-usable knowledge between robots. Their models are based on OWL
(see Section 2.1.3) and the use of action recipes to describe tasks. The goal is to
be a World Wide Web for robotics. (RoboEarth, 2011).

GeRT aims at making robots robust in novel environments by autonomously general-
izing its manipulating skills to new objects. The projects focus is task planning
for service robots (GeRT, 2011).

The outcome of these projects will be very interesting as will the exchange of ideas
between them.

1.2 Knowledge Integration Framework

Those people who think they know everything are a great annoyance to
those of us who do.

– Isaac Asimov

The KIF, is a database with information on E.g. CAD and device data, stored in a stan-
dardized machine readable format. In the present prototype of KIF, the data is stored in
repositories as RDF triples, which means that knowledge is stored as a graph with ob-
jects as vertices and with edges representing the relationships between the objects, see
Section 2.1. The information is extracted from the database using the query language
SPARQL, see Section 2.2.

RDF is chosen because it is an open, standardized format that can describe objects
platform independently, thus different robot models, even from different manufactures,
share the same knowledge.

Robot and automation data can be expressed in the open, XML-based markup lan-
guage AutomationML 1, which in turn can be transformed into RDF and stored in a
repository, that can be queried.

Figure 1.2 displays the KIF architecture schematically, and is slightly adapted from
(Persson, et al. 2010). The server, which is an Apache Tomcat servlet container 2, uses
SPARQL and the RDF-triple store in the sesame framework 3 for querying and analyz-
ing data. Via the server, the clients can send queries to the repositories and receive data
as a table or graph (ROSETTA Project presentation, 2010). The architecture has three
levels, separating the data storage from any logic on the server side and data presen-
tation in for ecample a web browser on the client side, making it easy to change and
update the different levels separately.

1http://www.automationml.org/
2http://tomcat.apache.org/
3http://www.openrdf.org/

5

Data source Data source Data source

RDF repositories
Sesame

Native XML

XML-to-RDF
conversion
RDF store

SPARQL

Integration server
Java servlet container
Tomcat

SPARQL query

SPARQL result:
table or graph

Rich client Rich client Rich client

Javascript
Tabulator

Figure 1.2: Complete architecture of the knowledge integration framework
(KIF) including the visualization clients. Adapted from Persson et al (2010).

1.3 The Thesis Project

I can do whatever I want. They will tell me if what I am doing is stupid
or a total waste of time. I may tell them that they are wrong, and we will
come to an agreement.

– Bill Budge

One way of instructing the robots on a higher level is to re-use already written pieces of
robot code, called skills. In a graphical user interface, the user can compose the task by
choosing actions from a list of implemented skills. However, to enable this, the skills
should be stored online in the KIF in a way that allows re-use.

There are two possible approaches for storing the programs. The skill can be de-
scribed in an entirely general language, as a state machine or a list of actions from
which robot code can be generated to any given robot language. A generic description
requires a platform-dependent interpretation to be able to run it. Another option is to
store pieces of program code as chunks or binary large objects, BLOBs, in the KIF
database. These views are opposite in how much code and how much interpretation
effort they require, see Figure 1.3.

So, in essence, it is only a matter of scale. A generic description of a skill would
require a long list of actions (or subskills) that each, on some level, has an interpretation
as robot code. The more specific approach has everything as one unchangeable piece
of code. Hence, when populating the database with skills, it is all about finding what
code pieces might be interesting to re-use.

6

General

Generic

Specific

Chunks

Required Interpretation Effort

Size of BLOBs

Figure 1.3: In a general representation, a very small piece of code, maybe only
one line of code, will be generated from the skill, which increases the number
of skills that must be used to program a task and vice versa.

1.3.1 Purpose

The overall purpose of this thesis project is to investigate how to integrate knowledge
about skills in the knowledge integration framework. The project is divided into two
parts: the first part focuses on populating the KIF and data annotation, while the second
part on re-using robot programs.

The first part, performed at Lund University, investigates how to add skills de-
scribed as finite state machines with associated parameters to the KIF.

The second part, carried out at ABB Corporate Research, aims at identifying how
re-usable pieces of robot code can be defined so that they can stored in KIF. It includes
both proposing a structure for the description and implementing an example where a
skill is exported from the engineering system to KIF and later retrieved and used in
another robot program.

The result should be a description on how skills can be defined in the KIF and how
the knowledge can be transferred into the KIF. One important aspect of the result is to
implement tools to demonstrate the concepts. That is, to create user-friendly interfaces
in form of webservices or extensions of existing engineering tools.

The work is valuable because it enables the user to populate the KIF with knowl-
edge and create new programs based on already existing skills and re-using knowledge
from the database.

1.3.2 Delimitations

The thesis work is limited to investigating the storage of re-usable information about
skills in KIF with a focus on annotation and re-use of code. The work also investigates
the information exchange between KIF and the engineering system. The results can be
used as guidelines and the demonstration tools works as a proof of concept.

1.3.3 Work method

The skill description is created in RDF and test and demonstration tools are made using
Java servlets and engineering and simulation tool ABB RobotStudio.

7

The work was carried out together with team members of work package 1 working
with KIF at the department of computer science at Lund University and members of
work package 6 working with the engineering system at ABB Corporate Research in
Västerås.

1.4 Structure of the Report

The report starts with a theoretical background in Chapter 2 where the concepts of RDF
and SPARQL are explained. In Chapter 3, types of knowledge, re-usable information
and requirements are discussed. The design and implementation is described in Chap-
ter 4, while Chapter 6 summarizes and demonstrates the results of the thesis and the
epilogue addresses conclusions and future work.

8

Chapter 2

Theoretical Background

Before continuing to how the skills can be stored in the database, it is important to un-
derstand what is hiding under the hood of the KIF. Thus this chapter is an introduction
to RDF, inference, and SPARQL.

2.1 Resource Description Framework

The Internet is the world’s largest library. It’s just that all the books are
on the floor.

– John Allen Paulos

The Resource Description Framework, RDF is a standard model for data interchange
on the Web. The World Wide Web is a huge information store of human-readable web
pages. The web pages can be extended with metadata that makes the semantic, or
the meaning, of the information understood by machines. This web of data about the
information on the World Wide Web is called the Semantic Web. To enable linking and
reasoning upon the Semantic Web, RDF was created as a suite of specification by the
World Wide Web Consortium, W3C (http://www.w3.org/).

Even though RDF can be used to link the entire World Wide Web 1, the principles
can be applied to smaller data stores as well, thus enabling a little “reasoning” on the
data set (see Section 2.1.3).

2.1.1 RDF-triples

In RDF, information is represented nodes and edges in a graph. The information is
stored as statements with a subject, a predicate and an object, very much like natural
languages. The subject and the object are nodes and the predicate is the directed edge
connecting them, pointing from the subject to the object.

1The details are left as an exercise for the reader.

9

R2D2 C3PO
hasFriend

Figure 2.1: RDF representation of the statement: R2D2 has (a) friend C-3PO
in RDF.

Example 1

To store the statement regarding the friendship between two robots: R2D2 has
a friend C-3PO, the subject would be the robot R2D2, the object is the robot
C-3PO and the predicate would denote the relationship between them. Figure
2.1displays the graph.

Since every statement contains three resources, a subject, a predicate and an object,
another frequently used word for the statement is triple. The predicate is also called
property, since it describes some property of the subject.

2.1.2 URI, Prefix and Context

When talking about RDF, there is a notion that anyone can say anything about any-
thing. This is often referred to as an open world description, which allows anyone to
extend the database with information. An open world is necessary, since RDF was
created to describe the World Wide Web. However, the knowledge in the KIF must
be consistent and hence rules governing the statements are added in a system called
ontology (see Section 2.1.4).

Another step to structure the information is to give each resource a unique ID. Since
RDF is modeling the web, it is natural to take Uniform Resource Identifiers, URI:s, as
unique ID:s.

In example 1, the subject is given the URI:s http://starwars.com#R2D2, the predi-
cate is http://starwars.com#hasFriend and the object http://starwars.com#C3PO.

Spelling out the entire URI:s might be tedious, hence it is possible to declare pre-
fixes. In this case, the following prefix could be used:

prefix sw: http://starwars.com#

Instead of writing the full URI:s, the prefix can be used with a colon to write the
statements as follows:

sw:R2D2 sw:hasFriend sw:C3PO

In the example, the object node can connect to other nodes but does not contain any
data. Therefore, it is also possible to make the object node to a terminal node with
a datatype and value. The datatypes can be strings, Boolean values or numbers. The
values of the terminal nodes are called literal values or simply, literals. E.g. giving
R2D2 a nickname would look like:

10

sw:R2D2 sw:hasNickname “Artoo”

Statements can be “bundled” together in a context, which is also expressed as a URI.

2.1.3 Inference, RDFS and OWL

In RDF there can be object classes, just as in object oriented programming. A re-
source can be declared as an instance of a class by using the pre-defined property
http://www.w3.org/1999/02/22-rdf-syntax-ns#type, which can be abbreviated rdf:type,
using the prefix rdf for http://www.w3.org/1999/02/22-rdf-syntax-ns#.

Just as in object oriented programming, there is a class hierarchy. A class can be
declared as a subclass of another class by using a subClassOf property in the RDF
Schema language, RDFS (RDF Schema, 2011), usually used with the prefix RDFS for
the URI http://www.w3.org/2000/01/rdf-schema#. Of course, an instance of a subclass,
will also have the type of the superclass. Thus extra information is deduced. This is
called inference and is illustrated in example 2.

Example 2

There can be a class sw:Droid which is a subclass of sw:Machine. Using the
property rdfs:subClassOf the following can be stated:

sw:Droid rdfs:subClassOf sw:Machine

Adding an instance of the Droid class:

sw:R2D2 rdf:type sw:Droid

will also give the additional triple through inference:

sw:R2D2 rdf:type sw:Machine

An external tool called inference engine is used to add inferred triples to the repository.
Another set of inference rules are given by the Web Ontology Language, OWL (Web
Ontology Language, OWL, 2011). Two uses of OWL are given in example 3.

Example 3

Continuing with the robot example, making the naive assumption that friendship
is mutual, the hasFriend property should be symmetric. Of course, this could be
stated explicitly that C3PO has (a) friend R2D2, but this can be inferred instead.
In OWL, the there is a class SymmetricProperty that can be used:

sw:hasFriend rdf:type owl:SymmetricProperty

This means that if the statement

11

sw:R2D2 sw:hasFriend sw:C3PO

is present, the other statement

sw:C3PO sw:hasFriend sw:R2D2

will be inferred. The new triple will be added by an inference engine. Just as
classes can be subclasses, properties can be subproperties:

sw:hasFriend owl:subPropertyOf sw:isFamiliarWith

will now infer both triples

sw:R2D2 sw:isFamiliarWith sw:C3PO
sw:C3PO sw:isFamiliarWith sw:R2D2

OWL and RDFS both have a wide range of useful inferences, however, in this thesis
project, it is mostly rdf:type and rdfs:subClassOf that are used.

2.1.4 Ontologies

The use of inference is not limited to OWL and RDFS, it is possible to define an own
set of rules in a ontology. An ontology describes the semantic web, it can include
inference rules, property cardinality (E.g. limiting the number of parents to two) and
declare resources with different URI:s as the same or strictly different, for mentioning
a few.

One example of an ontology, which is used in this thesis project, is the NASA unit
ontology (Nasa unit ontology, 2011). It maps units to quantity kinds, gives each unit
conversion ratios and so forth, for example meters and millimeters are both length units
and the conversion ratios are 1 and 1 000 respectively.

The material and examples covered in this chapter should be sufficient to under-
stand all the details of the thesis project, however, for deeper studies there is an excel-
lent book: Semantic Web for the Working Ontologist: Effective Modeling in RDFS and
OWL, by Dean Allemang and Jim Hendler (2008).

2.2 SPARQL Query Language

The answer to the ultimate question of life, the universe, and everything
is... 42!

– Deep Thought, The Hitchhiker’s Guide to the Galaxy, Douglas Adams

A query language is needed to extract information from the RDF repositories. The
two main query languages for RDF: SPARQL and SeRQL (pronounced “sparkle” and
“circle”). Both can be used in KIF, but SPARQL is the main language in this project.

A query contains the following elements:

12

• Prefixes that are used (optional).

• Keyword for how to present the query result (“SELECT”, “CONSTRUCT” etc).

• Output parameters that are written with “?” to signal that they are variables.

• If only a certain context should be searched, “FROM context” is added to the
query string (optional).

• The premises for the search is added within a “WHERE{ ... }”.

• Finally filters can be added (optional).

There can be zero, one or multiple results depending on the number of matches for the
query. Using an appropriate API, it is straightforward to write a client that queries a
repository directly, however, the KIF server also provides a user interface for queries,
where the query is written in a form and the result presented in a table. The three
examples below illustrates how the different elements of the query works.

Example 4

This is what a simple query look like. It answers the question: Who is familiar
R2D2 with?

PREFIX sw:<http://starwars.com#>
PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
SELECT ?x FROM <http://simple.example.se>

WHERE{sw:R2D2 sw:isFamiliarWith ?x

}

The single result would be presented as:

Variable x
Value sw:C3PO

The multiple search criterias are separated with a “.” and the variable x is bound
to fulfill all statements. The FROM keyword is used to set the context, it is not
necessary in this case and will be left out in the other examples.

The SELECT method just returns the variables in a list. CONSTRUCT, on the other
hand, returns triples that form a graph.

Example 5

Assuming that the repository contains multiple (an possibly conflicting) state-
ments about droids, humans and everything in between. The nodes that are
extracted in a query can be used to create a new graph with the CONSTRUCT
method:

13

PREFIX sw:<http://starwars.com#>
PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
CONSTRUCT {?x rdf:type sw:Cyborg}
WHERE{{?x rdf:type sw:Cyborg.}
UNION {
?x rdf:type sw:Machine. ?x rdf:type sw:Human}
}

This will return a set of triples of all statements where the subject is of type
Cyborg AND where a resource is stated to be both a machine and a human
although doublets will not be returned. This possibility means that the created
graph not necessarily resembles the graph it queries.

A final example demonstrates how filters (SPARQL Query Language, 2011) can be
used:

Example 6

To get a copy of the entire graph, the CONSTRUCT and WHERE can contain
the same variables ?s, ?p and ?o. It is also possible to filter the result to only
return certain statements. Filters can match data types, strings, evaluate logical
expressions using AND (“&&”) or OR (“| |”). In the SPARQL query below,
the only statements that are interesting are the ones where (at least) one of the
resource URI:s contains the substring “R2”. This is done by finding a match
between the URI string and the sought string using regular expressions.

PREFIX sw:<http://starwars.com#>
CONSTRUCT {?s ?p ?o}
WHERE {{ ?s ?p ?o}
FILTER (regex(str(?s), "R2")
|| regex(str(?p), "R2"))
|| regex(str(?o), "R2")) }

These examples only highlight a few methods. The search criterias and filters can be
very elaborate, making the query language quite powerful. A word of caution thought,
when it comes to queries, if the answer seems strange, the query is probably badly
formed, because after all: You get what you ask for.

14

Chapter 3

Skill Requirements

This chapter examines the definition of skills and the information that is relevant to
store and re-use and required data for enabling re-use.

3.1 Skills

If the power to do hard work is not a skill, it’s the best possible substitute
for it.

– James A. Garfield, 20th president of USA

In plain English, a skill denotes a special ability obtained by training, particularly re-
quiring the use of hands or body. Robot skills are similar, it is a task that the robot can
perform with its extremities or a computation capability, such as the ability to visually
identify objects.

Since the skills can be a set of robot instructions, a skill is whatever the instructor
decides to call a skill. In this case, the focus lays on generic skills that can be used in
more than one setting. Thus it is worthwhile to store and distribute the generic skills in
a database.

3.1.1 Word Definitions

These definitions are not strict and some terms are used in multiple contexts, each time
with slightly different meaning:

Task A task is a job that the robot performs, E.g. to assemble a cell phone. The
assembly can in turn be divided into a series of activities: locate part, move and
pick part, these activities are called skills. Thus a task is composed by a set of
skills.

Skill an action or activity performed by the robot, such as a movement, locating a part
or gripping it. Skills can have different levels, E.g. an assembly skill is composed

15

by movements, location of parts, gripping and releasing, thus it is more complex
than perhaps a single movement.

3.2 Types of Knowledge

The KIF should contain and link different types of knowledge. A skill can be described
as a finite-state machine (see below) or as a piece of program code (see Section 3.2.3).
These descriptions could be exchangeable and it should be possible to mix them when
instructing the robot. The KIF should be able to store several types of knowledge.
Some actions are more easily expressed in robot code directly; some will need a state
machine.

3.2.1 Finite-State Machines

The skill can be described as a finite-state machine, each state representing a step in
the execution. In the case of robot programs, each state is either a movement, called
Motion, or information processing, simply denoted Action(Bruyninckx, 2010). These
are connected with Transitions. Thus a finite-state machine can be described as: Initial
Step (Motion/Action) → Transition → Step (Motion/Action) → ... possibly with parallel
execution.

The task or action can be described as a state machine that is created in a tool
called JGrafChart (JGrafChart, 2011), see Figure 3.1. Each state is drawn as a square
and represents a motion or action as mentioned in Section 3.2.1. The states can have
parameters with values, such as the speed for executing a task.

The statemachine is saved as an XML-file. The XML description can be interpreted
and transformed into RDF triples and stored in the KIF repositories. See Section 5.1
for details.

3.2.2 LabComm Samples

The parameters in the state machine are sent to the robot controller using a transmission
protocol called LabComm (LabComm, 2011). It is used for one-way communication in
real-time systems where the overhead needs to be kept to a minimum. The parameters
are written as samples, for example:

sample double f_switch;

In this report, the samples are carelessly called parameters, however, each sample use
one of four channels and is as such either a parameter, log, input or output data. The
file with the samples written in plain text can also be translated into RDF triples and
stored in the database, see the implementation description in Section 5.1.

3.2.3 Storing Robot Programs in KIF

When it comes to re-using robot code, some basic requirements must be fulfilled. First,
each program should have a description of what it does. In this case, it should be both

16

Figure 3.1: Example of a finite statemachine from JGrafChart (2011).

a machine-readable label and a description in natural language. The skill should also
account for the tools or information it needs to operate, E.g. a grasping skill needs a
gripper.

The program stored in KIF should contain enough information to generate working
code. In this case, there will be pieces of robot code attached to it. However, trans-
ferring pieces of code requires some care to avoid name conflicts and missing variable
declarations. Hence, everything that is not purely internal must be declared. In essence,
that means that all global or external variables must be arguments to the procedure, and
similarly, all output parameters should be listed.

For the purpose of demonstration and testing, the programs are written in RAPID,
the language used for ABB industrial robots, and the engineering and simulation tool
associated with it, RobotStudio. The robot programs are created in RobotStudio and
stored in the KIF database and later retrieved and re-used in RobotStudio. Creating the
procedure does require familiarity with the programming language (when introducing
composite skills this will not be necessary). Importing the skill as a BLOB from KIF
and running a simulation in the engineering tool should not require any changes in the
code. However, running it on a robot will very likely require adaptions.

17

3.2.4 Example of a Robot Program

At this point, it is time to stop beating around the bush and finally look at an executable
robot program. As a demonstration, it should be possible to export similar programs
from the engineering tool to the database and later import them and use them in a
different station. Below is an example of a program written in RAPID. It is a program
that resets all signals (closegripper and opengripper) and moves the robot
into a home position.

CONST jointtarget home_pos:=[[0,0,0,0,30,0],

[9E9,9E9,9E9,9E9,9E9,9E9]];

PROC main()

VAR string error_string;
initialize;

ENDPROC
PROC initialize()

Reset closegripper;
Reset opengripper;
MoveAbsJ home_pos,v1000,z100,MyTool,

\WObj:=wo_station2;

ENDPROC

Constant global variables are declared outside the procedures with the keyword CONST
and the data type (here jointtarget), name and assigned value (using “:=”). Each
procedure is written between PROC- and ENDPROC-flags. Local variables are de-
clared in the beginning of a procedure with a flag, type and name. Procedures are
called by name followed by arguments. E.g. MoveAbsJ is a built in procedure with
the arguments:

home_pos as target position.

v1000 the velocity 1000 mm/s.

z100 that is the proximity radius to the target position, thus how close to the target is
close enough.

MyTool is the tool that should be moved into the target position.

\WObj:=wo_station2 sets an optional variable WObj to wo_station2 which
is the name of a work station created in the simulation environment.

There will be a few more examples of robot code in Chapter 4 to concretize the use of
skills.

18

Chapter 4

Design

Now, when previous chapters have given the background, defined the problem and how
the system works, it is time to define how to store the information in the database.

First, we create a design of how to represent a basic skill containing a BLOB of
code in RDF. The design involves a type classification, a description of how to describe
the arguments generically, and how a skill is written in robot code to enable re-use.

The next step is the design of composite skills, that are a combination of other
skills. This involves an argument mapping so that information can be shared between
the inner skills.

4.1 Basic Skills

We are programmed just to do, anything you want us to.

– from The Robots by Kraftwerk

Here, we create the structure of storing a piece of program code. Initially, the skills are
classified in different types according to their purpose. The execution can be described
abstractly in a finite-state machine (Section 3.2.1) and the executable robot program,
can be attached to the skill together with a generic set of arguments containing the input
and output parameters (see Section 4.1.2).

4.1.1 Classification and Description of Skills

If the robot should move the arm into a certain position, it is desirable to receive a
list of already defined moving skills for the robot from the database. The first step is
therefore to classify skills according to their purpose, creating a class hierarchy.

A Simple Example:

As a first simple example, a robot picks up a cube at one station (Station 1) and
leaves it at Station 2. The robot locates the position, approaches it, grasps the

19

object at the correct position, and retracts. A similar procedure is used to place
the object at the release position. Schematically, it looks like this:

Locate Pick Position
Approach Pick Position
Grasp
Retract
Locate Release Position
Approach Release Position
Release
Retract

From this example, a first set of skill types can be identified, locating skills,
motions and tool actions.

Classification

To organize the skills in a sensible structure that is easily extended, the skills are or-
dered in a class hierarchy. Every skill class is a subclass of the superclass Skill,
but there are for example several types of motion skills. Below are a few examples
expressed as subclasses in RDF- triples (the namespace is left out):

:Motion rdfs:subClassOf :Skill
:Approach rdfs:subClassOf :Motion
:Retract rdfs:subClassOf :Motion
:Grasp rdfs:subClassOf :Skill
:Release rdfs:subClassOf :Skill

Assuming there is a skill instance called myApproachingSkill, the classification
information can easily be stored as a triple in KIF:

:myApproachingSkill rdfs:type :Pick

and the RDFS-inference will generate the additional triple:

:myApproachingSkill rdfs:type :Skill

In addition to the class, each skill is given a label in natural language with a description
of the skill. This is simply stored as a triple:

:myApproachingSkill rdfs:label “The first skill in KIF.”

4.1.2 Input and Output Parameters

A simple example of RAPID code will serve as an illustration of how to store the
arguments in the KIF.

20

A Simple Example: Approach

This is a small RAPID program that moves the robot tool (MyTool) into a tar-
get position (pick_pos) at a workobject (wo_station). The motion has
initially high speed (high_speed), but at the distance distance of the tar-
get position it slows down to low_speed.

PROC my_approaching_skill(tooldata MyTool, wobjdata wo_station,
robtarget pick_pos,
speeddata high_speed, speeddata low_speed, num distance)

MoveJ RelTool(pick_pos, 0,0,-distance),high_speed, z20,

MyTool\WObj:=wo_station;

MoveL pick_pos, low_speed, fine,

MyTool\WObj:=wo_station;

ENDPROC

In this design, the signature, in the example given by my_approaching_skill(tooldata
MyTool, wobjdata wo_station, robtarget pick_pos, speeddata

high_speed, speeddata low_speed), is not stored with the rest of the BLOB,
to 1) avoid name conflicts with other existing procedures and 2) both the procedure call
and the signature is generated from the set of generic arguments, as described in Sec-
tion 5.2.

The BLOB is everything between the PROC and ENPROC- key.words Attaching
the RAPID BLOB to myApproachingSkill is simply done:

:myApproachingSkill :hasRapidBlob “MoveJ RelTool ...”

Here the code is stored as a literal.
An argument is added like this:

:myApproachingSkill :hasArgument :high_speed

where each argument has a generic type, a name and tags whether they are references,
optional or both (the Boolean literals are emphasized):

:high_:speed rdf:type :Speed
:high_:speed :hasName “high_speed”
:high_:speed :isReference true

:high_:speed :isOptional true

If the skill returns a value, it is a function. A locating skill can be a function returning
position coordinates. Then the skill will keep track of the return type in a separate
statement:

21

:myLocatingSkill :hasReturnType :Position

However, the locating skill could just as well be a procedure with a position refer-
ence, the only difference is that a function must have a return value, while a procedure
reference could be entirely ignored in the code. In general, the skills are procedures.

There is nothing limiting what can be said about the arguments, E.g. giving them
default values, here using the NASA unit ontology QUDT is done like this

:high_speed :hasDefaultValue :def_high_speed
:def_high_speed :hasUnit qudt:MeterPerSecond
:def_high_speed :hasValue “1.0”

Now, if a application needs these default values it can query KIF for them, while they
are ignored by all other applications.

When creating new skills, the robot programs must have the same structure as given
in the approach example. All variables from the station such as tools, objects and
signals must be arguments to the procedure, to ensure that they will be given a value
from the new station when re-used.

4.1.3 Relationships Between Skills

As mentioned previously, creating skills calls for some programming proficiency, but
if it also required knowledge of RDF, KIF would be sparsely populated. Hence, all
triples must be generated automatically and still have a unique ID, either as a part of
the URI or stored in a separate node.

The skills in the KIF keep track of previous and updated versions using the tran-
sitive and inverse properties previousVersion and updatedVersion respectively. Time
stamps and creator IDs etc can be added.

4.1.4 Summary of the RDF Representation

To minimize the headache of implementation, the skill representation in KIF is min-
imalistic. Every single node must have a raison d’être. The skill implementation has
language specific BLOBs of code and a set of arguments. To minimize the number of
nodes in the graph, these are adjacent to the skill node, see Figure 4.1.

Each argument keeps track of its own type (Tool, Speed etc), whether or not it is
optional or a reference and a name (which can be language specific).

22

skill

blob

:ha
sR

ap
idB

lob

:hasArgument
arg1 Tool

rdf:type

"MyTool"

:hasName

arg2

:hasArgument

Position
rdf:type

"target"

:hasName"true"
:isReference

"MySkill" :hasName

Figure 4.1: Skill representation in the KIF. The blobs are adjacent to the skill
node as well as each argument. Each argument keeps track of its type and name.

4.2 Composite Skills

The longer you look at an object, the more abstract it becomes.

– Lucian Freud, artist.

Assume that the KIF is populated with some sensible skills, that is, skills for locat-
ing objects, motions and gripper movements. Certain combinations of skills are more
common than others; when a part is picked at a location, four skills are used:

Pick

Locate
Approach
Grasp
Retract

Pick is composed by a set of other skills and is hence named a composite skill. A
composite skill does not have own program code attached to it, it only refers to a list
of regular skills. Therefore, the composite skills is an own type of skill. In KIF, the
composite skill is represented as a linked list of nodes pointing to skill nodes, see
Figure 4.2.

Anyone can say anything about anything; so nothing limits the number of nodes
that can be added to each link. If one of the skills lacks a language implementation that

23

Skill

Skill Skill

Skill

Composite Skill

Pick

rdf
:ty

pe

Composite Skill

:subClassOf

Skill

:subClassOf

Figure 4.2: A schematic figure of composite skills. The nodes with italic names
are instances, the others are classes. Composite skills refer to a list of skills but
does not contain own program code.

exists in another skill, the other skill could be added to the list node. Only the suitable
language implementations are selected.

However, just keeping the skills as a list does not account for the relationship
between the skills. E.g. the target position returned from Locate and used by
Approach is an entirely internal variable and, as such, the user does not need to
be concerned with it. Similarly, if the same variable is used in several of the skills, E.g.
it is the same tool moving, gripping and so on, it would be tedious to specify it as an
input parameter for each routine every time the composite skill is used.

When importing Pick, the user does not (necessarily) care about composite skills,
he or she just wants the robot to pick up some object. Of course it is the same tool that
is moved into place and then gripping the object, why should the user need to specify
it for both Approach and Retract? Even though the target position is an input
variable in three skills, it does not have to be an argument to the Pick skill and is thus
an internal argument.

So instead of just having a list of skills, the composite skill also contains an argu-
ment mapping of how the set of arguments are shared by the inner skills.

24

Skill

Skill Skill

Skill

Composite Skill

arg
arg

arg

map

map

:internalM
apping

:internalM
apping

Figure 4.3: Arguments with the same input variable are connected by map
nodes in the composite skill. The map nodes are pointing to arguments that are
the same. Only the internalMapping property is explicitly written in the graph.

4.2.1 Argument Mapping

It is not entirely obvious how to represent an argument mapping in KIF in a good way.
However, there are some conditions for the mapping:

1. The mapping is connected to the composite skill, not only the arguments.

2. The mapping must be able to handle a nested composite skill with its own map-
ping.

3. The underlying skills may not be changed by the composite skill.

If the above requirements are accounted for, the mapping and the skill list can be sep-
arated and certain argument mapping nodes added to the graph. One example of what
the mapping can look like is illustrated in Figure 4.3. In this case, there are no compos-
ite skills in the list. As seen in the figure, this design involves map nodes that connects
the arguments that are shared. When importing the composite skill, the map nodes
have the same function as the argument nodes have in a basic skill. Each map node
is assigned a value by the user, and that value is assigned to all the arguments in the
subskills that are adjacent to the map node.

Now what happens if the composite skill points to another composite skills? The
internal mapping of the inner composite skill is not changed, but the outer composite

25

skill can map arguments from any level. So even if elements are mapped between the
regular skills and the nested composite skill, the latter still keeps track of the internal
mapping between its listed skills. See Figure 4.4.

Composite
Skill

Skill Skill
Skill

....

map

arg
arg

map

Composite
Skill

Skill Skill

argarg

:internalMapping

arg

:hasMapping

Figure 4.4: Mapping arguments with nested composite skills. Internal map-
pings are “local”.

Referring to argument nodes that are under some other skill’s control makes the
mapping structure fragile in case of changes. Thus when importing a composite skill
any existing mapping must pass the consistency check, that is, the arguments in a map-
ping must have the same type declaration and belong to the listed skills. If not, the
mapping is omitted.

26

Chapter 5

Implementations

Two tools were created for the purpose of demonstration. The first is a Java servlet
for uploading finite state machines and adding LabComm parameter information to the
KIF. The second is an plug-in to the simulation tool RobotStudio where robot program
code was exported to the KIF for later re-use.

5.1 State Machine and LabComm Servlet

The intent is there, but implementation is lacking.

– Kiran Karnik, former president of NASSCOM

The servlet can do the following:

• Upload a finite state machine describing a skill in XML-format, transform it to
RDF, and add it to a KIF repository.

• Visualize the states in the finite-state machine.

• Assign LabComm parameters to the finite-state machine.

• Tagging the LabComm sample as either a Parameter, Log, Input or Output.

• Adding and editing sample comments.

• Adding and editing sample quantities and units.

Uploading the state machine as an XML-file and the LabComm samples to the server
is straightforward. The user specifies the server, the repository, the context, and base
(namespace) URI. Then the XML content is transformed into RDF using the Saxon
library with XSLT stylesheets (Saxon, 2011), that are used to translate information
between formats. Finally the RDF triples are added to a repository.

27

Figure 5.1: Screen shot of the demonstration. The drop down menu displays all
skills in the KIF. The visualization button calls a JavaScript that draws a chart
with the states. The button labelled "Set Skill Parameters" directs to the page
shown in figure 5.2.

28

Figure 5.2: Screen shot of the demonstration: The LabComm samples are up-
loaded to the server using a servlet.

When choosing to visualize the finite state machine, a JavaScript is called that
retrieves necessary node information from the repository to create the chart pictured in
Figure 5.1.

The same servlet is used to link LabComm parameters to the state machine, by
uploading them to the server. See Figure 5.2. Again the user chooses the server, the
repository, and the base and context URI:s and the LabComm code is added in the text
area.

The sample are also transformed into RDF and then annotated with the same we-
binterface with units and comments. To describe the units, the NASA unit ontology
QUDT is used (Nasa unit ontology, 2011). The unit ontology has, as mentioned in
Section 2.1.4, mapped the quantity kinds to units and the ratio between them. See the
screen shot in Figure 5.3. This information is stored as RDF triples as well and viewed
again when the user wants to edit old information.

5.2 Robotstudio Plug-in

We allow no geniuses around our Studio.

– Walt Disney

The plug-in is written in C# and incorporated with the rest of the RobotStudio as a tab
on the menu. It is used for exporting and importing BLOBs of RAPID code to the KIF
and is has an updated online connection to KIF.

Creating a Skill in RobotStudio

The skills are written in RAPID directly in RobotStudio with all parameters as input
arguments to a procedure as described in Section 4.1.2. See the right side of Figure 5.4.
In the Demo ribbon there is a Test Export button that opens a window for exporting
code. See the window to the left in Figure 5.4. The user names the skill, assigns it a
type and posts the entire procedure in the text area.

29

Figure 5.3: Screen shot of the demomonstration: The LabComm samples are
assigned quantity kind and units.

Generating RDF and Connecting to the KIF

Pressing Add to KIF will parse the code for the signature and the arguments and cre-
ate a Skill object, with the the code between the PROC- and ENDPROC-keywords
stored as a BLOB and the set of arguments as fields.

There is no official API for handling RDF in C#, so a custom Repository class was
created. The Skill object is transformed into RDF triples in the local Repository
class. Each argument type is mapped from robot code to the generic KIF type using
a static TypeMapping class with dictionaries for how robot code is represented in
RDF. The types are written as statements where the fields (name, type, etc) are objects
to the skill or argument nodes. The repository is then written in an RDF format called
N3, as the example shown in Figure 5.5.

The implementation has a separate class for handling the connection to KIF. This
string of RDF triples are sent to KIF via a third party application called SemWeb1 as a
Post command to a import servlet in KIF. The same class also uses SemWeb to send
SPARQL2 queries when receiving information.

1razor.occams.info/code/semweb/
2http://www.w3.org/TR/rdf-sparql-query/

30

Figure 5.4: Screen shot of the demonstration. To the RAPID code from the
program to the right is exported to the KIF in the Add Code- window to the left.
A name and a skill type is selected before exporting it.

Receiving RDF Data in the KIF

A KIF servlet receives the RDF data as a Post command and, using the Openrdf Java
API (API, 2011), adds it to a repository.

Importing Basic Skills to RobotStudio

The Import Skill dropdown menu in the demonstration window shows the types that
have a RAPID implementation in the KIF. The information in the menu is updated, via
a SPARQL query in the KIF connection class, when the button is pressed. All existing
class types, each listing the names of implemented skills are displayed in the Import

Skill menu.
Each type lists the existing skills as shown in Figure 5.6.
When a skill is selected each input argument is to be assigned. If the argument is a

tool, all existing tools in the station are listed, similarly, if the argument is a robot target,
already defined targets are presented. Now if the procedure has a reference variable,
E.g. if it is a locate skill, there is an option to save the returned variable and re-use as
input to another skill. See Figure 5.7 for how the arguments are selected.

Behind the scenes, data structures mirroring the RDF representation are created. An
instance of a Skill implementation is created, that has fields containing the BLOB,
the arguments and the skillname. Each argument has in turn a name, type, and indica-
tors whether it is a reference or if it is optional. The skill implementations are kept in a

31

@prefix demo: <http://rosetta.skills.demo#>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

_:node0 demo:hasName "approach" .
_:node0 rdf:type demo:Approach .
_:node0 demo:hasArgument _:node1 .
_:node1 demo:hasName "target" .
_:node1 rdf:type demo:Position .
_:node0 demo:hasArgument _:node2 .
_:node2 demo:hasName "station" .
_:node2 rdf:type demo:WOBj .
_:node0 demo:hasArgument _:node3 .
_:node3 demo:hasName "tool" .
_:node3 rdf:type demo:Tool .
_:node0 demo:hasRapidBlob "
MoveJ RelTool(target, 0,0,-200),v1000,z20,tool\\WObj:=station;

MoveL target,v300,fine,tool\\WObj:=station;
" .

Figure 5.5: The RDF content that is sent to KIF describing the BLOB from
Figure 5.4. At the top, the prefixes are declared. The blank nodes starting with
underscore, are the skill node and the argument nodes.

Program class and the entire instance is sent to a routine that generates robot program
code.

After selecting a set of skills and assigning the arguments values, RAPID code
is generated by a buttom press. Each argument type is mapped back to RAPID and
language specific keywords are added for each type, references, optional variables.

The code is written to a file with a main procedure that calls each skill with its
specified name and arguments. The file is loaded into RobotStudio as the primary
module (Module1), overwriting existing code in that module. Once the code has been
added to the controller and found free of errors, simulation can be started. As long as
the skills saved in the KIF are free of errors themselves and created according to the
guidelines this should be done without any manual effort.

Limitations in the Demonstration

• When adding skills to the KIF administrative data such as unique IDs, time stamp
or version information is omitted.

• It is not possible to update an existing skill or adding other language BLOBs,
configurations, state machines, requirements or even comments.

32

• It is not possible to create composite skills in the user interface. It would, for
example, be desirable to be able to export a series of skills as a composite skill
with the existing arguments as an argument mapping (described in Section 4.2.1).

• As a demonstration tool, this is not fool proof in any way, there are for example
no checks that user input is valid.

33

Figure 5.6: Screen shot of the demomonstration tool. The dropdown menu
displays all classes in the KIF with associated skills (with a RAPID implemen-
tation).

Figure 5.7: Screen shot of the demonstration tool. When importing a skill the
arguments should be selected from existing variables in the station, such as the
tools, or new temporary variables can be created.

34

Chapter 6

Evaluation

The results presented in the thesis are the following:

• Identifying what type of knowledge about skills to store in the framework.

• Designing an extendable structure for storing robot programs as basic skills with
BLOBs of code in the KIF.

• Proposing a structure for composite skills and argument mappings.

• Demonstrating the concepts with implemented tools.

• Creating an online connection between the engineering tool and the KIF.

• Annotating LabComm parameters with quantities, units, and comments.

• Investigating how to to write re-usable robot programs.

6.1 Results

Success is a science; if you have the conditions, you get the result.

– Oscar Wilde

This report has presented three types of knowledge about skills that can be stored in
the KIF:

• A state machine description that is transformed from XML to RDF.

• LabComm parameters, associated with a state machine, where the parameters
are given quantities, units and descriptions.

• Procedures stored as BLOBs of robot code with associated arguments.

35

The RDF structure for storing the BLOBs of code as basic skills and composite skills
is described in Chapter 4. To enable re-use of program code, the basic skill has a set of
arguments and BLOBs of code. The composite skills contains a list of other skills and
an argument mapping as described in Section 4.2.1.

Chapter 5 consists of a Java servlet and a plug-in to RobotStudio. The servlet is
used for uploading finite state machines in XML-format to the KIF, visualizing the
state machine and assigning it LabComm parameters. Using the same servlet, these
parameters are given quantities, units and comments.

The plug-in to RobotStudio has an online connection to the KIF and can be used to
export and import robot programs. The program is written with all station variables as
arguments as described in Chapter 4 and, using the plug-in, exported to the KIF. Using
the same plug-in, the procedures are imported, the arguments given values from the
existing station and RAPID code is generated.

Figures 6.1 to 6.3 show tables of a set of standard basic, composite skill classes,
and a list of generic argument types in the KIF . The hierarchy is intended to be easily
extended by the users.

Skill Class Description
Approach Moves the tool to a position, first at a high

speed and slowing down when closing the
target. Typical input arguments: tool and
the target position. Subclass of Motion.

Grasp Closes the gripper. Depending on the
implementation the arguments can be tool
signals or the tool itself.

Locate Locates an object and returns a position.
Motion A motion of the tool, a superclass for E.g.

approach and retract. Input can be tool,
target location, speed etc.

Release Opens the gripper. Similarly to grasp, the
skill needs either tool signals or the tool
itself.

Retract Moves the tool away from a position.
Input can be the tool to be moved, the
position etc. Subclass of Motion.

Vision A subclass of Locate. Requires E.g. a
camera, has the target object as input and
returns the position coordinates.

Figure 6.1: Plausible set of skill classes, all subtypes to the superclass Skill.

36

Composite Skill Class Description
Assembly A set of pick and place operations.
Pick A list of basic skills, E.g. locate,

approach, grasp and retract.
Place A list of basic skills, E.g. locate,

approach, release and retract.

Figure 6.2: Classes of basic and composite skills, all subclasses to the super-
class composite skill.

Argument Type KIF Representation
Tools rosetta:Tool

(or a subclass).
Targets rosetta:Position

or a subclass such as
rosetta: Destination.

Signals A digital signal is
rosetta:DigitalIn, rosetta:DigitalOut or
rosetta:DigitalInOut
and equivalent for analog signals.

Work Objects rosetta:WorkFrame
Numerical values xsd:double
Boolean values xsd:boolean

Figure 6.3: The KIF representation of typical arguments. Here the names-
pace rosetta stands for http://asimov.ludat.lth.se/rosetta.owl# and xsd for
http://www.w3.org/2001/XMLSchema#.

37

Chapter 7

Epilogue

7.1 Discussion

Robots... I think that is a hot topic.

– Bill Budge

This work is important because it enables re-use of knowledge about implemented
skills. The use of already defined skills from the database, simplifies the robot pro-
gramming, and makes it possible for the robot to use stored parameters to speed its
learning process.

The generic representation, with standard units for LabComm samples and plat-
form independent arguments for programs, enables reasoning upon the information.
With the unit ontology, LabComm samples can be compared in quantity and kind. The
integration of the NASA unit ontology is important because it makes the variables self-
descriptive, which for example gives built-in information on how to convert between
units and unit systems1. The user-interface for adding human readable comments de-
scribing the parameters is needed until the world reaches the utopian stage of total
automation.

Even though the BLOBs are platform dependent, the generic argument makes it
possible to share the BLOB between versions using the same robot language. For
example six- and seven axed robots, where position is represented as axis angles, can
still use the same code when the position is a procedure argument.

Those familiar with the magic behind compilers should have noted the resemblance
between the RDF representation for storing BLOBs and how programs are represented
in an abstract syntax tree, as well as the type mapping and syntactic flags in the imple-
mentations. The RDF representation works as a little piece of an abstract syntax tree
that is common for robot languages.

1Noteworthy is that NASA lost the multimillion dollar Mars climate orbiter due to metric/imperial con-
fusion (http://mars.jpl.nasa.gov/msp98/orbiter/).

38

The standard skills will have multiple language implementation, so a user-defined
sequence of actions can be implemented on several platforms, each using the suitable
language implementation. The generic arguments can also be used when algorithmi-
cally generating skill sequences from information about the existing station.

Composite skills are transferable between platforms, as long as the listed skills have
the suitable language implementations. The argument mapping in the composite skill
makes it possible to load an entire list of skills without having to specify the arguments
used in each skill separately, making re-use very user-friendly.

Of course, the creation, storage and the re-use of the program can be separated in
both space and time.

The idea of connecting robots to a collective memory, where they share knowledge
about tasks and the world, is a hot topic. Hence there are other research projects similar
to ROSETTA. RoboEarth uses OWL to describe action recipes as well, which means
that the research community pulls in the same direction. Other interesting ongoing
projects are GeRT and Proteus (Proteus, 2011), a project for transferring knowledge
within the French robot community . The sharing and re-use of knowledge and learned
information between the projects is still in the design phase.

7.2 Conclusions

A conclusion is the place where you got tired of thinking.

– Martin Henry Fischer

The purpose of this Master’s thesis was to investigate what knowledge about skills
to integrate in the KIF and how to represent it. The aim was to address finite state
machines with associated parameters and program procedures. I have 1) created a
servlet that transforms files describing finite-state machines and LabComm samples to
RDF triples and integrated a the NASA unit ontology for annotating the parameters and
2) designed an RDF structure for storing BLOBs of robot code with generic arguments
and a tool for demonstrating the concept.

7.3 Future Work

None, because the robots stole the jobs.

– Anonymous

These intelligent robot systems will be a paradigm shift in European industry, however,
there are a few steps left on the ladder. Future work within the ROSETTA project
involves agreeing upon a definite structure for representing the the finite state machine
and the skill ontology.

Another aspect is to connect the chain of knowledge flow from the Engineering
Tool to the KIF, from KIF to the ROSETTA controller and from the controller to the

39

robot platform. This is not merely a one way pipeline, the learned parameters and log
data from the execution should be fed back from the robot to the ROSETTA controller
where the relevant data is extracted, generalized and stored in the KIF for re-use. Future
work includes writing a client for the ROSETTA controller and connect it to the KIF to
retrieve information about skills. Then the program can be written in the engineering
tool, uploaded to the KIF, downloaded to the ROSETTA controller and used in a robot,
thus connecting the entire chain from modelling to execution.

Since the KIF is a library, it should be populated with “template” knowledge of
tasks and skills. There should be user-friendly tools for integrating and extracting
knowledge from the KIF as well as for intuitive robot programming. The focus in the
ROSETTA project lays on generic knowledge representation and information exchange
rather than on developing end-user applications.

Considering the amount of grants assigned to research projects like this, it is only
a matter of time before a new industrial revolution takes place, in which the robot
workers of the world unite their minds in a collective memory and brain.

40

Bibliography

Allemang, D. and Hendler, J. (2008). Semantic Web for the Working Ontologist mod-
elling in RDF, RDFS and OWL, pages 79–103. Denise E. M. Penrose.

API, O. R. (2011). http://www.openrdf.org/doc/sesame/api/. Last access on April 14,
2011.

Bruyninckx, H. (2010). Definitions of task, skill, motion and action.

FRIDA (2011). Abb concept robot. http://www.abb.com/cawp/abbzh254/
8657f5e05ede6ac5c1257861002c8ed2.aspx. Last access on April 24, 2011.

GeRT (2011). http://www.cs.bham.ac.uk/research/groupings/robotics_and_cognitive
_architectures/projects/gert/. Last access on April 14, 2011.

Jacob Persson, Axel Gallois, e. a. (2010). A knowledge integration framework for
robotics.

JGrafChart (2011). http://www3.control.lth.se/user/karlerik/Grafchart/JGrafchart.html.
Last access on April 13, 2011.

LabComm (2011). http://torvalds.cs.lth.se/moin/LabComm. Last access on April 13,
2011.

Nasa unit ontology (2011). http://www.qudt.org/qudt/owl/1.0.0/qudt/. Last access on
March 22, 2011.

Proteus (2011). http://www.bourges.univ-orleans.fr/CAR08/14_CAR08-
Patin_PROTEUS.pdf. Last access on April 14, 2011.

RDF Schema (2011). http://www.w3.org/wiki/RDFS. Last access on March 9, 2011.

RoboEarth (2011). http://www.roboearth.org/. Last access on April 14, 2011.

ROSETTA Consortium (2011). http://fp7rosetta.org/?q=node/4. Accessed February
28, 2011.

ROSETTA Project information (2011). http://www.fp7rosetta.org/?q=node/2. Ac-
cessed February 28, 2011.

ROSETTA Project presentation (2010).

41

Saxon (2011). http://saxon.sourceforge.net/saxon7.7/using-xsl.htmll. Last access on
April 14, 2011.

SPARQL Query Language (2011). http://www.w3.org/TR/rdf-sparql-query/. Last ac-
cess on March 9, 2011.

Web Ontology Language, OWL (2011). http://www.w3.org/TR/owl-ref/. Last access
on March 9, 2011.

42

