Contextual text classification for parametric
mappings in a distributed search engine

Jimmy Pettersson

December 4, 2011

Abstract

The purpose of this thesis was to research the possibility to automat-
ically map queries down to parameters in a distributed search engine.
Another objective was to investigate if the mappings could be made good
enough to improve search results and user experience.

Two Bayesian classifiers and one classifier using a combination of tf-
idf, cosine similarity and the vector space model were implemented and
evaluated against each other. The three implementations were all tuned
to better fit in with the distributed model of the search engine.

Initial results indicated that one of the simpler Bayesian implemen-
tations outperformed the other two implementations. The later parts of
the work were dedicated to optimize this implementation, ending up in
a blind test that showed an improvement in both search results and user
experience.

The final conclusion is that the thesis overall was a success but there
is a lot of room for improvement both in and around the current working
implementation.

Acknowledgments

I would like to thank the following people for making this thesis possible

My examiner at Lund University Pierre Nugues for his guidance throughout
this thesis and for taking the time to meet and discuss my work week after week.

Lars Hard and Axel Antonsson at Expertmaker for taking the time to be my
supervisors and for their invaluable input.

Everyone Expertmaker for making me feel like a part of the team and for their
input on various topics. An extra thank you to the people who shared office
with me over the last months for putting up with all my moans and groans
during the writing of this report.

Lastly a big thanks my mother Marie, my father Mats and my sister Sandra
along with all my friends that have been standing by me for the last five years.
You made this possible.

Contents

1 Introduction

1.1 Boomstep

1.2 Vertical search oL o
2 Problem

2.1 Background

2.2 Related work
3 The node

3.1 The input element oL

3.2 The output elemento

3.3 Theexampleelement

4 Document classification

5 Naive Bayes

5.1 Implementation o
5.1.1 Training on outputs
5.1.2 Trained on inputs

6 Tf-idf, Cosine similarity and Vector space model
6.1 THadf . . .

6.2 Cosine similarity o
6.3 Vector space model oo
6.4 Implementation

6.4.1 Trained on inputs L.

7 Notes on implementation

7.1 Parser
7.2 Logarithmic probabilities
7.3 UML diagrams e
8 Experimental setup
8.1 Imitial tests
8.2 Online blind test
9 Results
9.1 Blindtest
9.1.1 Analyzing thedata
9.1.2 Results
9.2 Discussion

10 Conclusions

A Initial test suite

EN |

NeJ

11
12
12
12

15

15
16
16
18

21
21
22
22
23
23

25
25
25
27

29
29
29

31
31
31
31
36

37

39

1 Introduction

The field of natural language processing, or NLP for short, has been studied
for over 60 years and still presents problems to engineers and academics that
seem insurmountable. How do we teach computers to distinguish between dif-
ferent semantic aspects of everyday life? Can a machine give us suggestions
based on a set of parameters? Can it mimic the behaviour of a human when
answering these questions? There are a wide array of sub-fields within NLP
that tries to tackle these problems in different ways and this report will present
a proposed solution to map entities based on user queries to a special search
engine.

1.1 Boomstep

Boomstep is the result of 5 years of developing a tool called the Knowledge
Designer at Expertmaker AB (2011), a company based in Malmo, Sweden.
Boomstep is a search engine that is builds on artificial intelligence, AI, and
harnesses the power of Al to not only display relevant search results but also
act as a suggestion machine, answering everyday questions such as

Where can I eat cheap in Stockholm?
or
Which breed of dog is best for me if it is my first dog?

The search engine itself consists of a set of smaller specialized search engines,
referred to as nodes.

1.2 Vertical search

Going back to the previously stated questions, or queries, there is a node about
restaurants in Stockholm as well as a node about dogs. These nodes handle
nothing else except the area of expertise that they are supposed to do. This
design of the search engine and its nodes is what makes it a so called vertical
search engine. A node in a vertical search engine is confined by the data within
that node and this makes it possible to work with a very limited subset of lexical
content once you have found the right node. A node about sports will have a
high frequency on words like soccer, hockey and referee, while a node about dogs
will have a low frequency on the same words if they are present at all.

2 Problem

2.1 Background

In order to answer questions of the form Where can I eat cheap in Stockholm?,
a set of parameters has to be manually set by the user in Boomstep which can
be cumbersome if used extensively. The problem I had to solve was to research
the possibility of automating this process based on the query the user supplied
to the search engine. Given a query consisting of a set of words the algorithm
has to map to a set of parameters. The number and type of parameters that
can be set for a given node are specific to that node.

Setting the parameters for a node does not only give the search engine the
power to give suggestions based on the query but it also yields better search
results due to the fact that setting a parameter will filter out the search results
that did not match the parameter.

Throughout the implementation phase of the project, I have been working
under the assumption that based on the query, the correct node is found by
the search engine. Should an incorrect node be found, it is most likely that the
mapping will not produce any results, or worse, produce erroneous results.

2.2 Related work

Document classification and categorization dates back to somewhere in the
late 1950s. Back then document classification was performed using heuristic
methods by letting an expert set up rules and applying these to solve the task
of classification.

With the introduction of the Internet, the amount of available data has ex-
ploded and the need to automatically be able to classify texts came along with
it. Historically, classification can be divided in to three branches.

Supervised document classification where some external entity (mostly
human feedback) provides the data for the correct classification of docu-
ments.

Semi-supervised document classification where to some extent an external
entity provides the data, and the rest is unsupervised.

Unsupervised document classification where the classification is done with-
out any external influence.

The increasing demand on this kind of technology led to more research in the
area and as a result a number of different techniques has been developed over
the years. Popular ones like Naive Bayes, Support Vector Machines and Nearest
Neighbour has gained acceptance within the community over the years. For an
introduction to these techniques see Manning et al. (2008). Newer methods like
Random forests (Breiman, 2001) are trying to prove their worth, applying a
more complex approach to the classification problem.

Finding similar work closely related to the work done in this thesis is not
possible since I have been working on a closed source search engine and this is
the first attempt at automatically map queries to parameters.

10

3 The node

A node can be developed by anyone with the help of the Knowledge Designer
tool from Expertmaker. Often nodes are developed by people or organizations
with expertise in a certain field e.g the dogs node was developed by a kennel
club in Sweden. This approach is a strength of the search engine to ensure
that the data presented is valid and accurate. It is also adds credibility to the
suggestions given by the search engine, as it acts on the behalf of an expert or
person that is well informed in a particular field.

A node can be either static or dynamic depending on the needs to update
the data. The dogs node, containing different breeds of dogs, is static since the
need to dynamically add new breeds is low. You want the data to be added
manually through the Knowledge Designer by an expert in his or her particular
field. Some nodes have a higher need to be dynamic, like the news nodes which
is constantly updated with news.

A node in Boomstep is a data structure stored in a XML file. It contains
data that represents the node, like inputs, outputs, examples as well as meta
data. The general structure of the node can be viewed in Fig 1.

Node
e
Boomstep
General info, tags, title, language, etc
\
Inputs
Inputs and input values
-
Outputs
Tags, title, text, image, link etc
. vy
-
Examples
Semicolon separated values, linked to outputs
-

Figure 1: Overview of a node and its elements.

11

3.1 The input element

The input element is a specification of an attribute that can be set within the
node. The input element contains different attribute properties that tells the
search engine how important the input is to the search and if it is an ordered
input or not. An ordered input is an input whose attribute values can be ordered
in some way like the difficulty of a video game can have the ordered attribute
values easy, normal, hard, whereas an unordered input can be something like
colors. Figure 2 shows the structure of the input with the attribute type Type
in the pasta node with the attribute values Spaghetti/Fettuccine, Pasta Salad
and Lasagna along with some attribute properties.

—<input index="0" input_importance="very low importance" name="type" type="unordered">
—<data>
<caption>Type</caption>
</data>
—<values>
<value index="0">Spaghetti/Fettuccini</value>
<value index="1">Pasta Salad</value>
<value index="2">Lasagna</value>
<fvalues>

<finput>

Figure 2: Input element extracted from a XML file.

3.2 The output element

The output element represents the result displayed to the user. It often consists
of a title, a body of text and an image. It also contains meta data such as
id, the date it was published and tags that helps the search engine to match
against the output. Figure 3 shows the structure of the output element for an
easy pasta sauce.

- <output id="easy pasta_sauce">
—<result>
<caption>Easy pasta sauce</caption>
—<text>
This a very easy and tasty pasta sauce. It's good with just pasta, and goes well with a lot of vegetables as well. The quantities of ingredients varies with
the amount of pasta, and with your taste preferences. Ingredients olive oil garlic cloves ripe tomatoes salt ground black pepper fresh cream oregano
Procedure 1.Finely chop tomatoes or purée them in a food processor - this depends on what consistency you want. Chopping gives a chunkier sauce while
using puréed tomatoes yields a smoother sauce. 2.Grind garlic to paste. 3.Heat oil in a pan. Using a pan with non-stick coating needs less oil. 4 When oil
is hot (but not too hot), turn down heat and add garlic paste. 5.When garlic is golden-brown, add tomatoes. 6.Tomatoes have to be cooked until done -
they'll look and smell cooked instead of raw, and will be a deeper, redder colour. 7.Half way there, add salt and pepper. 8.When tomatoes are almost
dome, add fresh cream (more if you want, but less is good too). 9.After half a minute, add oregano. 10.Cook for another minute, and your pasta sauce is
ready. 11.Add cooked pasta and vegetables and serve hot.
<[text>
+<image encoding="base64" name="img easy pasta sauce.jpg"></image>
<date>2010-02-03T13:21:40Z</date>
</result>
</output>

Figure 3: Output element extracted from a XML file.

3.3 The example element

An example element consists of a set of semicolon separated values, a feature
vector, that represents the parameters that has to be set in order to match a
given output. The example element are linked to an output element via the id
of the output. The relationship between the example elements and the output

12

elements are of many-to-one. An output can have many examples while an
example can only have one output. Figure 4 shows what parameters that will
match the output element in Figure 3.

<example output="easy pasta sauce">0;0;0;0;0;0;1;1 </example>

Figure 4: Example element extracted from a XML file.
The first element in the feature vector in Figure 4 refers to the input element
in Figure 2. The value for this element has been specified to 0, indicating that

the Type should be Spaghetti/Fettuccine. In the current version of the search
engine, these parameters has to be set manually.

13

14

4 Document classification

Document classification is a sub field of document retrieval, which itself is a sub
field of information retrieval, IR. The field of IR is broad and consists of the
study of intra/inter-search of documents as well as searching the Internet. It
spans several fields including mathematics, computer science and NLP.

The general idea behind document classification is simple. You have a doc-
ument you want to classify in some way. It can be a document of a review that
is to be classified as positive or negative or it can be a document of a recipe
that is to be classified as a recipe for a meat dish, a seafood dish or a vegetar-
ian dish. The human approach of classifying the document would be to read
it and use our knowledge and experience to tell which category it belongs to.
To automate this process using a computer there are several different methods.
What they have in common is that they attempt to mimic the human approach
in using other documents they have “read” before drawing a conclusion about
the document that is to be classified.

5 Naive Bayes

The Naive Bayes, NB, classifier is a probabilistic classifier that assumes inde-
pendence of features, meaning that the existence or absence of a feature (word)
is independent of the existence or absence of other features (words). This is
obviously a simplification of the real world and is counter-intuitive since there
is often a high dependency among words. Despite this, the NB classifier per-
forms on par with other more sophisticated classifiers and even outperforms
them in certain cases (Zhang, 2004). The NB classifier has been proven to
be effective in real world applications such as text classification (Lewis, 1998;
McCallum and Nigam, 1998; Rennie, 1999), medical analysis (Friedman et al.,
1997), spam filtering (Rish, 2001) and analyzing Arabic texts related to fanati-
cism (Almonayyes, 2006). A strength of the NB classifier is that it does not
require large amounts of training data to perform classification (Forman and
Cohen, 2004).

The probability model of a document D being in class C' can be written as
P(C|D) where D consists of n words wy...w,—1. Given this we can expand the
model to P(C|wy,...,wn—1). Now applying Bayes’ Theorem to this model we
can write

P(C)P(D|C) P(C)P(wq, ..., wn—1|C)

P(C|D) = P(D) = P(wo,...,’wnfl)

where P(C) is the probability of the given class C. In other words, the proba-
bility of a document D being of class C' without considering the contents of D.
P(D) is the probability of the specific document D occurring. Finally P(D|C)
is the probability of that given a class C, the words in D exist in that class.
Since the denominator P(D) is independent of C' and is fixed over all possible
classes, it can be omitted in the calculations and we get

P(C|D) = P(C)P(D|C) = P(C)P(w, ..., wn_1|C). (1)

15

Omitting P(D) will change the absolute value P(C|D) but will not change
the relative values for calculating P(C;|D) over a set of classes C;. P(D|C) is
calculated by taking the probability of each word wy, ..., w,—1 and calculate the
product of these. This is often referred to as the naive step, where the word
independence assumption is realized. So we get

P(DIC) = [] PlwilC)
1=0

and applying this to (1) yields

n—1
P(C|D) = P(C) - [] Pwi|C).

i=0
where

count(w;)

Z count(w;)

%

P(wi|C) =

where count(w;) is the number of times w; appears in C. In other words P(w;|C)
is equal to the number of times w; occurs in C' divided by the total number of
words in C. Calculating P(C;|D) for a set of different classes Cy...Cy, will
generate a score for each of the classes and the class with the highest score will
determine the class of the document D.

The NB classifier is commonly criticized, as mentioned above, for its assump-
tion that the words appearing in a document are independent of each other. This
criticism boils down to the fact that there is a dependency among words and
therefore the NB classifier is claimed to be less accurate than more complex
classifiers such as Support Vector Machines, k-nearest neighbours etc. However,
the probabilistic classifiers that follows the mazimum a posteriori probability
will correctly classify a document as long as the correct class is more probable
than the other classes. This means that the classifier itself does not have to do
a “perfect” classification of the correct document, just do a good enough job
to push it to the top over the other classified documents. Summing this up, if
the overall classifier is performing good enough it can disregard the underlying
erroneous assumptions about word independence in its naive probability model.

5.1 Implementation
5.1.1 Training on outputs

I implemented a Bayesian classifier that has been trained on the output ele-
ments of the node. The training data were derived from the output elements
of the node. The overall idea behind the implementation was to examine the
intersection of the top scoring outputs to see if any parameters could be mapped
this way.

Step 1 The first step of the process is to take the user submitted query and
preprocess it to be able to extract as much useful information as possible from it.
The preprocessing consists of splitting the query in to a list of separate words.

16

v

7

™

S
.

N

Figure 5: Flow showing the process from input query to outputted mappings.

The list is then scanned for so-called stop words, that is words that provide
little to zero lexical content like the words the and I. If a word is a stop word it
is removed from the list. If not, the word is lower cased and trimmed of white
spaces. When the preprocessing step is finished the list of words is sent in to
the classifier.

Step 2 The classification step of the process takes the preprocessed query and
turns it into to a document so that the classifier can compare it to other docu-
ments that it has been trained on. As stated, this implementation makes use the
the Bayesian classifier described in section 5 but with some modifications. The
standard Bayesian classifier only returns the document which has the highest
probability among the trained documents to be the most likely match to the
query. The classifier in this implementation will return the N most probable
documents to the submitted query, and these N documents will be fed in to the
next step which is the intersection step. N is an integer that can be specified to
the program.

Step 3 The third step of the mapping process is to examine the examples of
the N most probable documents. Depending on how much information the node
holds the number of examples that will be available for intersection will vary but
a minimum of one example per output is guaranteed. All the examples matching
the input documents are extracted and then intersected with respect to each
input value. Should enough! input values intersect for the given examples the
input (parameter) with the corresponding input value is going to be considered
a correct mapping of that parameter.

Example Fig 5 shows an example of the classification process. Note that this
example is constructed to clarify the process of mapping. The search results for
the query are most likely not the ones described here and only three examples
will be intersected. The search engine is assumed to find the pasta node when
the query is supplied.

Consider the query “the Fasy pasta sauce!”. It contains a stop word, the,
an upper case letter, a double space and a punctuation at the end. After the
preprocessing in step 1 we will end up with a list of words that looks like [easy,
pasta, sauce]. This list is fed in to the classifier which will return the top
three outputs from the classification. Now we go through the example elements
connected to the returned outputs and extract the semicolon separated values
for each of the example elements. They might look, since this is a constructed
example, something like:

1A threshold for intersection can be specified in the program

17

Input Type | Ingredient | Level | Time | Spicy | No dairy | No nuts | No shellfish
Example #0 0 1 0 3 1 1 1 2
Example #1 0 2 0 2 0 3 0 1
Example #2 0 0 0 1 2 1 2 0

Now it’s time for the intersection step and we can easily see that we have
100% overlap on inputs Type and Level with the respective values 0 and 0.
The intersection will return something like [0:0, 2:0] indicating that input 0
should have its value set to 0 and input 2 its value set to 0. This corresponds
to setting the type parameter to pasta and the level (of difficulty) parameter to
easy. Summarizing this we have mapped the query the Fasy pasta sauce! to
the the parameters type — pasta and level — easy.

Theoretically this approach seems likely to produce good results under the
right circumstances however practically it has a few shortcomings. The first
shortcoming is the criticism presented in the Bayesian classifier in 5 where the
classifier can ignore its underlying flaws as long as the correct classification is
made relative to the other documents in the training set. What you get from the
Bayesian classifier is indeed a sorted list of documents where the top element
is the most likely classification. But when the top N documents is needed for
a parameter mapping you have to venture down the list of classification scores
and the uncertainty increases with each document in that list. There is no
way of explicitly telling how good of a match the fifth document is, only a
score indicating that it has the fifth highest score in the classification. In the
worst case scenario, this document can be totally irrelevant to the query, it just
happened to get the fifth highest score in the classification since there might
only have been four documents that would have been considered relevant to a
human.

Another shortcoming, which is independent of the classifier, is that it is highly
dependent on the set of examples that will be extracted from the classification.
The choice of extracting examples from the top N most likely classifications is
arbitrary but choosing too few will result in incorrect mappings since it would be
more likely to find intersections on parameters that the user were not interested
in and choosing too many will introduce a lot of variance that will result in no
mappings at all. This could be avoided if there were consistency in the nodes,
however the amount of data and number of examples per given input present in
an arbitrary node will vary greatly from any other arbitrarily chosen node.

5.1.2 Trained on inputs

= 4
T
e
Cuery —» Classifier 1 Classifier 2 < I appings
\\‘
'Y

Figure 6: Flow showing the process from input query to outputted mappings.

18

As a second approach I trained the classifier on the inputs rather than the
outputs and this is a more direct approach to the mappings as opposed to the
previous method. To clarify what being trained on the inputs means, it is to
train the classifier on the words that are present in the caption and values tags
in the input element, see Fig 2. The amount of textual data in an input element
is often very sparse but this will be shown to have a smaller impact on the
classifier than what could be anticipated due to the design of the search engine.

The implementation consists of two linked classifiers to do the mapping. The
first classifier determines which inputs that are relevant to the query. These
inputs are the fed to the second classifier which determines which of the input
values to map. The first step of the implementation is identical to that of the
previous one (query preprocessing).

Step 2 After the query preprocessing the query is turned into a document
and fed into the first classifier. This classifier calculates a classification score for
each of the node inputs and if the score if above a certain threshold value it is
deemed relevant to the query. The inputs that passed through the first classifier
is then fed into the second classifier.

Step 3 The second classifier takes the query along with the inputs that came
from the first classifier and compares them separately to the input values of
each input. Here the standard approach of the Bayesian classifier is utilized and
the input value with the highest classification score is the one that gets mapped
unless one of two special cases are met. The two special cases are triggered
when all of the input values get a classification score of 0.0, meaning that not a
single word was matched over all input values. If there is a default input value
specified when this happens the program will use the default input value in the
mapping. If no default input value is specified then no mapping is performed.

Example Note that the same prerequisites as the previous example applies to
this also. Consider the same query, “the Fasy pasta sauce!”. The preprocessing
of the query is identical to the previous example and we will again end up with
the list [easy, pasta, sauce]. This list of words is turned in to a document and
fed in to the first classifier which will give each input (a total of 8 for the pasta
node) a classification score based on the list of words.

The first classifier will return a list of the inputs whose score is above a set
threshold ¢. The set of inputs {input : inputscore > t} will be fed in to the
second classifier. Assuming the first classifier has correctly classified the query
we should now have the list [inputy, inputs], the same two inputs that had a
100% overlap in the previous example.

The second classifier will now for each of the inputs compare each of the input
values to the query and return the most likely input value. So for our two inputs
this will look like

query compared to the type values [Spaghetti/Fettuccine(pasta), Pasta
Salad, Lasagnal

19

query compared to the level values [easy, intermediate, hard|

The second classifier will return the input value with the highest score for
each of the inputs that it classified. Again assuming a correct classification was
made the input values Spaghetti/Fettuccine(pasta) and easy will be returned
together with information about which input they correspond to and again we
have the same mapping as in the previous example.

An obvious shortcoming of this implementation is the lack of training data
that comes with it. An input is often described by only one or a couple of words
and the same goes for the input values. To minimize the impact of this an
additional text file can be specified during the training of the node. The text
file makes it possible to add and remove words for each input and input value as
well as specify default input values. Granted this does remove the automation
of the system but will significantly improve the mapping results.

20

6 Tf-idf, Cosine similarity and Vector space model

6.1 Tf-idf

Term frequency-inverted document frequency, tf-idf for short, is a technique of
weighting words in a set of documents to determine how significant a word is
to a particular document. After the weighting scheme was proposed by Salton
and Yang (1973) it quickly gained popularity (Hiemstra, 2000). A word with a
high tf-idf value implies a strong relationship with the document(s) it appears
in. If a query contains a word that has a high tf-idf value then the document(s)
it appears in would probably be of interest to the user. The tf-idf value for
a word is increased by the number of times the word appears in a document
and the value is decreased for every other document the word appears in. As
a motivator for using tf-idf when classifying documents consider the following
example.

Say we have a training set of documents and want to determine which of the
documents in the training set are most relevant, i.e has the highest classification
score, to the query the red car. Starting out we can simply remove the documents
that does not contain all three of the words in the query, assuming there are
documents that contain all three words for the sake of argument. If we have a
large training set we will be left with a large number of documents after the first
elimination. To further separate the remaining documents we can determine the
term frequency, the number of times a word appears in a document, for each
of the three words. We then calculate the sum of the term frequencies for each
document in the training set and sort them by the sums. However, the results
will be skewed because the word the is the most common in the English language
(Fry and Kress, 2006). This will put more weight on documents that happen
to make use of the word the a lot, and less weight on documents that uses the
other more descriptive terms red and car. This is where the inverse document
frequency weighting scheme is applied to diminish the weight of frequent terms
over a training set, and to increase the weight of rare terms in the training set.

The tf-idf method is, as implied by its hyphenated name a construction of
two parts. The tf part, term frequency, and the idf part, inverted document
frequency. The term frequency for a word w in a document D is defined as the
number of times w appears in D divided by the total number of words in D.
The inverted document frequency is an estimated measure of how important
a word is to a document over the set of all documents. Mathematically it is
defined as, for a word w

D]

where D is the total number of documents and {d : w € d} is the number
of documents in which the word w appears. If the word w doesn’t appear in
any document the denominator will be zero. To prevent division by zero a
smoothing of the term {d : w € d} is often applied so that the denominator
becomes 1 + {d : w € d}. To get the tf-idf value for the word w the cross
product tf(w) x idf (w) is calculated. Weighting words with tf-idf is often used

21

together with the Vector Space Model proposed by Salton and Mcgill (1986)
and cosine similarity (Salton, 1989), described below, to classify documents.

6.2 Cosine similarity

Cosine similarity is a method for determining the similarity between two vectors.
When it comes to text classification, queries and documents are transformed
into vectors for comparison. There are several different methods to transform
a text in to a vector. Omne of the most popular ways of doing this is to use
the tf-idf weights explained above to populate the vector. To determine how
similar two texts are the angle between the two vectors are calculated. A smaller
angle between the vectors implies a higher similarity and the opposite for larger
angles.

The cosine similarity between two vectors u and v can be derived from the
Euclidean Dot Product: u-v = ||u||||v]| cos(f), (Sparr, 1994). Tt follows that

u-v Z?:luini

ullllvll T e x T v

When comparing texts of different length, which is usually the case for match-
ing queries against trained data, the vectors have to be sorted by the words to
align them for comparison as well as padded with zeros at the end to be able to
perform the dot product.

cos(0)

6.3 Vector space model

The vector space model is a method of mapping documents onto vectors to be
able to represent documents in a computationally efficient way in the computer.
The vector space model was first researched and used in the SMART IR-system
(Buckley, 1985). A representation of a document using the vector space model
looks like

D = (wo, .y wy)

where w is a numerical representation, or weighting, of a word that occurs
in the document. The numerical representation in the vector can be obtained
using a wide array of different schemes. However the tf-idf weighting scheme
described above is one of the most popular at the time of writing. Once a vector
space model has been established for a set of documents, it is possible to use
vector operations, e.g. cosine similarity, on the documents to compare them
with other documents or queries.

Summary As seen above, the methods tf-idf, cosine similarity and the vector
space model are not mutually exclusive to each other when it comes to document
classification but rather the opposite. When used in conjunction with each other
they produce a robust model for classifying documents.

22

6.4 Implementation

This section describes an implementation that utilizes tf-idf, cosine similarity
and the vector space model.

6.4.1 Trained on inputs

This implementation is similar to the one described in 5.1.2. It consists of two
linked classifiers that have been trained on the input elements of a node. The
first step is again to preprocess the query and feed it in to the first classifier.
Step two and three calculates the score for each of the node inputs but uses the
Cosine similarity and the tf-idf weighting scheme when doing so instead of the
computations described in 5.

Again the shortcomings of this implementation is the lack of training data
which can be mitigated by adding an extra file containing training data.

23

24

7 Notes on implementation

This section will cover some implementation specific elements that either differs
from the theory or falls outside of the boundary of document classification but
still needs to be mentioned for the sake of the project.

7.1 Parser

At the beginning of the project a complete parser was implemented to structure
the data and provide an easy way of accessing the data contained within a
node. The parser consists of a central Node object that parses and stores all
the elements and element attributes of the node in specific objects such as an
Output object for the output element along with its attributes. All the objects
used for storing data have methods for easy retrieval of the data. Here follows
a short explanation of all the parser objects.

e Node: The central parser object responsible for parsing and storing the
parsed data.

e Boomstep: An object that holds the general information of a node such
as title, language, description etc.

e Example: Holds all the parsed examples, the semicolon separated values,
and links them to the right output.

e Input: Contains the attributes and data of the input element as well as
a list of InputValue objects linked to the input.

e InputValue: Contains the data and index of an input value element.
Also linked to its parent Input object.

e Output: Holds the parsed output texts along with the attributes and
tags for each output element.

The parser also has support for stemming words and adding synonyms to the
parsed data but these features were not used in the final implementation. The
stemming of words were not used due to the real time criterion of the program.
The user submitted query has to be stemmed in order to be viable for document
classification and the standard stemmers in the nltk package (2011) were too
slow to meet the real time requirements. The choice of not using synonyms was
made because the synonyms module in the nltk package did not perform well
and caused erroneous mapping to occur in the implementations.

When the parsing of a node is done, it is written to a file on disk using Python’s
pickle module making it easy and fast to read into memory and keeping the data
structure intact.

7.2 Logarithmic probabilities

From section 5, we have that

25

P(C|D) = H P(w;|C).

However, the values of P(w;|C) is often small, magnitude 10~2 or less. When
multiplying these values together the risk of arithmetic underflow in the com-
puter is big and the resulting score will be output as 0.0 instead of something like
1.4353... - 107129, This is machine dependent and the number of representable
bits will differ but this needs to be taken into account when implementing the
scoring algorithm. To avoid the possibility of arithmetic underflow the loga-
rithm of P(C|D) is calculated using the logarithm law log(AB) = log A + log B
which gives us

log(P(C|D)) = log(P +Zlog (w;]C)).

The logarithm law does not only preserve the relative scores among docu-
ments but also speeds up the calculations since it eliminates the need to multiply
floating point numbers which is more time consuming than taking the logarithm
of the elements and adding them together.

26

7.3 UML diagrams

Below are the UML diagrams for the classifier and parser implementations. The
classifier UML diagram shown is for the Bayesian trained on inputs. The other

classifier UML diagrams are practically identical with exception to names.

remove(self, word)

BagOfWords Query
__init_(self)
add_word(self, word) _init_(self)

read_query(self, q)
word_count(self) Words(self)
load(self, Bow) WordFreq(self, word)
len(self) wordFreq_f(self, word)
Words(self) TF(self, word)
WordFreq(self, word) Bow(self)
WordFreq_f(self, word)
Bow(self)
top_X(self, %)
add_ (self, other)
Classifier main.py
init__{self) =
Eass@(self. indesd load_and_classify(file, query, print_to_std=True)
classify_inputs(self)

Input

DynamicTrainingSet

_init__(self, index, name)
index(self)

name(self]

word_countiself)
Probability(self, query, sumN)
Probability2(self, query, sumn)
add_word(self, word, index)
remove_word(self, word, index)
set_default(self, index)
process_string(self, string, inputval=-1)
print_input(self, full=False)

[Ea—

init(self node=")

inputs(self)

load(self, file)

save(self, path, file)

word_count(self)

train(self, file)

add_words_from_file(self, file)

set_default{self, inputindex, inputvalueindex)
add_word(self, word, inputindex, inputvalusindex=-1)
remove_word(self, word, inputindex, inputvalueindex)
print_training_set(self)

Figure 7: UML showing the structure of an implementation of a classifier.

27

EMOutput

_init__{self)

get_taglist(self)

get_result(self, key)
print_output(self)

set_attributes(self, attrib)
get_attribute(self, key)
set_taglist(self, taglist, synonyms=False)

set_result(self, key, value)

EMNode

_init__(self)
parse(self, filename)
get_input_leniself)
get_output_len{self)

=

EMExample

_init__(self)
add_example(self, example)
intersect(self, other)

intersect_self(self)
Examples({self)
IntersectedExamples(self)
print_e(self)

print_info(self, boomstep=Fal

, inputs=

Fal

, outputs=False)

EMiInput

_init__(seff)

isvM(self)

print_inputiself)

set_attributes(self, attrib)
get_attribute(self, key)
set_datalself, key, value)
get_data(self, key)
set_value(self, inp_val_obj)
classify_YN(self)

print_i(self)
EMBoomstep
_init__(self)

set_solutionsiself, solutions)
get_solutions(self)
set_tags(self, tags)
get_tags(self)
set_language(self, language)
get_language(self)
set_title(self, title)
get_title(self)
set_description(self, description)
get_description(self)
print_boomstepiself)

EMInputValue

Figure 8: UML showing the structure of the parser implementation.

_init__{self, index, root_sentence, parent, input_obj)
contains_word(self, word)
print_input_value(self)

28

8 Experimental setup

8.1 Initial tests

To quickly evaluate the different classification implementations, a simple test
suite was set up. The test suite consisted of 20 example queries that had been
manually annotated with the expected outcome of the query when fed in to each
of the classifiers, see Appendix A. This initial test laid the foundation for which
one of the methods that would be focused for the remainder of the project. The
tests were all conducted on the exact same training sets where applicable and
they were also tweaked in between tests, meaning that the initial results below
are the highest score the implementation received during all tests.

The Bayesian classifier that had been trained on outputs was the first one
to be tested. Due to the nature of the implementation there is no clear score
on the initial test suite. The number of possible combinations between the
number of outputs taken into account and the intersection threshold made it
hard to determine the highest score. However, one conclusion that can be drawn
from this implementation is that it is the one that is most error prone among
all implementations. Higher scores were achieved for a lower threshold on the
intersection overlap but this also led to some erroneous mappings which has to
be considered a severe shortcoming.

The Bayesian classifier that had been trained on the inputs was the next one to
be tested. For the initial tests this implementation got 19 out of the 20 example
queries correct after the addition of extra training data in an external text file.
This was the highest score for the initial test out of the three implementations.

The implementation combining tf-idf, cosine similarity and the vector space
model was the last one to be tested. This implementation scored 8 out of 20
on the initial tests, with the exact same training data as the Bayesian classifier
that was trained on the inputs.

Given the results on the initial tests, the remainder of the thesis were focused
on the Bayesian classifier that had been trained on the inputs. Most of the work
on the classifier were spent on fine tuning thresholds, refactoring and optimizing
the source code and implementing support for training and classifying multiple
nodes concurrently.

8.2 Online blind test

To test the Bayesian classifier trained on the inputs more in depth and in a live
environment, we set up an online blind test. The test was set up so that a user
could type in a query about pasta recipes and the query would then be piped
to the search engine in two ways. The first was without the classifier and the
second one with the classifier enabled. The results returned from the search
engine, with and without the classifier, would then be presented side by side
to the user where he/she could vote on which result was better, or vote for a
tie between the results. To make it a blind test, the side by side showing of

29

the results were randomized in each run so that the user had no knowledge on
which side had used the classifier.

An email was sent out to a group of friends and colleagues asking them to
take the blind test. The email had information about the pasta node, giving the
users hints on what type of queries the search engine expected. The test was
ran during a weekend in August 2010 and a total of 100 queries were collected
as data along with which result the users had voted on for each query. Figure
9 shows the website of the blind test.

File Edit view Bookmarks Tools Help ¥ = ¢) B Wedsep 717:18 @ slimmy ¢
[dev.core expertmaker.cc

@ b @ |© dev.core.expertmaker.com/blindrest phy O A

L Tile based games & Using MySQL Full... € PHP/MYSQL/AJA... S PHPExample AJ... | Similarity of texts... . text-Cansomeo... [B] Naive BayesianT... € monthlytotals v [Other Bookmarks
Leftis better

Neither is better Right is better

results -1am NEUTRAL

results - lam NEUTRAL
Knowledge Grid | Web | Wiki

Knowledge Grid | Web | Wiki

§3 PASTA EXPLORER #3 PASTA EXPLORER
[Salmon Pasta Salad Ingredients, 8 ounces spiral pasta, cooked and drained, 2 [] Spaghetti alle Vongole Spagheti alle vongole (spaghetii and clams) originated in
cups... - Cioke)

Naples... - Cruxe)

[Pasta salad with sun-dried tomatoes... Ingredients, 60g pasta, 3 Sun-dried] Warm tomato and ricotta pasta salad... A perfect picnic dish of a pasta salad topped

tomatoes, 1 thsp low fat... - Claxe) with crunchy breadcrumbs... - Cruxe)

Garden Pasta Salad with Basil Dressing... Ingredients:, 3/4 cup chopped green Garden Pasta Salad with Basil Dressing... Ingredients:, 3/4 cup chopped green beans,
beans, 1/2 Ib. pasta (bow... - Ciuke) 172 Ib. pasta (bow... - Cicxe)

[] Greek Pasta Salad Ingredients, 3 cups of 0rzo pasta , 1/4 cup olive oil , 3 [l Greek Pasta Salad Ingredients, 3 cups of orzo pasta, 1/4 cup olive oil, 3 Tablespoon... -
Tablespoon... - Cixe)

[l Broccoli Pasta Salad Ingredients, 1 Envelope Good Season's ltalian Salad Find a pasta recipe that suits you)

Dressing... - (ke)

Find a pasta recipe that suits you - pasta salad without dairy
lam
pasta salad without dairy @ Neutral © Atwork
lam OFree O Inmotion
@ Neutral © Atwork
o
“Free ©In motion

©2010.2011 Expertiaker - Help | About | Legal

Figure 9: Screenshot of the blind test website

30

9 Results
9.1 Blind test

The following section will display and discuss the results related to the online
blind test conducted.
9.1.1 Analyzing the data

There are four different cases defined when analyzing the data. These are ex-
plained with respect to the labels in the figures.

e Raw: The raw test data, nothing has been post-processed.

e Nonsense: Queries only containing nonsense and non-related queries has
been removed, e.g blank queries or queries like asdyf.

e Spell: Queries with misspelled keywords has been removed.

e Nonsense and spell: A intersection of the two cases above.

9.1.2 Results

Figures 10, 12, 11 and 13 shows the results of the blind test. The results can
be divided in to two groups. One group where tie scores are taken into account
and one where the tie scores have been excluded.

Figure 10 shows the results for the four different cases with tie scores taken
into account. Already with the raw data, close to 50% of the users prefers the
results given from the classifier. About 30% of the users prefers the standard
system and the rest thinks it’s a tie.

31

Test 1, 2, 3, 4 with tie scores

100 T T T
I \Vith classifier
I Without classifier
90 C_JTie i
80 .
70 N
(]
g 60 i
<
[}
Q
1
o .
°
o
5]
T 1
a

Raw Nonsense Spell Spell and nonsense
Method

Figure 10: Results of test 1-4 with tie scores included.

Figure 11 shows the development of preferred percentage over the four cases
taking tie scores into account. A clear trend is that when the search engine is
supplied with valid queries that are spelled correctly, making it possible for the
classifier to perform mapping, more users tend to prefer the results given by the
classifier.

32

Test 1-4 with tie score
70

—— With classifier
— - — Without classifier
- — -Tie

50 T

301 i §

Preferred precentage

20+ - i

10 T

0
Test1 Test 2 Test 3 Test4
Tests

Figure 11: Development of results over the four tests. Tie scores included.

Figure 12 shows the results for the four different cases excluding the tie scores.
Without the tie scores the contrasts between the results are clearer. When put
head to head around 68% of the users prefers the classifier on the raw data and
about 76% prefers the search engine using the classifier when the data has been
rid of nonsense and spell checked.

33

Test 1, 2, 3, 4 without tie scores

100 T T T
I \Vith classifier
I Without classifier
90 .
80 .

Preferred precentage

Raw Nonsense Spell Spell and nonsense
Method

Figure 12: Results of test 1-4 with tie scores excluded.

Figure 13 shows the development of preferred percentage over the four cases
excluding the tie scores and again the trend is clear that when mapping is
possible the users tend to prefer the classifier.

Once the four cases had been tested and analyzed the 100 queries were man-
ually annotated with the correct parameters that the classifier were expected
to to map. If there was any vagueness as to which parameter that should be
mapped given the query it was excluded from the statistics. The majority of the
queries were single parameter mappings with some queries that had up to five
parameters to be mapped. Among the 100 queries, a total of 141 parameters
were set by the classifier with the following statistics.

1 out of 141, .7%, parameters were mapped wrongly.

7 out of 141, 4.9%, parameters were not mapped when they were supposed
to.

133 out of 141, 94.3%, parameters were correctly mapped.

The single parameter that were wrongly mapped were because of the training
data and not because of the classifier itself. The query was pasta with no seafood,
which was interpreted as a user allergic to shellfish asking for a pasta dish. The
no shellfish parameter had not been trained on the word seafood making it an

34

Test 1-4 without tie score

—— With classifier
80 — — - Without classifier |

70(- .

[«2]
o
T
|

Preferred precentage
(42
o
T
|

N
S
T
I

30 Tt - N

20 | |
Test1 Test 2 Test3 Test4

Tests

Figure 13: Development of results over the four tests. Tie scores excluded.

incorrect mapping according to the manually annotated data. On a side note
it could also be interpreted as a user asking for any pasta dish that does not
contain seafood in which case there should be no parameter mapping at all since
the search engine cannot filter on exclusion of parameters only on inclusion of
parameters.

The choice of removing misspelled queries instead of correcting them and add
them to the data set is justified by the fact that there is no explicit right or
wrong to the test itself. The test is only a reflection of what users perceive to
be the correct answer. The result of a correctly mapped query was sometimes
receiving a vote against the classifier and some missed mappings were sometimes
receiving a vote favoring the classifier.

Take as an example the somewhat generic (to the pasta node) query pasta
salad. T personally think that the “standard” pasta salad is a Caesar salad and
if I'm presented with results that shows the Caesar salad at the top rather than
some other salad I'm probably more inclined to vote for that result as opposed
to the other result. However someone else might think that a Greek salad is
the “standard” salad and would vote on that instead of the Caesar salad that I
would vote on. By this reasoning, the misspelled queries were removed and not
corrected because there is no way of knowing what the user would have voted
on if the query was correctly spelled.

35

9.2 Discussion

At the start of the thesis, the initial problem was to investigate whether of
not it was possible to perform automatic parameter mappings given a query.
The data was very sparse and document classification on sparse data is chal-
lenging. However, the most reasonable approach to the problem was to try out
document classification and see how it performed. Initial tests with a simple
Bayesian implementation, not the linked Bayesian classifiers described in this
report, did not perform well on the sparse data. Not only did the initial im-
plementation not meet the real time requirements since it tried to classify each
of the inputs, relevant to the query or not. It did also consistently perform
erroneous mappings.

With the introduction of the linked Bayesian classifier and the ability to add
synonyms to the training set, an increase in both speed and performance was
observed. After some tweaking of the threshold values for classifying relevant
inputs and the addition of synonyms the implementation was tried out in a
blind test where up to 76% of the users preferred the search engine utilizing the
classifier along with 94.3% of the parameters being mapped correctly which is
a result that I am satisfied with.

36

10 Conclusions

To draw a simple conclusion about this thesis is to say it is possible to perform
automatic parameter mappings given a query, at least to some extent. The
fact that the simplest solution also proved to be the best performing one is
perhaps not surprising given the initial conditions, but from a personal point of
view it would have been interesting to try out a more “up to date” method of
classification like Random forests.

There is however a lot of improvements that can be made with the current
implementation. For starters the threshold that is set to determine relevant
inputs could be made dynamic depending on the characteristics of the node.
Another improvement would be to have the system automatically suggest the
addition of synonyms based on user statistics, e.g if enough users have used a
search term X and a certain percentage have set the parameter Y when using
the term X the system should suggest an addition of the synonym X to the
training set of Y. This could also work the other way when enough users change
a mapped parameter, the system should suggest a removal of a synonym from
the training set. These improvements are not realizable until enough user data
has been gathered for a retraining of the system.

Another improvement the system would benefit from, that probably falls out-
side the area of this thesis, is spell correction. For the classifier to be able to
perform mappings the words has to be spelled correctly. As an example, during
the blind test the word spaghetti was misspelled in over 65% of the cases (with
4 different spellings, including the correct one).

As a last proposed improvement, maybe not the most critical one, would be
to introduce semantics as a feature in the classifier. At the time of writing it
is not hard to “trick” the classifier with double negatives etc, but this requires
the user to actively try to make the classifier perform the wrong mappings.

37

38

A Initial test suite

This is the text file used in the initial test for all the implementations. Each
line describes a query and the expected output from the classifier. Query and
expected output are separated by $. The output is in the form of

1T = Yn

where x,, is the mth input and y,, is the nth input value for that input.
Multiple mappings are separated by &. The file contains the following lines.

spaghetti $§ 10=0

pasta salad $ i0=1

lasagna $ i0=2

chicken $ i1=2

spicy $ i4=2

lasagna without nuts $ i0=2&i6=1

pasta salad with seafood $ i0=1&i1=3

advanced spaghetti dish $ i0=0&i2=2

quick lasagna dish $ i0=2&13=0

pasta salad without shellfish $ i0=1&i7=1

fettuccine with chicken and without nuts $ i0=0&i1=2&i6=1

fettuccine with chicken and no nuts $ 10=0&i1=2&i6=1

quick pasta salad with meat $ i0=1&i1=1&i3=0

spicy lasagna without shellfish $ 10=2&i4=2&i7=1

vegetarian spaghetti without lactose $ 10=0&i1=0&ib5=1

a quick lasagna with meat and no nuts $ 10=2&i1=1&i3=0&i6=1

mild seafood dish without dairy and no nuts $ i1=3&i4=0&i5=1&i6=1

mild seafood dish without dairy and without nuts $ 11=3&14=0&ib5=1&i6=1

chicken pasta salad with nuts and with shellfish $ i0=1&i1=2&16=0&i7=0

quick and advanced spaghetti dish with meat that is mild without dairy,
. with nuts and no shellfish $ i0=0&i1=1&i2=2&13=0&14=0&i5=1&16=0&i7=1

39

40

References

AB, E. (2011). Expertmaker.com.

Almonayyes, A. (2006). Multiple explanations driven Naive Bayes classifier.
Technical report, Kuwait University.

Breiman, L. (2001). Random forests. Machine Learning, 45:5-32.
10.1023/A:1010933404324.

Buckley, C. (1985). Implementations of the SMART information retrieval sys-
tem. Technical report, Cornell University.

Forman, G. and Cohen, I. (2004). Learning from little: Comparison of clas-
sifiers given little training. In Boulicaut, J.-F., Esposito, F., Giannotti, F.,
and Pedreschi, D., editors, Knowledge Discovery in Databases: PKDD 2004,
volume 3202 of Lecture Notes in Computer Science, pages 161-172. Springer
Berlin / Heidelberg.

Friedman, N., Geiger, D., and Goldszmidt, M. (1997). Bayesian network classi-
fiers. Machine Learning, 29:131-163. 10.1023/A:1007465528199.

Fry, E. B. and Kress, J. E. (2006). The Reading Teacher’s Book Of Lists.
Lavoisier.

Hiemstra, D. (2000). A probabilistic justification for using tfidf term weighting
in information retrieval. International Journal on Digital Libraries, 3:131—

139. 10.1007/s007999900025.

Lewis, D. (1998). Naive (Bayes) at forty: The independence assumption in
information retrieval. In Nédellec, C. and Rouveirol, C., editors, Machine
Learning: ECML-98, volume 1398 of Lecture Notes in Computer Science,
pages 4-15. Springer Berlin / Heidelberg. 10.1007/BFb0026666.

Manning, C. D., Raghavan, P., and Schiitze, H. (2008). Introduction to Infor-
mation Retrieval. Cambridge University Press, 1 edition.

McCallum, A. and Nigam, K. (1998). A comparison of event models for Naive
Bayes text classification. Technical report, Carnegie Mellon University.

nltk package (2011). nltk.org.

Rennie, J. D. M. (1999). Improving multi-class text classification with Naive
Bayes. Technical report, Carnegie Mellon University.

Rish, I. (2001). An empirical study of the Naive Bayes classifier. Technical
report, T.J. Watson Research Center.

Salton, G. (1989). Automatic Text Processing. Addison-Wesley.

Salton, G. and Mcgill, M. J. (1986). Introduction to Modern Information Re-
trieval. McGraw-Hill, Inc., New York, NY, USA.

Salton, G. and Yang, C. (1973). On the specification of term values in automatic
indexing. Technical report, Cornell University.

41

Sparr, G. (1994). Linjar Algebra. Studentlitteratur.

Zhang, H. (2004). The optimality of Naive Bayes. Technical report, University
of New Brunswick.

42

