
Phonetic text input for Indic scripts

Magnus Höjer, D04
d04mhj@student.lth.se

Supervisor:
Pierre Nugues

Lunds Tekniska Högskola
December 12, 2008





Abstract

The complicated structure of Indic scripts means they are not very well
suited for text input on a computer or, especially, a mobile phone. An alter-
native approach is to let users type text in romanized versions of their lan-
guages, and automatically convert, transliterate, this into the native script.
In this thesis, we investigate models for transliteration utilising decision
trees and LIBLINEAR, suitable for implementation on a mobile phone.

We found that the model was not quite flexible enough to handle all the
spelling variations in the test set. Although it should be good enough for
simple use in e.g. an SMS application. We also found that ultimately the
LIBLINEAR implementation was superior to the decision tree, but that the
difference was small enough that choice of model could be based mainly
on computational grounds.
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Chapter 1

Introduction

The complicated structure of Indic scripts means they are not very well
suited for text input on a computer or mobile phone. Their alphabets are
considerably larger than for western languages. Historically there has also
been no good way of rendering Indic text in a portable way. Because of
this lack of support for native scripts, users have taken to using romanized
versions of their languages when communicating on the internet, etc.

Lately however, support for rendering Indic text has become much bet-
ter. Modern operating systems are very capable at rendering the complex
ligatures and other features required in Indic scripts. Mobile phone makers
as well have begun adding support for Indic languages.

Input is still a problem though. The standard keyboard layout that is
supported in modern operating systems is called Inscript 1. There has been
research in specialised keyboards and input methods for Indic languages
(see e.g. Shanbhag et al., 2002; Rathod and Joshi, 2002; Krishna et al., 2005)
but this is a clumsy solution. It requires separate keyboards for each lan-
guage which means the same computer cannot be used by people speaking
different languages. Another issue is that people will probably want a reg-
ular qwerty keyboard for tasks like communicating internationally, writing
code etc.

Using on-screen soft keyboards is not optimal for most devices either.
On touch-screen devices, it can probably work well, but on a regular PC, it
would require the user to simultaneously focus on an on-screen keyboard
as well as the physical keyboard. On a regular mobile phone with a small
screen and physical keypad (the type users in these countries is most likely
to have access to), it will not work at all. A better solution would be to take
advantage of users familiarity of romanized text and let them input text as
they are used to but automatically convert it to native script which is then
displayed.

This act of automatically converting text is called transliteration: to tran-

1http://tdil.mit.gov.in/keyoverlay.htm
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scribe text from one writing system to another. There are existing standards
for transliteration of Indic scripts, like ISO 159192 and IAST3 but these are
mostly intended for transliterating from native script to the Roman alpha-
bet. They use a rich set of diacritics to preserve the greater expressiveness
of the native alphabets, which means they are poorly suited for input on
a keyboard or especially a mobile phone keypad. Additionally, these stan-
dards are not something ordinary people know or use, they will simply
write words as they pronounce them without any specific system. In that
sense, the transliteration we attempt to do is somewhat similar to transcrip-
tion actually.

As an example, Surana and Singh (2008) looked at the number of re-
sults returned when searching Google for different transliterations of the
Hindi word nOkrF, ”job”. The most common transliterations are shown in
Table 1.1. This is the type of variation a good transliteration system should
handle.

naukri 722, 000
nokri 19, 800
naukari 10, 500
naukary 5, 490
nokari 665
naukarii 133
naukaree 102

Table 1.1: Different transliterations of nOkrF.

1.1 Design Goals

We had two major design goals for this thesis. The first was that the model
developed should work for not just one, but many Indic scripts. However,
of the Indic scripts, the largest one is Devanagari which is used for Hindi
and Marathi as well as numerous other smaller languages. For this reason
all the work in the thesis as well as all examples in this report are in Hindi.
Where applicable, there will be comments on how models and algorithms
generalise to the other Indic languages and scripts.

The second goal was that the resulting software should work on a mo-
bile phone, to be used for tasks like SMS or email editing. This places de-
mands on the size of databases used as well as the computational complex-
ity of algorithms chosen.

2http://en.wikipedia.org/wiki/ISO_15919
3http://en.wikipedia.org/wiki/IAST
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Chapter 2

Background

2.1 Structure of Devanagari

Devanagari is an Abugida script. Abugida scripts are based on syllables,
or more specifically aksharas (orthographic syllables, Singh, 2006). Their
alphabets all follow the same basic structure and can be divided in three
major groups: consonants, dependent vowel signs, and independent vow-
els.

Consonants all have an inherent a sound. So k, D and f are pronounced
ka, dha and śa respectively. The sound of consonants can be changed by
adding a nukta (.), so for example g turns into � which changes the pro-
nunciation from ga to ġa. To kill the inherent a sound and to enable conso-
nants to form conjuncts a halant ( ^ ) is added. Depending on the consonants
involved (and in some cases on whether you are writing modern Hindi or
traditional Sanskrit), these conjuncts will either be rendered with half forms
or as special conjuncts. Some examples can be seen in Table 2.1.

k + ^ = k̂ k

k + ^ + q = " ks.a
c + ^ + C = QC ccha
q + ^ + V + ^ + r = £~ s.t.ra

Table 2.1: Examples of Devanagari conjuncts.

Vowels come in two forms, either as independent vowels which form
a syllable of their own (usually at the beginning of words, but sometimes
in the middle as well) or as dependent vowel signs, mātrās, which attach to
consonants. Examples can be seen in Table 2.2.

As we can see in these examples, written Devanagari is not a simple lin-
ear composition of glyphs but considerably more complex. However in the
logical Unicode representation (which is what we will be working with), it
is indeed a linear composition. The transformation to correct visual shapes

11



aA ā kA kā
i i Ek ki
U ū k� kū

Table 2.2: Independent vowels on the left, mātrās attached to the consonant
k on the right.

is only done when rendering text on-screen. E.g. in the visual representa-
tion of Ek, the E stands to the left of k, but in the logical representation the
order is the phonetic one, k, E.

Of the diacritical marks, nukta has already been mentioned. Other dia-
critics are anusvara ( \) and candrabindu (  ), which indicate nasalization. In
traditional Sanskrit, they were distinct but in modern Hindi they are pro-
nounced similarly. Which one is used depends on if the syllable they are
to be placed over has room (e.g. h{\ – haiṅ and mAtAe – mātāyeṅ). Some
example sentences combining all these features:

is Ev�Alym�\ pA c sO lwk� pwt� h{\. Five hundred boys read in
this school.

is vidyālayamēṅ paṅch sau lar. ke par.hte
haiṅ.

m{\ aAp yA -vy\ hF clA jAU gA. I shall go away by myself.
maiṅ āp yā swayaṁ hı̄ chalā jāūṅgā.

As was said, this structure is shared by all the Indic scripts. Where they
differ is in how many characters there are (Devanagari has 37 consonants
while Tamil only has 23 for example) and how the individual characters
look. For example, in Bengali and a few other scripts, there are dependent
vowels made up of two parts, one to the left and one to the right of the
consonant they attach to.

For a complete listing of the alphabet, please see the Unicode code chart
for Devanagari1.

2.2 Issues to consider

The basic grammatical structure of Devanagari as shown in the previous
section is simple enough, but there are issues we have to take into consid-
eration when attempting to transliterate from Roman Hindi to Devanagari.
One is that the canonical structure, where consonants either have an ex-
plicit vowel mātrā, an implicit a vowel or a halant attached, is not always
followed. The most common example is that the last consonant in a word,
if it has no explicit vowel attached, is often pronounced without the a. E.g.

1http://www.unicode.org/charts/
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klm is pronounced as kalam and not kalama. Consonants can also be pro-
nounced without a in the middle of words (e.g. itnA – itnā).

There are a few phonotactic rules applicable. E.g. in a 3 syllable word, if
the last syllable has an explicit vowel and the middle one does not, then the
middle one is pronounced with the implicit vowel silent. These cannot be
relied upon 100% however. People will pronounce words slightly different
and thus write them differently (Singh, 2006).

Spelling variation applies not only to Roman Hindi but to Devanagari
as well. Therefore a successful transliteration system cannot be entirely
dependent on a wordlist (though it can certainly utilise one as complement)
but should be based on a more general model of the language to be able to
handle Out Of Vocabulary (OOV) words.

Another issue regarding vocabulary is the widespread usage of foreign
(mainly English) words and spelling. For example, the city h{drAbAd is com-
monly spelt in Roman Hindi as Hyderabad and not the more phonetically
correct Haidarabad. Other examples are aA�PFsr, %lAiV and XFjl which
are preferably spelt as officer, flight and diesel respectively, rather than aafisar,
flaait and diizal. A good transliteration system should therefore analyse
word origin and treat foreign words differently.

2.3 Previous work

2.3.1 Commercial implementations

There are some transliteration solutions already available. The oldest and
most well-known is ITRANS2. It employs a rigid set of rules for transliter-
ation, where users have to use both lower- and uppercase letters as well as
punctuation to write text. This is then fed through a converter which emits
Indic text. For example, the Hindi sentence

m{\ apn� do-tk� sAT aAyA h� 

would in ITRANS have to be written as ”mai.n apane dostake saath aayaa
huu.N”, while a more natural way to write it in Roman Hindi would be
”main apne dostke sath aya hun”. ITRANS is thus not very relevant today.

More relevant solutions are Google Indic Transliteration3 and Quill-
pad4. These are modern systems that can cope with spelling variation and
handle foreign words. The user can type freely and the software transliter-
ates the text in real time. If the first word suggested is not correct another
can be chosen similar to T9 text input on mobile phones.

2http://www.aczoom.com/itrans/
3http://www.google.com/transliterate/indic
4http://quillpad.in/
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2.3.2 Research

Most transliteration research focuses on transliterating names, technical
terms and other words not likely to be present in a dictionary for use in
cross lingual information retrieval (CLIR) or machine translation (MT) sys-
tems. Yoon et al. (2007) developed a transliteration system for named en-
tities from English to Arabic, Chinese, Hindi and Korean using a phonetic
scoring method. Jung et al. (2000) examined English to Korean translit-
eration using an extended Markov window utilising context on both the
English and the Korean side.

The text input angle has begun to get more attention in the last few
years though. Surana and Singh (2008) specifically mentions input as a use
for their model which utilises fuzzy string matching and their own pho-
netic model of scripts to match transliteration candidates against a corpus.
They also use n-gram models to analyse word origin and are thus able to
give foreign words special treatment (as mentioned in Section 2.2). UzZa-
man et al. (2006), attempt transliteration from Roman (English) to Bengali
using a simple phonetic mapping scheme and a phonetic lexicon.

14



Chapter 3

Design

3.1 Granularity

Since a pure dictionary-based approach was ruled out, our transliteration
model must segment words into smaller pieces. One option is to work on
syllables. In Devanagari, segmentation into syllables is easy. For example
Eh�dF consists of the two syllables Eh and �dF. A possible drawback is the
large number of syllables possible (and present) in Hindi writing which
leads to high dimensionality for the resulting model.

We have even more problems on the Roman side. In Roman Hindi,
Eh�dF is typically written hindi which in this case should be segmented as
hi-ndi (since the n means the consonant n here). However, as we have seen
before n could also mean anusvara or candrabindu as in jAU gA – jaunga
which should be segmented as ja-un-ga. So segmentation on the Roman
side is considerably more complicated (Ekbal et al., 2006 has more exam-
ples on the type of difficulties encountered when doing transliteration to
Bengali).

We therefore looked at individual characters instead. Our example word
Eh�dF would now be segmented as h - E - n̂ - d - F and the typical Roman
transliteration as h-i-n-d-i which leads to a neat 1-to-1 mapping (if we dis-
regard the halant, which will be dealt with separately later). However, an-
other equally valid spelling is hindee, which means our 1-to-1 mapping did
not hold up for long.

There are two options for dealing with this. The first is to introduce
a ”null character” (denoted as ε) which would let Roman characters, de-
pending on context, map to nothing. For the above example we would get
the alignment in Figure 3.1.

However, as we will later see in Section 3.3, context on the Roman side
can be hard to come by which leads us to the second option: let variable
length segments on the Roman side map to single characters on the De-
vanagari side. Unlike splitting into syllables, splitting into these smaller

15



h E n̂ d F ε

| | | | | |
h i n d e e

Figure 3.1: Example of alignment using ε to denote an empty mapping.

h E n̂ d F
| | | | |
h i n d ee

Figure 3.2: Example of alignment using variable length Roman segments.

segments is considerably easier. Roman Hindi words will mostly, with just
a few exceptions, have a unique segmentation. To continue with the exam-
ple, the alignment would now look like Figure 3.2.

The exceptions are a few vowels and consonants where the Roman rep-
resentation could be split into two. For example, au could mean aO as in sO
– sau or it could mean a u as in jAU gA – jaunga.

Another issue that needs to be noted is the letter x. People will typi-
cally use x when they mean a conjunct like " – ks. a. Therefore, to keep the
many-to-one mapping each instance of x in the Roman Hindi word must
be replaced with ks.

3.2 Intermediate phonetic representation

In the previous section, we showed examples of Roman Hindi mapping di-
rectly to Devanagari. Another option is to first convert Roman words into a
phonetic form, as is done in several articles (UzZaman et al., 2006; Chaud-
huri, 2006; Yoon et al., 2007). However, since Hindi words are already spelt
”phonetically” when written romanized, we saw little potential benefit in
this. The extra conversion step required is rather a potential source of noise.

There is one potential use for a phonetic representation though, translit-
erating foreign words, which are not spelt phonetically. Unfortunately we
did not have time to investigate this class of words.

3.3 Data resources

The next step is to acquire the raw data from which to build our model. The
optimal source would be a pre-aligned corpus of Roman Hindi-Devanagari
word pairs from which to learn spelling variations. Of course we are not
so lucky, which leads to our second option: acquire separate Roman Hindi
and Devanagari corpora and attempt to align them ourselves.

16



We used the Devanagari corpus prepared by the Resource Center for
Indian Language Technology Solutions1. It contains ∼ 37 Mb of text with
∼ 119, 000 unique words. Another option is the EMILLE corpus (Baker
et al., 2004). There is also a decent amount of blogs, news and other sources
of Indic text on the Internet so constructing a crawler to collect your own
corpus from the web should also be feasible.

On the Roman side, it is considerably harder however. We could not
find any pre-assembled corpus so instead we tried constructing our own
from online collections of Bollywood lyrics. The quality was not great
though and initial experiments with automatic alignment against the De-
vanagari corpus yielded either too much noise or, if we lowered tolerances,
no better data than manually defining mappings. Another concern was the
fact that if obtaining data for Hindi was this hard, how difficult would it be
for other, smaller languages?

Therefore we decided to only utilise context on the Devanagari side and
manually define the mappings from Roman Hindi to Devanagari. Looking
at transliteration schemes like ISO 15919 and ITRANS, as well as the Roman
Hindi text we had collected from the web we defined for each Devanagari
character the possible ways it can be written in Roman Hindi. Some exam-
ples can be seen in Table 3.1, for a complete listing see Appendix A. This
list was checked by a native speaker to ensure most spelling variations were
covered.

I i ii ee yi
F i yφ ii ee

P ph f
� k kh khh

Table 3.1: Examples of Devanagari-Roman Hindi mappings defined. φ de-
notes a word boundary.

Since all Abugida scripts share the same structure this type of mapping
should be easy to develop for other Indic languages.

3.4 Extracting n-grams

We mainly used trigram models, although the LIBLINEAR implementation
was also tested with bigrams. Therefore this section is written from the
point of view of trigrams. Constructing bigram models was done in the
same way, but with all n-grams one size smaller.

From the Devanagari corpus, we first extracted the words present and
their frequencies. From this wordlist, we then extracted character uni-, bi-

1http://www.cfilt.iitb.ac.in/
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Eh�dF → φφEh�dF →

→ < φ, φ,h> < φ,h,E> <h,E,n> <E,n,d> <n,d,F>

Figure 3.3: Extracting character trigrams.

and trigrams. Halants were stripped out since they only decreased the pre-
cision. Having a halant in front does not help in deciding if d should map
to d, D, X or Y for example.

They could be useful in numeric mode (see Section 3.5.3), where the
same key can map to both consonants and vowels, since halant then would
imply a consonant. But for all the instances where we are not choosing
between consonants and vowels the halants do not contribute any mean-
ingful information and in general they lower precision here also.

For n-gram extraction n − 1 word boundary markers, φ, are added to
the beginning of each word (our model only looks at context to the left of
the current character). See Figure 3.3 for an example.

One issue that needs special attention are the implicit a sounds present
in Devanagari consonants. On the Roman Hindi side, these will be written
explicitly as a but on the Devanagari side they do not have any Unicode
representation, therefore we have to approximate their frequency of occur-
rence somehow. Our method for doing this is as follows:

We first extract character 4-grams < c1, c2, c3, c4 > from the corpus with
halants. From these we select all 4-grams where c3 and c4 are consonants.
These can be viewed as 5-grams of the form < c1, c2, c3, ε, c4 > (where ε as
before denotes a ”null character”).

Depending on whether c2 is a halant or not we can then create trigrams
< c1, c3, ε > or < c2, c3, ε > which can be used to estimate the occurrence of
the implicit a sound. This method does overestimate the frequency some
since as mentioned earlier not all a:s are pronounced (e.g. t� mn� is pro-
nounced tumne, not tumane) but it seems to work well enough in practice.

3.5 Machine learning algorithms

The mappings and n-grams can be combined and used to construct ma-
chine learning algorithms. In Section 3.3, we defined the possible ways
each Devanagari character could be spelled. These can be reversed so we
get a set of Roman tokens and for each token the possible Devanagari char-
acters that token could be transliterated to, see Table 3.2 for an example.

For each Roman token and its list of associated Devanagari characters,
we can select the subset of trigrams whose last character is in that list. This
data can be used to train a machine learning algorithm implementing a
function that given preceding Devanagari characters di−2, di−1 as input re-

18



a a aA A
n  \ Z n
k k K * �

Table 3.2: Examples of Roman Hindi-Devanagari mappings.

turns a list of possible di with associated probabilities. For testing we im-
plemented these functions with both decision trees (Quinlan, 1986) and lo-
gistic regression using LIBLINEAR (Fan et al., 2008).

3.5.1 Decision trees

We implemented a decision tree based on trigrams with fixed evaluation
order, branching first on di−1 and then di−2. Branching was done on ev-
ery single Devanagari character present, so to handle the case where no
matching branch can be found when classifying an instance interior nodes
contain bigram based probabilities (and the root unigram based).

There are cases where it is unnecessary to branch. For example, p only
maps to p no matter the context, aa can map to aA or A, but at the start of
a word only the independent form is valid. For this reason, we calculated
the entropy of the data before branching. If it was 0 a leaf node could be
put in place of the branch.

This could be generalised to abort branching not just for an entropy of
0 but for entropy below a set threshold for efficiency reasons. We did not
attempt this, instead we used another approach. After branching is done
each node has a set of Devanagari characters with attached probabilities.
This set can be pruned by removing characters with low probabilities, e.g.
if a node contained two choices, d1, p = 0.99 and d2, p = 0.01 this could be
simplified to d1, p = 1.0. Results for different levels of pruning can be seen
in Section 5.1.

An example of part of a decision tree can be seen in Figure 3.4.

3.5.2 LIBLINEAR

With LIBLINEAR we used the L2-regularised logistic regression solver.
Training data was encoded with one feature for each possible Devanagari
character and position. The size of the part of the Devanagari code page
we used is 101 (although there are a few holes). Therefore each training
instance is a 202-dimensional vector where two elements have the value 1
(one in dimensions 1 – 101 and one in dimensions 2 – 202) and the rest are
0.

To determine the optimal C parameter 5-fold cross validation was em-
ployed in two phases. In the first phase C = 2k, k = −5,−3, ..., 5, 7 was
tried. This resulted in some optimal C = 2kopt . In the second phase C =
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Figure 3.4: Part of the decision tree for i, branching first on di−1 and then
di−2.

2k, k = kopt − 1, kopt − 0.8, ..., kopt + 0.8, kopt + 1 was then tried and the
resulting optimal choice was used in subsequent training.

When classifying instances LIBLINEAR was run with the -b option to
output probability estimates. Similarly to the decision tree above the re-
turned result was pruned, removing low probability choices. Results are
available along with the decision tree ones in Section 5.1.

The LIBLINEAR model was also tested with bigrams, employing the
same model as above except instances were now 101-dimensional vectors
instead. Results can be seen in Section 5.4.

3.5.3 Variation for mobile phones

The given model works well for regular keyboards, but on mobile phones
it is somewhat cumbersome since it requires multi-tap. As an example, to
type the word hindi on a mobile phone requires the key-presses 44, 444,
666, 3, 444. It would be better if users could type characters with just one
key-press each the same way they do with T9 etc. So hindi would be typed
as 44634 instead.

We can easily do this just by converting the mappings. So if I previously
had the mappings i, ii, ee and yi it will now have the mappings 4, 44, 33 and
94. We then construct our machine learning algorithms just like before.

This does of course increase the ambiguity since we have now reduced
the number of Roman tokens defined from 61 to 33. However, as will be
seen in the results in Section 5.3, we can get pretty close to the accuracy
of the regular model. Albeit at the cost of evaluating significantly more
words.
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3.6 Main algorithm

Machine learning algorithms define what Devanagari character each Ro-
man token transliterates into. For a complete algorithm we need to split
up the Roman Hindi word into segments, iterate through these and col-
lect the possible Devanagari words. During the algorithm these words are
contained in dev -word objects which contain the Devanagari word being
built, its accumulated probability p as well as other data needed for the
algorithm.

For efficiency reasons, we do not actually split the input word before-
hand. Instead each dev -word keeps track of how much of the input word
has been transliterated. MATCH-TOKENS(roman-word , i), which returns the
matching tokens for position i in the input word, is then called each itera-
tion. As was mentioned in Section 3.1, Roman Hindi words mostly, but not
always, have a unique segmentation. Therefore the set of Roman tokens is
partitioned into subsets based on priority so that kaa will only generate the
segmentation k-aa but hai will generate both h-ai and h-a-i for example.

Pseudo code for the main algorithm can be seen in Figure 3.5. Before the
algorithm begins, the input words is prepared by adding a word boundary
marker at the end (since some tokens match against the end of a word) and
all instances of x are replaced by ks (see Section 3.1). We then use a beam
search approach: On each iteration the algorithm tries to match every word
in the working set against the Roman Hindi input word and generate new
Devanagari words with one more character. At the end of the iteration
these new words are sorted by probability and only the n best words are
kept, to keep the number of words from blowing up exponentially. When
all Devanagari words in the working set have worked through the entire
input word the algorithm is done and the working set returned as the re-
sult.

The algorithm for performing one transliteration step is shown in Fig-
ure 3.6. The basic procedure is to look up all possible Devanagari characters
in the correct decision tree or LIBLINEAR model and then generate new
Devanagari words with these attached and probabilities updated. How-
ever, there are a few special cases that must be handled.

The first one applies only when the model is trained for the numeric
keypad of a mobile phone directly (see Section 3.5.3). When trained for
the regular alphabet, for example the word kaa will always be split as k-aa
but on the numeric keypad the corresponding key sequence is 522 which
as well as kaa also could mean kab and others. Therefore the algorithm has
no choice but to try both 5-22 and 5-2-2. In the second case, the algorithm
might transliterate the first 2 as implicit ’a’ which means the Devanagari
word does not change. Therefore it might also try to transliterate the second
2 as implicit ’a’ which the ELIMINATE-NULLS function prohibits.

The second function FORCE-INDEPENDENT-VOWEL does just what its
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TRANSLITERATE(rw , n)

1 REPLACE-X(rw) � Replace every occurrence of ’x’ with ’ks’
2 m← length[rw ]
3 rw ← rw +′φ′

4 working-set ← dev-word() � Initialise working-set with empty dev -word

5 repeat

6 results ← ∅
7 for each dw ∈ working-set
8 do if roman-pos [dw ] < m

9 then tokens ← MATCH-TOKENS(rw , roman-pos [dw ])
10 results ← results ∪TRANSLITERATE-STEP(dw , tokens)
11 else results ← results ∪{dw}
12 SORT(results) � Sort words by descending probability
13 working-set ← results [1 . . n]
14 until roman-pos [dw ] ≥ m,∀ dw ∈ working-set
15 return working-set

Figure 3.5: Main algorithm.

name says. Sometimes the model will erroneously suggest the dependent
form of a vowel when only the independent is valid. This can happen in
two cases. The first case is when the previous character was an implicit ’a’.
In this case, as noted in the previous paragraph, the Devanagari word will
remain unchanged and we need to force the next vowel into its indepen-
dent form. The second case is if the previous character was a dependent
vowel and the model still suggests a dependent vowel for the current char-
acter. This could happen with a decision tree if we encounter a previously
unseen trigram which forces the tree to back off to unigrams.

When constructing the machine learning algorithms we disregarded
halants, instead they are added here. The function HALANT-POSSIBLE (see
Figure 3.7) determines whether it would be legal to insert a halant before
the next character. If so, we add two versions of the word, one with the
halant and one without. As has been shown in several examples conso-
nants are often pronounced without their implicit ’a’ in Hindi. Therefore a
consonant conjunct in Roman Hindi is not guaranteed to be a conjunct in
Devanagari and we have no choice but to add both version (e.g. hindi is
written with halant, Eh�dF, but tumne without, t� mn�).

A major drawback to this method is that every time it is possible to
insert a halant we get two words with the exact same probability, which
the algorithm cannot tell apart (since it ignores halants). When we later
add a wordlist (see Section 3.7) that will often help by eliminating one of
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TRANSLITERATE-STEP(dw , tokens)

1 results ← ∅
2 n← length[dw ]
3 for each token ∈ tokens

4 do m← length[token]
5 dev -chars ← LOOKUP(token, dw ) � Look up possible Devanagari

characters in relevant decision tree or SVM
6 if last-was-implicit-a [dw ]
7 then ELIMINATE-NULLS(dev -chars)
8 for each (d, p) ∈ dev -chars
9 do dw2 ← copy(dw )

10 p[dw2 ]← p[dw ] · p
11 roman-pos [dw2 ]← roman-pos [dw ] + m

12 if last-was-implicit-a [dw ] or dw [n] ∈ dependent vowels
13 then FORCE-INDEPENDENT-VOWEL(d) � If needed, change

a dependent vowel into an independent one
14 if HALANT-POSSIBLE(dw , d)
15 then dw3 ← dw2 +′ ^ ′ + d

16 results ← results ∪{dw3}
17 dw2 ← dw2 +d

18 results ← results ∪{dw2}
19 return results

Figure 3.6: The algorithm for performing one transliteration step.

the versions.

3.6.1 Efficiency

The major issue when implementing the above algorithms for a mobile
phone is the amount of words that need to be created each iteration. How-
ever this can be quite effectively solved by keeping a pool of discarded
objects instead of freeing their memory. This way, after a few iterations to
let the pools grow big enough, further transliteration requires very few, if
any at all, expensive memory allocations and de-allocations.

3.7 Wordlist

In Section 2.2, we said that a good transliteration system cannot be depen-
dent on a wordlist but it can still be used as a complement. We mentioned
in the previous section that the way we added halants meant both versions
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HALANT-POSSIBLE(dw , d)

1 n← length[dw ]
2 if IS-CONSONANT(dw [n]) and IS-CONSONANT(d) and not last-was-implicit-a [dw ]
3 then return true
4 else return false

Figure 3.7: The algorithm to determine if it is possible to insert a halant at
the current position.

got the same probability and so we could not separate them, a wordlist
helps with this. We take the wordlist with frequencies we obtained from
the corpus and store it in a trie (Fredkin, 1960), see Figure 3.8 for an exam-
ple.

102,532

30,829
67,023

88,398

12,071 9,994

0

0

0

0

0

0

Figure 3.8: Part of a trie with Hindi words.

With this trie, we can easily check if a given word is a prefix of some
word in the wordlist. This means that we can now improve the filtering and
sorting at each iteration algorithm. Lines 12 to the end of TRANSLITERATE

that previously looked like

12 SORT(results)
13 working-set ← results [1 . . n]
14 until roman-pos [dw ] ≥ m,∀ dw ∈ working-set
15 return working-set

will now change to
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12 prefixes ← {dw | dw ∈ results and dw is prefix of some w ∈ wordlist}
13 results ← results \ prefixes

14 k ← length[prefixes ]
15 if k < n

16 then SORT(results) � Sort as before
17 working-set ← prefixes ∪ results [1 . . n− k]
18 else working-set ← prefixes

19 until roman-pos [dw ] ≥ m,∀ dw ∈ working-set
20 SORT(working-set ,wordlist ) � Sort words first by wordlist frequency

then by probability
21 return working-set

Instead of just sorting the results and selecting the n best, we now first
select all the words that are prefixes and only if necessary we sort the rest
and select the n − k best of these. At the end of the algorithm we sort the
words by comparing first their frequency and then their probability.

With the wordlist, when TRANSLITERATE-STEP generates words both
with and without halants we can often discard one of them directly. It
also helps with filtering in general and ensures that for common words,
the correct spelling will always be at the top of the list returned to the user.
This is especially significant when training the model for a numeric keypad
directly.

The full wordlist might be too large to be practically usable, especially
when we are targeting a mobile phone. We can then reduce it in size by
removing low frequency words. The naive way to do this would be to
remove all words below a set frequency before building the trie. However,
in a trie structure such as the one we are using, words entirely contained in
interior nodes cost no extra space. We therefore build the trie from the full
wordlist and afterwards we iteratively remove leaf nodes with frequency
below the set threshold until no more can be removed. This way we get
a trie of the same size as with the naive approach, but usually with a few
thousand more words in it.

Another benefit of the wordlist is that it lets us generalise our system
to predict words before the user has finished typing them. Instead of just
checking if a given word is a prefix in the wordlist we can return all words
it is a prefix of. Some care needs to be taken though, like restricting the
depth to which we search in the tree, to keep the number of words returned
manageable. For example, if the user typed the single character k there
would probably be a few thousand words in the wordlist beginning with
that character, so limiting the search depth to two or three times the length
of the word actually typed is probably a good idea.
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Chapter 4

Experimental set-up

All n-gram extraction and model building as well as the main algorithm
was implemented in Ruby. The only exception is the LIBLINEAR classifier.
The Ruby code communicated with it by writing the instance to be classi-
fied to a temporary file, executing the predict binary and then reading
back the results from file.

The training set consisted of 65,711 weighted instances. Since LIBLIN-
EAR lacks support for weighted instances, we instead listed each instance
multiple times for a total of around 18 million instances.

4.1 Test framework

Using this code we built a test framework to measure the accuracy of our
model and compare the decision tree and LIBLINEAR implementations.
This framework took a set of Roman Hindi-Devanagari word pairs and
tried to transliterate them, measuring the number of correct words, the av-
erage rank of the correct word (when found) in the result set and the max-
imum number of words that had to be created (i.e. the maximum size of
results in TRANSLITERATE) during transliteration. The main parameter that
can be varied in TRANSLITERATE is n, the width of the beam. Therefore the
test framework executed each configuration for values of n from 1 to 15.

For testing we selected 107 words from our corpus. We tried to select
words that covered as much of the Devanagari alphabet as possible and
that were uniformly distributed from common to uncommon. Although
we did not include some of the most common words as we felt that would
skew the distribution of our corpus too much when removed (the top ten
words accounted for 20% of the corpus in our case). These words were
transliterated by a native speaker, sometimes in several variants, giving us
a total of 126 word pairs to test our model on.

When doing testing, the set of training data should be separate from
the test set. However, we thought it would be interesting to test our system
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on ”known” words as well, to test the design of our model. Therefore we
tested three different levels of configuration.

In the first, denoted (corpus + wordlist) in the graphs, the test words
were not removed from the corpus used to build the decision trees and
LIBLINEAR models, nor the wordlist used during running. This to test the
validity of our model, i.e. did our design with manually defined mappings
from Roman Hindi to Devanagari actually cover real typing patterns?

In the second level, (corpus), words were kept in the corpus but removed
from the wordlist. This way the test words were still ”known” but the
algorithm did not receive help from the wordlist to automatically rank the
words near the top each iteration.

Finally we also tested with the test words removed from both corpus
and wordlist. This way the result was entirely dependent on the machine
learning algorithms to classify new instances on the models built from the
training data.

4.2 Java GUI prototype

In addition to the Ruby code, we also developed a GUI prototype in Java to
simulate actual use. A screen-shot can be seen in Figure 4.1. The application
lets users type text, transliterates it in realtime and displays the five best
suggestions, similarly to e.g. T9 on mobile phone. It also lets users go back
and edit words, synchronising caret movement between the Roman Hindi
and Devanagari word.

For transliteration, the application used the decision tree model, since
that was the easiest to implement.

In the Java application we also tried the predictive functionality as out-
lined in Section 3.7, see Figure 4.2 for an example.
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Figure 4.1: A screen-shot of the GUI prototype we developed in Java.

Figure 4.2: An example of predicting words before the user has finished
typing them.
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Chapter 5

Results

In this chapter, we describe the results from testing. All graphs are collected
at the end of the chapter.

5.1 Pruning thresholds

When building the decision tree in Section 3.5.1 (and similarly when return-
ing results from LIBLINEAR) we removed low probability choices. The
first thing to be tested was different thresholds for this pruning to deter-
mine optimal values to use.

Results for the decision tree can be seen in Figure 5.1. As can be seen,
higher thresholds work better for low values of n. This helps filter out the
noise so to speak, while lower thresholds work better for high values of n,
although at the expense of having to evaluate more words. We therefore
felt a threshold of 0.1 was a good compromise.

For LIBLINEAR (Figure 5.2) the results were similar, although less pro-
nounced. We again found 0.1 to be a good setting.

When training the model directly for a numeric keypad we thought
a lower threshold might be needed. Since we now had greater ambigu-
ity there would in general be more choices (and thus lower probabilities).
However, as can be seen in Figure 5.3 the best result for all but very large
values of n was 0.1.

5.2 Comparing decision trees and LIBLINEAR

Decision tree and LIBLINEAR models were tested in all three configura-
tions defined in Section 4.1. The first thing that can be seen from the results
in Figure 5.4 is that even in optimal circumstances the best our model can
do is 87 out of 126 correct words. This will be discussed further in Sec-
tion 6.1.
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We can also see that for the case where test words are kept in the train-
ing corpus, the decision tree is actually slightly better than LIBLINEAR,
while LIBLINEAR wins out if the words are removed. Another perspective
can be seen in Figure 5.5 where we show the average rank in the result set
for the correct word. We can see that even though the decision tree might
not handle as many words as LIBLINEAR, when it does find the correct
word it will usually put it closer to the top.

Comparing the results further we see in Figure 5.4 that, with the test
words removed from the training corpus and wordlist, the LIBLINEAR
model correctly transliterates 78 words for n = 15 while the decision tree
model only manages 73. Those five words that only LIBLINEAR handles
are shown in Table 5.1.

With the exception of h� the decision tree model fails on all these words

for basically the same reason: they all contain several vowels that are avail-
able in both short and long versions.

For h� the decision tree incorrectly selects h� \ instead (since we have re-

moved the word h� from the corpus).

rhA raha
pr�t� parantu
h� hun

aEtErÄ atirikt
mh(vp� Z mahatwapurna

aAt\kvAEdyo\ atankvadiyon

Table 5.1: The words that only the LIBLINEAR model could handle.

5.3 Comparing models trained on the regular alpha-

bet vs. a numeric keypad

In Figure 5.6, we compare decision trees trained on the regular alphabet
and trees trained for a mobile keypad directly. We can see that, for the
cases without wordlist support, the numeric model is significantly worse
than the regular one. However, with wordlist support, the numeric model
equals the regular one (albeit at the cost evaluating significantly more words,
see Figure 5.7). So the numeric model could be feasible for e.g. SMS appli-
cations on a mobile phone, provided the number of words evaluated could
be kept down.
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5.4 Comparing bigram- and trigram-based LIBLINEAR

models

We also tried training the LIBLINEAR model on bigrams. Results com-
paring it against the trigram model can be seen in Figure 5.8. The bigram
model is significantly worse, except for the final configuration where it sud-
denly matches the trigram model.
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Figure 5.1: Using the decision tree with various thresholds for pruning.
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Figure 5.2: Using LIBLINEAR with various thresholds for pruning.
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Figure 5.3: Using the decision tree trained directly for a numeric keypad
with various thresholds for pruning.
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Figure 5.4: Comparing decision trees to LIBLINEAR.
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Figure 5.5: Comparing average rank of the correct word for decision trees
and LIBLINEAR.
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Figure 5.6: Comparing decision trees trained on the regular alphabet vs.
trees trained directly for a mobile keypad.
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Figure 5.7: Comparing the maximum number of words evaluated for de-
cision trees trained on the regular alphabet vs. trees trained directly for a
mobile keypad.
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Figure 5.8: Comparing LIBLINEAR trained on bigram models vs. trigram
models.
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Chapter 6

Conclusions

6.1 Validity of our model

In the previous chapter, we showed that, even in the best case with full cor-
pus and wordlist support, the model could not correctly transliterate more
than 87 out of 126 words. The main reason for this is the way we designed
our model in Section 3.1 and 3.3, with manually defined mappings, operat-
ing on an individual character level on the Devanagari side.

One example of things it cannot handle is the syllable &y. The rigid
transliteration of this would be vya, but in the test set there are several ex-
amples of other variations such as in the word &yEÄ, transliterated as waikti,
vekti or wakti.

Other examples are vowels transliterated more loosely than we have
defined them, such as þyog (literally prayog) transliterated as proyog, e�sA
(aisaa) transliterated as aise or þ(y�k (pratyek) as pratyak.

All the examples mentioned could in theory be handled by defining
more mappings. Doing this would put a greater burden on the machine
learning algorithms to make correct choices though. Another option would
be to investigate syllable based models instead, with the difficulties in seg-
mentation that brings.

6.2 Applying the model to other Indic scripts

We have mentioned in this report the shared structure of Indic scripts. We
also mentioned how the mappings defined for Devanagari here should be
easily adaptable to other scripts. It should therefore be easy to implement
transliteration for other languages. Unfortunately we did not have time
during this thesis to collect a corpus for another language and actually test
this ourselves.
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6.3 Implementing the model on a mobile phone

We mentioned that the main algorithm could be implemented quite effi-
ciently with the help of object pools. The two other areas that need to be
considered are the wordlist and the machine learning algorithm.

During this thesis we did some prototype work on a trie implementa-
tion in C that, utilising path compression and some creative packing of the
C structures, could fit a wordlist of 19,195 words in about 160 kB of mem-
ory. It could probably be reduced further with more work.

The other issue that needs to be decided is the choice of machine learn-
ing algorithm. As was shown in the testing, although LIBLINEAR was
perhaps ultimately better, operating on known words and with wordlist
support the two models were pretty similar. Therefore the choice should
perhaps mainly be made on computational grounds.

The decision tree has the advantage that it is computationally trivial,
simply traverse two levels of a tree. Its main disadvantage is its size. We
did not have time to develop a full prototype of this as with the wordlist,
but initial research showed that a reasonable (not fully optimised, but cer-
tainly not naive) implementation would probably require at least 300 kB of
memory in total.

LIBLINEAR on the other hand has rather modest space requirements.
Even in the plain-text format it stores its data in, the entire model could be
fit in 286 kB. An optimised binary format would require much less (for
example, floating point numbers are stored with 15-20 digits so even a
naive binary format could easily cut the space requirements to a third).
LIBLINEAR is however computationally rather more complex. In particu-
lar, it utilises a lot of floating point math which would probably need to be
changed to fixed point to be viable on a mobile phone.

6.4 Handling foreign words

One thing that is missing in our model is the ability to handle foreign
words. When we had a native speaker test the Java GUI prototype this
was something that he discovered was missing pretty fast. For commercial
feasibility it would therefore be vital to have some system to handle these
words.

The superior option would be a solution like the one in Surana and
Singh (2008). But lacking that, a small lexicon of English-Hindi word pairs
could perhaps be an acceptable temporary solution.
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Appendix A

Mappings

 n m X d dd
\ n m Y d dh dd ddh
, h Z n nn
a a t t
aA a aa T t th
i i yi d d
I i ii ee yi D d dh
u u n n
U u uu oo p p
� ri P ph f
 l b b
e� e ye B b bh
e e ye m m
e� ai y y yφ

aA� o r r
ao o l l
aO au ou � l ll
k k v v w
K k kh f s ss sh
g g q s ss sh
G g gh s s ss sh
R ng h h
c c ch A a aa
C ch chh E i yφ

j j F i yφ ii ee
J j jh � u
� ny � u uu oo
V t tt th � ri
W t tt th tth � ri
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� e
� e
A� o
o o
O au ou
* k q
� k kh khh
� g gh ghh
) z
w d dh dd ddh r
x r rh
' f ph

42



Bibliography

Baker, P., Hardie, A., McEnery, T., Xiao, R., Bontcheva, K., Cunningham, H.,
Gaizauskas, R., Hamza, O., Maynard, D., Tablan, V., Ursu, C., Jayaram,
B. D., and Leisher, M. (2004). Corpus Linguistics and South Asian Lan-
guages: Corpus Creation and Tool Development. Lit Linguist Computing,
19(4):509–524.

Chaudhuri, S. (2006). Transliteration from non-standard phonetic bengali
to standard bengali. In Satellite Workshop on Language, Artificial Intelligence
and Computer Science for Natural Language Processing Applications.

Ekbal, A., Naskar, S. K., and Bandyopadhyay, S. (2006). A modified
joint source-channel model for transliteration. In Proceedings of the COL-
ING/ACL on Main conference poster sessions, pages 191–198, Morristown,
NJ, USA. Association for Computational Linguistics.

Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., and Lin, C.-J. (2008).
Liblinear: A library for large linear classification. J. Mach. Learn. Res.,
9:1871–1874.

Fredkin, E. (1960). Trie memory. Commun. ACM, 3(9):490–499.

Jung, S. Y., Hong, S., and Paek, E. (2000). An english to korean transliter-
ation model of extended markov window. In Proceedings of the 18th con-
ference on Computational linguistics, pages 383–389, Morristown, NJ, USA.
Association for Computational Linguistics.

Krishna, A., Ajmera, R., Halarnkar, S., and Pandit, P. (2005). Gesture key-
board – user centered design of a unique input device for indic scripts.
Technical report, HP Laboratories India. HPL-2005-56.

Quinlan, J. R. (1986). Induction of decision trees. Mach. Learn., 1(1):81–106.

Rathod, A. and Joshi, A. (2002). A dynamic text input scheme for phonetic
scripts like devanagari. In Proceedings of Development by Design (DYD).

Shanbhag, S., Rao, D., and Joshi, R. K. (2002). An intelligent multi-layered
input scheme for phonetic scripts. In SMARTGRAPH ’02: Proceedings of

43



the 2nd international symposium on Smart graphics, pages 35–38, New York,
NY, USA. ACM.

Singh, A. K. (2006). A computational phonetic model for indian language
scripts.

Surana, H. and Singh, A. K. (2008). A more discerning and adaptable mul-
tilingual transliteration mechanism for indian languages. In Proceedings
of the Third International Joint Conference on Natural Language Processing
(IJCNLP), Hyderabad, India. Asian Federation of Natural Language Pro-
cessing.

UzZaman, N., Zaheen, A., and Khan, M. (2006). A comprehensive roman
(english) to bangla transliteration scheme. In Proc. International Conference
on Computer Processing on Bangla (ICCPB-2006).

Yoon, S.-Y., Kim, K.-Y., and Sproat, R. (2007). Multilingual transliteration
using feature based phonetic method. In ACL. The Association for Com-
puter Linguistics.

44


