

Department of Computer Science
Lund Institute of Technology

Development and Integration of Linguistic
Components for an Automatic Text-to-Scene

Conversion System

Hans Svensson & Ola Åkerberg

August 2002

Abstract

The purpose of this master’s thesis is to implement a text-to-scene converter to visualize
accident descriptions. The text description of an accident can be difficult to understand.
We believe that misinterpretations can be avoided by visualizing the accident in a three
dimensional scene.

The architecture of the CarSim 2.0 system consists of two parts and draws its
structure from CarSim (Dupuy et al. 2001). The first part is an information extraction
module that gathers the significant data from a text and presents it in a tabular XML
format. The second part is a visualization module that interprets the tabular data and
displays a three dimensional scene of the accident.

This report describes the linguistic components that we have developed or integrated
for the information extraction module. Only a part of the text is relevant to visualize the
accident. The objective of the information extraction module is to find the road
configuration, the vehicles, their movement, the list of collisions, and static objects that
play a role in the accident.

The architecture of the information extraction module is similar to that of the
FASTUS system (Hobbs et al. 1997). WordsEye (Coyne and Sproat 2001) that
translates written descriptions into non-moving pictures has also influenced us. The
report describes the integration of two widespread linguistic resources: Link Grammar
and WordNet. Link Grammar is a syntactical parser and WordNet is a semantic
database. The report then describes how we use these tools and the algorithms we have
implemented to detect information about dynamic objects (vehicles) and static objects
(trees, traffic lights etc.).

We tested CarSim 2.0 with a corpus of accident summaries that we collected from
the National Transportation Safety Board home page in the United States. We finally
report the results we obtained.

Abstrakt

Syftet med detta examensarbete är att visualisera beskrivningar av trafikolyckor. Det
kan vara svårt att förstå ett händelseförlopp från en textbeskrivning av en trafikolycka.
Genom att visualisera olyckan i en datorgenererad 3D miljö kan man undvika
missförstånd.

CarSim 2.0 består av två delar och bygger på CarSim (Dupuy et al. 2001). Syftet
med den första delen är att extrahera information från en text och lagra den i ett XML
tabellformat. Syftet med den andra delen är att tolka och visualisera händelseförloppet i
XML beskrivningen.

Vårt projekt innefattar endast den första delen. Systemet baseras på tekniker liknande
de som används i FASTUS (Hobbs et al. 1997). Ett annat projekt att dra lärdom av är
WordsEye (Coyne and Sproat 2001). WordsEye är ett system som överför text till
statiska bilder. Vi kommer att integrera två lingvistiska program i vårt projekt: Link
Grammar och WordNet. Link Grammar är en syntaktisk parser och WordNet är en
semantisk ord databas. Systemet kommer att använda de lingvistiska komponenterna för
att detektera information om fordon och icke rörliga objekt.
Vi evaluerade CarSim 2.0 med texter tagna från The National Transportation Safety
Board i USA. Slutligen redovisar vi resultaten vi fått.

Table of Content

CHAPTER 1 INTRODUCTION...7

1.1 A BACKGROUND OF CARSIM ..7
1.2 WHY ANIMATE TEXTS ..7
1.3 AN OVERVIEW OF THE PROJECT ..7
1.4 AN OVERVIEW OF THE REPORT ...9

CHAPTER 2 ANALYSIS .. 10

2.1 GENERAL PURPOSE ... 10
2.2 GOALS... 10
2.3 ARCHITECTURE ... 11
2.4 RELATED PROJECTS .. 12

2.4.1 FASTUS Project... 12
2.4.2 WordsEye... 13

CHAPTER 3 DESCRIPTION OF THE SYSTEM COMPONENTS AND MODULES 14

3.1 INTEGRATING THE COMPONENTS .. 14
3.2 PARSING .. 14

3.2.1 Link Grammar ... 14
3.2.2 Finding the words and the grammatical relations... 15
3.2.3 Link Grammar JNI... 16

3.3 LEXICAL SEMANTICS ANALYSIS.. 16
3.3.1 WordNet... 16
3.3.2 Acquiring classes of words .. 17

3.4 TEMPLATE STRUCTURE ... 17

CHAPTER 4 HOW THE WHOLE PROGRAM WORKS .. 19

4.1 A GENERAL DESCRIPTION... 19
4.2 THE TASKS PERFORMED IN THE CARSIM PROJECT .. 20

4.2.1 Introduction ... 20
4.2.2 Linguistic analysis tools... 20

4.2.2.1 WordNet Java Native Interface.. 21
4.2.2.2 Link Grammar ... 22

4.2.3 Splitting texts up into sentences ... 25
4.2.4 Building a dictionary of words using WordNet ... 27
4.2.5 Detecting the road configuration... 29
4.2.6 Extracting the names of the roads ... 29
4.2.7 Extracting the static objects... 31
4.2.8 Integrating the detection of collisions.. 33
4.2.9 Mapping information into a predetermined accident structure 34
4.2.10 Detecting movement.. 34
4.2.11 Linking dynamic and static objects to accident frames... 35
4.2.12 Initial directions.. 37
4.2.13 Direction wrapper... 39
4.2.14 Output data according to template format.. 39
4.2.15 Development GUI ... 41
4.2.16 Graphical User Interface .. 41
4.2.17 Snapshots of the visualization ... 42

CHAPTER 5 CONCLUSION ... 45

5.1 RESULTS.. 45
5.2 FUTURE DEVELOPMENT .. 48

CHAPTER 6 REFERENCES.. 51

APPENDIX.. 52

Chapter 1 Introduction

1.1 A Background of CarSim
CarSim (Dupuy et al. 2001) is a program that analyzes texts describing car accidents
and visualizes them in a 3D environment. The CarSim architecture is split into two
modules. The first module carries out a linguistic analysis of the accident and creates a
template – a tabular representation of the text. The second module creates the 3D-scene.
The template is designed to contain minimal information but enough to recreate the
scene in a symbolic (iconic) way.

The first version of CarSim was designed to process texts in French. The information
extraction part was written in Prolog and the graphical module in Java. CarSim was
developed and tested on a corpus of insurance reports written by the drivers. These
reports were obtained from the MAIF insurance company.

CarSim is one of few projects working with text-to-scene conversion.

1.2 Why Animate Texts
The advantage of text-to-scene conversion can be better explained with an example.
Consider the text below and try to understand it.

About 10:30 a.m. on October 21, 1999, in Schoharie County, New York, a Kinnicutt
Bus Company school bus was transporting 44 students, 5 to 9 years old, and 8 adults
on an Albany City School No. 18 field trip. The bus was traveling north on State
Route 30A as it approached the intersection with State Route 7, which is about 1.5
miles east of Central Bridge, New York. Concurrently, an MVF Construction
Company dump truck, towing a utility trailer, was traveling west on State Route 7.
The dump truck was occupied by the driver and a passenger. As the bus approached
the intersection, it failed to stop as required and was struck by the dump truck. Seven
bus passengers sustained serious injuries, 28 bus passengers and the truckdriver
received minor injuries. Thirteen bus passengers, the busdriver, and the truck
passenger were uninjured.

The text describes an accident between a truck and a bus in an intersection. The bus

was driving on State Route 30A and the truck on State Route 7. Did you get that? The
text is taken from the corpus used when testing the CarSim 2.0 system

1.3 An Overview of the Project
In our Master’s project, we designed and implemented a new version of CarSim’s
information extraction module. In contrast to the first CarSim prototype, which
analyzed texts in French, the new language-processing module is designed for English.

We gathered a corpus of car accident descriptions from the National Transportation
Safety Board (Highway Accident Reports Publications), referenced as NTSB in the
remainder of this report. The NTSB is the accident research organization of the United
States government. They survey different scenarios, mostly flight accidents but also
incidents regarding boats. We used the summary part of the road accident reports that
were collected from the Web (Appendix A). We developed the language processing
components to analyze these texts. We worked particularly on semantic components
specific to the car accident domain. When available we also tried to use generic tools.

8 Development and Integration of Linguistic Components

The first version of CarSim used two different executable programs written in Prolog
and Java. An intermediate file managed the communications between the two modules
(Figure 1.1).

Information
Extraction

Formal Description Virtual Scene
Generator

In Prolog Proprietary In Java
Figure 1.1 The CarSim architecture

In addition to the language-processing module, we rewrote the template formalism
in XML and we integrated both parts of CarSim: the information extraction module and
the graphical module in the same interface. The user can start the information extraction
and the three dimensional display of an accident from the same graphical user interface.
She/he can also adjust the settings of the program. Figure 1.2 shows the new
architecture. The graphical user interface supports direct editing of the original text file
and the XML template. It does not require an external editor as before.

Information
Extraction

Formal Description Virtual Scene
Generator

In Java XML In Java

GUI in Java

Figure 1.2 The new modules

The information extracted from the text is mapped onto a predefined template that

consists of three parts: the static objects, the dynamic objects, and the collision objects.
The static objects are the non-moving objects such as trees, obstacles, and road signs.
The dynamic objects are moving objects, the vehicles. Examples of dynamic objects are
cars and trucks. The collision object structure describes the interaction between
dynamic objects and/or static objects.

We use two widespread linguistic resources to analyze English texts: WordNet
(Fellbaum and Miller 1998) and Link Grammar (Sleator and Temperley 1991). Link
Grammar is a dependency parser that determines the grammatical relationships between
the words of a sentence. WordNet is a lexical database and a semantic network. The
idea of CarSim is to combine these two resources and use them to understand the
meaning of texts. The strategy to fill the templates is to find verbs that are frequently
used to describe accidents. CarSim uses regular expressions to search verb patterns in
texts. Then CarSim extracts the dependents of the verb. It evaluates the function of the

Ola Åkerberg & Hans Svensson 9

word groups in the sentence relative to the verb. It examines words and classifies them
using WordNet.

We have developed the information extraction module in Java. A program in Java
has the advantage of being platform independent. However, the IE module also
integrates C libraries and these are not portable. We adapted the program to the Solaris
and Windows platforms and that covers a large percentage of the market. We used Gnu
tools to build the C libraries so an expansion to the Linux platform should be feasible.
The amount of time allocated to this project has not permitted testing on the Linux
platform.

1.4 An Overview of the Report
Chapter 1 gives an introduction and an overview to the CarSim system. It contains an
example justifying why text-to-scene conversion can be a powerful tool to examine and
understand texts.

Chapter 2 covers the analysis of the system. It describes the goals, the purpose and
the architecture. It summarizes two similar projects: FASTUS and WordsEye.

Chapter 3 describes the system components and modules. It covers two important
modules of the system: the WordNet lexical database and the Link Grammar parser.

Chapter 4 describes how the whole system works. This chapter details the system
components and the building steps.

Conclusions are in chapter 5. It describes the results we obtained with our system.
Appendix A contains the texts, which we used as a corpus in this master thesis. They

come from National Transportation Safety Board in the United States. Appendix B
contains the typographical errors in the texts from National Transportation Safety
Board. Appendix C contains the DTD describing the XML format. Appendix D
describes the auxiliary tools we used in the development of CarSim 2.0

10 Development and Integration of Linguistic Components

Chapter 2 Analysis

2.1 General Purpose
The purpose of the CarSim 2.0 project is to write a system to visualize car accidents.
More precisely, our objective was to design and implement an information extraction
module for texts in English, with a semantic part dedicated to the analysis of accidents.

The architecture of information extraction systems generally consists of a sequence
of linguistic modules. Some of these are generic like the parser and some are specific to
the application. Unlike the first CarSim version, CarSim 2.0 should integrate generic
linguistic resources such as the WordNet semantic database and the Link Grammar
parser and contain modules specific to the visualization requirements and the road
accident domain. It should produce intermediate templates using the XML standard.
CarSim 2.0 should also integrate the information extraction and visualization modules
to be accessible from the same interface written in Java.

The application should be a convenient development tool and improve the workflow.
If the information extraction module does not produce the desired output, the user must
be able to edit the original English text, maybe remove some words, and try again. If
there is data missing in the resulting XML template (the intermediate file) the user
ought to have the option of filling in the preferred value and view the changes in the
three dimensional display of the accident.

As for other software system, CarSim 2.0 must be robust, easy to use and not prone
to error. It should accept any type of text without crashing. It should be well
documented as someone else may enhance the project.

CarSim 2.0 should be made available to other people interested in natural language
processing and visualization. A homepage with instructions and a downloadable CarSim
package should be constructed. The different parts of CarSim should be free to use for
non-commercial purposes.

2.2 Goals
Information extraction from texts in natural language is not a simple task, so we do not
expect to interpret the texts correctly in one hundred percent of the cases. One can also
argue about when the scenario in a text is in fact accurately detected. With CarSim we
will try to achieve as high throughput as possible but considering the amount of time
allocated to this project, the expectations are not exaggerated. The information
extraction used in CarSim is very specialized. The texts are analyzed with the template
structure in mind i.e. the goal is to fill the template with data. This means that any text,
may it be a poem, will be parsed and a template filled with at least the minimum
requirements that are set by the graphical module will be produced. No matter what text
is loaded in CarSim it will produce a template that can be viewed in the graphical
module. If a text that does not describe an accident is analyzed by the system, a default
template will be produced. It contains a straight road with a parked car. On the road is a
sign displaying the message “No accidents were found”.

Ola Åkerberg & Hans Svensson 11

2.3 Architecture

WordNet Link
Grammar

Information Extraction
Module

Intermediate
XML
File

Graphical Module

Java3D Display

Figure 2.1 The Architecture of CarSim 2.0

The architecture of CarSim 2.0 is basically the same as in the first version. One
difference is that both information extraction and the animation tasks can be controlled
from the same graphical user interface.

Figure 2.1 shows the logical workflow in the CarSim system. The main components
are the information extraction module and the Graphical module. The information
extraction module is the workhorse of the program and it carries out the analysis of the
texts. Dynamic objects, static objects and accidents are detected. Dynamic objects are
entities with the ability to move for example busses, cars or any other vehicles. Static
objects are non-moving entities like trees and signposts. An additional task for the
information extraction module is road type discovery. Road types are comprised of four
categories: straightroad, left_turn, right_turn and crossing. The
graphical module can only display turns in the east-north or the east-south directions
which corresponds to a left_turn and a right_turn respectively. In reality, all
directions are possible. Hence, the detected turns are translated into the available
directions.

Furthermore, the straight road exists only in the east-west direction. As shown in
Figure 2.1 the information extraction engine uses two resources: WordNet and Link
grammar. The main information extraction module is written in the Java programming
language and the two resources are written C and C++. These are compiled into

12 Development and Integration of Linguistic Components

dynamic shared libraries and the connection between the resources and the information
extraction module is handled by a technique called the Java Native Interface JNI. The
JNI provides a framework for integration of native code in a Java application. JNI is
described further below.

The other main component of the system is the graphical module. The graphical
module reads the data produced by the information extraction module. It then applies
rules and tries to animate the accident. This is done with the Java3D technology.

The box between the information extraction module and the graphical module in
Figure 2.1 called “Intermediate XML file” symbolizes the data exchange between the
two modules. In the first version, a file was saved and shared between the two separate
programs. In CarSim 2.0, it is rather a String than a file passed between the modules
due to the integration into a common graphical user interface. However, an XML file is
still saved to disc in order to make it available for future reference. The template
follows a strict convention described by a DTD. As mentioned before the information
extraction is done with this structure in mind.

2.4 Related Projects
In this section, we review two systems that are related to our project. One covers
information extraction, FASTUS, and the other the visualization of texts, WordsEye.
They can be considered as good examples of the state-of-the-art in their respective
domain.

2.4.1 FASTUS Project
FASTUS (Hobbs et al. 1997) is an acronym for Finite State Automaton Text
Understanding System. FASTUS is an information extraction tool. It uses a cascade of
language processing modules based on finite state automata. Its aim is not to fully
understand the text but rather to search for a fixed set of information that is described in
a template: tabular data. It assumes that only a part of the information is relevant.
FASTUS is designed to process vast amounts of text and it is optimized for speed,
hence its name.

FASTUS is implemented using a set of tasks where each aims at extracting different
interesting information. The four major tasks are complex words, phrase recognition,
pattern recognition, and merging:

• Complex words recognition is a task that identifies multi-words and names.

Examples on multiword are “joint venture” and “trading house”. Names are words
like “Manchester United”.

• Phrase recognition involves splitting up sentences into smaller, easier handled
groups. These groups consist of words that make up a phrase. Such groups include
the noun groups, verb groups, and other phrases. The phrase recognition task is
divided into two subtasks: basic phrases and complex phrases.

• Pattern recognition: The sequence of phrases found in the phrase recognition task is
searched for interesting patterns. The information that is not included in the groups
constructed in phrase recognition is discarded. The selected patterns are then
mapped into an incident structure. The incident structure is predefined and
determines what data the text is scanned for.

• Merging combines several patterns found in the text. Information from the patterns
is merged into one single template.

Ola Åkerberg & Hans Svensson 13

Currently FASTUS supports the English language and the Japanese language but its

principles are applicable to other languages as well. The development process has been
under way since 1992; the system is implemented in Common Lisp.

2.4.2 WordsEye
WordsEye (Coyne and Sproat 2001) is a system for translating a text into a three
dimensional graphic scene. It can currently handle texts in English. The Scene
generated is static, not an animation. The people behind WordsEye have chosen to
concentrate on the language processing part rather than animation. WordsEye carries
out syntactic and semantic analyses of a text. It uses several already existing
components for parsing and for the semantic analysis of the text. The tools used are Ken
Church’ s part of speech tagger (1988), Michael Collin’ s parser (1999) and WordNet.
WordsEye has semantic entries for 1,300 English nouns and 2,300 verbs.

WordsEye first parses a sentence and then converts it into a dependency structure.
Lexical semantic rules are then used to create the components of the scene description.
This description is mapped onto poses, low-level depicters that together make up an
image visualizing the text. The image can be the snapshot of an action for example “ A
man throwing a ball” showing a man in a throwing position.

To be able to show a wide variety of texts as a three-dimensional image, WordsEye
uses a large database of three-dimensional objects. The same picture, a hand for
instance, can be shown differently, open or closed. This is achieved using inference
rules on poses, spatial relations, and color. To resolve conflicts and add implicit
constraints, WordsEye has a set of transduction rules that is applied to the result of
previous task.

WordEye also uses a co-referencing algorithm that connects personal pronouns to
their antecedents. WordsEye considers gender features and number to get an accurate
result from the co-reference algorithm. “ The cat is sitting on the table. It is black”
exemplifies an anaphoric sentence. WordEye connect the pronoun “ It” to the antecedent
“ cat” . The resulting picture will display a black cat sitting on a table. In some cases, the
information in a sentence is ambiguous. In that case, WordsEye tries to guess what the
writer wanted to express in the sentence. Consider the following example “ John sits in
the car. The vehicle is next to the boat” . Using WordNets Hierarchical structure
WordsEye connects “ car” to “ vehicle” and they will be interpreted as one entity. It is
not certain that this is a reflection of the writer’ s intensions. It still produces a better
result than interpreting “ car” and “ vehicle” as two entities.

14 Development and Integration of Linguistic Components

Chapter 3 Description of the System Components
and Modules

3.1 Integrating the Components
The CarSim project integrates available linguistic components. It also uses auxiliary
programs to support the software development. The purpose of these programs is to take
advantage of quality resources and to decrease the development time. The programs we
used are free software downloaded from the Internet and they are described in Appendix
D

The main development programming language used in the CarSim project is Java.
Java is an established object-oriented language originally developed by Sun. Some parts
of the project use C libraries made available through the Java Native Interface JNI.

This section describes the integration of external modules and programs in our Java
environment.

3.2 Parsing

3.2.1 Link Grammar
Link Grammar is a syntactic parser used to analyze English sentences. It is based on
dependency theories and was developed by Davy Temperley, Daniel Sleator, and John
Lafferty at the Carnegie Mellon University. Link Grammar is written in C and versions
are available for both UNIX and Windows platforms. The version used in CarSim
project comes with an API, which gives access to vital functions of Link Grammar. The
API grants access to the dictionary as well as the link structure. Link Grammar can be
parametered using options that alters the way it processes a text.

Link Grammar’ s dictionary contains over 60,000 words and it parses one sentence at
a time. Link Grammar can handle typographical errors. The result from a parsed
sentence is the dependency structure: links between words, which reflects the
grammatical relations between them. The output from Link Grammar can be shown in
two ways. The first way shows the dependency links that connect two words (Figure
3.1.)

 +-Ds-+--Ss-+--Pa--+
 | | | |
my cat.n is.v black.a

Figure 3.1 Sentence with links as displayed by Link Grammar

Link Grammar can also produce a constituent tree. It recursively displays noun phrases,
verb phrases, etc. Figure 3.2. shows a constituent tree.

(S(NP My cat)

(VP is
(ADJP black)))

Figure 3.2 Constituent Tree, the other output from Link Grammar

Ola Åkerberg & Hans Svensson 15

To get a valid linkage in Link Grammar, all words must be connected either directly

or indirectly to each other and the links cannot cross. The words’ part-of-speech is
indicated by suffixes such as .n designating a noun, .v a verb, .a an adjective, and .e
an adverb. Depending on the type of grammatical relation between the words, different
labels annotate the link: subject, object, etc. The word that the S-link connects to the left
is a subject (or the headword of the subject phrase). The word to the right is the finite
verb. The part-participle link enables the location of the subject and the agent in a
passive sentence.

Link Grammar can be configured with many options that improve its robustness. For
example, it is possible to run Link Grammar with “ allow Null links” and skip words that
are not recognized. Link Grammar still gets a correct linkage on the rest of sentence.
When Link Grammar does not recognize a word, it displays a trailing [?]. If the system
is using Null links and Link Grammar cannot find a parse for a word it will ignore it and
try to link the rest of the sentence. Brackets surround the word then.

Parsing of a sentence consists of several passes. First, it tries to find a linkage
without null links. If it does not succeed, the parser will try to find a complete linkage
with one null link and so on. When everything else has failed, Link Grammar enters
panic mode (that can be switched off) and tries again with different rules. It will only
consider links of a certain length and will allow islands of disconnected words. In this
mode, parsing will always be completed in a reasonable time. Notice that Link
Grammar is not one hundred percent reliable. It sometimes fails to produce a valid
result.

Link Grammar also has a post-processing stage where it checks the linkages found.
There are certain phrases that parsing cannot resolve. This is taken care of in a post
processing stage. The idea is to subdivide a sentence into blocks of words called
domains. Then, it controls the links present in each domain. If they are not valid, it
discards this linkage. The corresponding rules are placed in the post-processing file.
Post-processing can also be turned off.

Link Grammar uses five different kinds of files to parse sentences: dictionary files,
post-processing files, constituent-knowledge files, affix files and word files. The
dictionary files contain rules about links. The post-processing file is described above.
The constituent file contains the rules to create a constituent tree. The affix file contains
rules to handle punctuation and special characters. The word files contains categories of
words. Link Grammar comes with standard files but they can be edited or replaced. In
the CarSim project, we use the standard files. Link Grammar can also set a verbosity
level to determine the amount of output.

3.2.2 Finding the words and the grammatical relations
CarSim identifies the subject and object of a verb by examining the Link Grammar
output. Figure 3.1 shows an output example from Link Grammar. The links of the
sentence can be seen above the words. The verb is used as a starting point. The pair (is,
cat) is connected by an Ss link and the pair (is, black) by the Pa link. The Ss connects
the verb of a sentence to the subject and the Pa link points to the object of the sentence.
This is a simple example. Some sentences require traversing much more complex
graphs to find the subject, object, etc.

In addition, Link Grammar tags the words with their part of speech. It can be
extracted using the word suffix such as .n for nouns and .v for verbs after the parse.

16 Development and Integration of Linguistic Components

3.2.3 Link Grammar JNI
As mentioned earlier in this document, Link Grammar is written in C and our program
is written in Java. To integrate Link Grammar, we used a JNI bridge. JNI is an API to
integrate code written in other languages than Java. However, if you use JNI, you loose
one of the main concepts in Java, “ Write once, run everywhere” . The code becomes
system dependent (The C code is system dependent).

Figure 3.3 Picture shows how the JNI works in a system

Figure 3.3 shows the concept of JNI. JNI enables native methods to use and update
Java objects created on the Java side. Java Objects can also be created on the native
side. The objects can be passed between the Java and the Native side and thus share
data. Applications and legacy programming libraries that are already implemented in a
native language can be accessed by Java code. A Java method can call a native method,
pass the required parameters, and get the result back. The same is true when native
methods call a Java method. You can throw and catch exceptions from the native
method. With functions in JNI you can load Java classes and get class information. JNI
also supports runtime type checking.

3.3 Lexical Semantics Analysis

3.3.1 WordNet
WordNet is a lexical reference that was developed at the Cognitive Science Laboratory
at Princeton University under the direction of Professor Miller. It is designed for
English but projects exist to extend the idea to other languages as well. WordNet
separates words into nouns, verbs and adjectives. These are organized into synonym
sets (synsets). Words in each part of speech class have specific functions. These
functions include synonyms, hypernyms, and hyponyms for the noun class.

Many English words have more than one sense. Consider the word “ road” . First, it
can be the physical sense. The road you walk on. It can also have the meaning of a way
to achieve something as in the sentence “ the road to success” . When CarSim looks up a
word in WordNet, it can select a specific sense and part of speech.

Ola Åkerberg & Hans Svensson 17

3.3.2 Acquiring classes of words
To find specific information in the text, we use WordNet to create a word database. For
example when we try to detect a crash verb in the text, we need a list of all the words
that can occur in an accident description. To achieve this, a full hyponym tree is looked
up in WordNet. Hypernymy and hyponymy are semantic relations between words. We
can rephrase these relations as “ more general” and “ more specific". The word “ birch” is
a hyponym of “ tree” , which in turn is a hyponym of “ plant” . This means that if the
system detects the word “ birch” in the text it knows that it is a “ tree” and it will save it
as a static object.

We determined sets of words in the WordNet hierarchy useful to the CarSim road
domain with an interactive manual process. We acquired abstract words defining
semantic classes applicable to this domain and we called them the super words. A super
word is the highest level in the hyponym tree. We tested WordNet with different words
to figure out which super word to use and we inspected their hyponym trees. The word
that returned the most accurate results in terms of numbers and usefulness was selected.
Sometimes, we used several super words to create a group in the word database. Figure
3.4 shows the result produced by WordNet online version for the word “ light” , sense 14,
noun part-of-speech, and full hyponym tree. Later, we selected “ light” as a super word.

light

=> traffic light, traffic signal, stoplight
=> green light, go-ahead
=> red light
=> yellow light

Figure 3.4 A full hyponym tree for the noun light at sense 14

3.4 Template Structure
The template is the tabular output of CarSim information extraction module. When
filled in properly, the system will be able to run the accident in the 3D-simulator. The
structure of the template can be divided into three different parts: the static objects, the
dynamic objects, and the collision object. These objects have different required
parameters. Chapter 4 explains how the data is collected. We discuss here the three
parts of the templates.

The static object section is the part where the system stores all the non-moving
objects, such as trees, road sign, road type, level crossings, and traffic lights. Detection
of other obstacles like a fence and an embankment is feasible but the simulator cannot
visualize these types of objects. These objects all end up as a tree. There are four
different road configurations and the road type is one of the required parameters in the
template. The types are straightroad, crossing, turn_left and turn_right.
Tree and traffic lights must have an id because there can be more than one entity
referring to for instance a tree in a text. The color of the traffic light is also a required
value and the types of colors supported are red, orange, green, or inactive. The
only type of sign that can exist in the simulation is the stopSign.

The second part of the template describes the dynamic objects, the vehicles
mentioned in the text. The possible types of vehicles are a truck or car. All the
dynamic objects must also have an id. All dynamic objects must also have an initial

18 Development and Integration of Linguistic Components

direction, so that the simulator knows where the vehicle starts. The possible values are
north, south, west, and east. This part of the template structure also contains
possible road signs if any are detected. A typical road sign could be “ State Route 30A” 1.
All the vehicles must have an event list that describes their action sequence. The
possible values are driving_forward, turn_left, turn_right, stop,
overtake, change_lane_left, and change_lane_right.

The last part of template describes the collision objects. It contains the information
about the objects that have crashed and the list of accidents. The system tries to detect
which vehicle is the victim and which is the actor. The required data in the collision
object is what part of the vehicle was involved in the accident. The choices are front,
rear, left_side, right_side, or unknown. The unknown value is used when
the program was unable to detect any vehicle parts from the text.

1 A better design would probably move the directions road signs to the static object section of the

template.

Ola Åkerberg & Hans Svensson 19

Chapter 4 How the Whole Program Works

4.1 A General Description
The work of developing CarSim in general and the CarSim information extraction
engine in particular can be subdivided into steps. At first we studied the field of
computational linguistics. To get a notion of what is considered to be the most
successful way of accurately interpreting texts with the aim on understanding and
displaying a road accident.

The texts in the corpus are collected from the Internet home site of the National
Transportation Safety Board. They are naturally real texts (not manually invented).
They are typically about two hundred words long. The language used is technical,
dense, and hard to read. The CarSim is a new development of the French version. It
used initially the original graphical module to display the accident information gathered
from the texts.

The division of the project into tasks was as follows:

• Incorporate the widespread linguistic analyzing tools: WordNet and Link Grammar.
• Split texts into sentences.
• Build a dictionary of words indicating an accident situation using WordNet.
• Search the text for static objects and find the attributes that describes them.
• Proceed with the detection of road configuration.
• Extract the names of the roads.
• Integrate the program written by Torbjörn Ekman and Anders Nilsson (2002)

connecting a subject and object to a verb.
• Map the information gathered in previous step onto a predetermined accident

structure.
• Instead of verbs indicating an accident situation, use verbs describing any kind of

movement to determine the sequence of events described in the text. This includes
changes of movement such as stops.

• At this point, all the dynamic object structures are created. Some of the objects in a
subject-verb-object phrase can however be static objects. Find them and make the
connection to static objects that are already extracted. The sentences with the
subject-verb-object combination are inspected to find events. Possible events are
driving_forward, turn_left, turn_right and stop.

• Engineer a more user-friendly interface.
• Integrate the CarSim information extraction module and the graphical module. In

parallel with implementation of the information extraction module, Bastian Schulz
(2002) upgraded the graphical module. Bastian also introduced a new graphical user
interface that gives the user control over both the information extraction task and
three dimensional animation tasks.

• With the knowledge of the subject-verb-object chain and their individual locations
in the sentence, search in what direction the vehicles (dynamic objects) are moving.

• Interpret the directions and translate them so that they fit the road configuration.
• The text has now gone through all passes of interpretation. The information is

formatted and transmitted to the graphical module.

20 Development and Integration of Linguistic Components

4.2 The Tasks Performed in the CarSim Project

4.2.1 Introduction
The following sections explain each task in depth. The approach is to divide the project
into smaller chunks that are simpler to manage. The pros of using this method are that
you divide a very difficult problem into smaller pieces that each has a more
straightforward solution. The negative impact on development using this problem
solving technique is the loss of a general view. The interaction between the subprojects
can conflict and resources may not be shared at an optimum level. The integration of the
subprojects can prove to be a big challenge. The English CarSim information extraction
module was however developed using this scheme.

4.2.2 Linguistic analysis tools
As mentioned earlier in this master thesis document, CarSim takes advantage of
available and powerful tools in order to parse texts and carry out lexical semantics
interpretation.

• Link Grammar is syntactical parser that produces information about the

relationship between the words in a sentence. It also determines the part-of-speech
of the words. It is important to know that Link Grammar is not failsafe. It will not
give meaningful data in all cases.

• WordNet is lexical database supplying semantic interpretations of words.
Especially interesting is the hyponym and hypernym function. A hypernym of a
word is a more general category of the word. An example is “ horse” which has the
hypernym “ animal” . A hyponym on the other hand is a more specific possibility to
describe the word. The word “ plant” has the hyponyms “ flower” , “ tree” , and
“ orchids” . Consider the words car and vehicle that are both linked by the relations
hypernym and hyponym. All cars are vehicles, but not all vehicles are cars: there are
also trucks, motorcycles, bicycles etc.

Both Link Grammar and WordNet are written in the C programming language but

the CarSim 2.0 project was developed using the Java programming language. There are
major differences between the two languages and reusing a library written in C in an
application written in Java is not straightforward. One of the foundations of Java is the
ability referred to as “ write once, run everywhere” principle. This means that the same
Java program should be able to run on any platform may it be UNIX, Windows or Mac
OS. To afford this feature Java is not compiled as a C program would be but it is
transformed into an intermediate file conforming to the byte code format. This file is
interpreted by the Java Virtual Machine (JVM). The JVM is a virtual computer that
provides the abstraction between the pre-processed Java program and the underlying
hardware platform and operating system. The byte codes can be thought of as the
machine language of the JVM. Unlike a Java program, the JVM is not portable but must
be implemented on each platform per se.

Luckily the people at SUN who invented the Java programming language have
foreseen this problem and have therefore included support to reuse the old libraries
written in native code. The middleware is called JNI which stands for Java Native
Interface.

Ola Åkerberg & Hans Svensson 21

4.2.2.1 WordNet Java Native Interface
The procedures to reuse Link Grammar and WordNet are quite different. In the case of
WordNet, Bou (2002) constructed a fairly general JNI that renders use of WordNet in a
Java environment possible. The project is called the WordNet JNI and Bou uses the
acronym WNJN.

WordNet was not to our knowledge implemented with the ability to be imported as a
library package in mind therefore Bou has implemented an interface to WordNet using
C and C++. The components of WNJN are one static library supporting either WordNet
version 1.6 or 1.7. They are called wn16 and wn17 respectively. WordNet version 1.7 is
not yet supported on the Win32 platform. These two projects are written in C and you
can only use one at the time.

The “ wnjn” dynamic shared library is also included in WNJN project. An API with
the same name that hides the more difficult JNI and low level type of instructions on the
Java side is also available.

Figure 4.1 shows a schematic picture of WNJN. The “ WN C Library” can be
considered to be a delimited API or a protocol to access the functions in WordNet.

The “ WNJN C++ Shared Library” functions as a broker. It can communicate with
WordNet, request and receive information about a word. The information is then
transmitted through JNI to the Java side. On the Java side, Bou has implemented an API
that masquerades the complex low level instructions dealing with the communication
over the JNI interface, denoted as “ WNJN Java glue files” in Figure 4.1. This means
that once you have set up the WNJN correctly you should not have to bother with the
intricacies of JNI functions and WordNet can be called just like ordinary Java functions.

WNJN
Project

WordNet
Application

WN C
Library

WNJN
C++

Shared
Library

WNJN
Java glue

files

The CarSim Java Project

Figure 4.1 The principles of WordNet JNI, the WNJN

22 Development and Integration of Linguistic Components

The WNJN was created with the Windows platform as a target. The CarSim project

was however developed on the UNIX platform, more specifically the SOLARIS
platform. The challenge at hand was to find a way of compiling the WNJN project on
this platform. We chose gcc, the GNU C Compiler, and GNU make because they are
free to use according to the GNU general public license.

A first attempt was made to translate the nmake build files that were shipped with the
WNJN project. These files are created automatically and not intended to be read by
users. The attempt failed and we decided to start from scratch and construct new
makefiles. We tried to use WNJN as a dynamic shared library that statically links the
WN library when trying to port the system to the UNIX platform. This conformed to
WNJN original architecture on Windows. It did not work. A link error occurred when
trying to run WNJN test program. After a lot of tedious work of researching this failure,
we found that this was a common problem. Many reports on the Internet address this
issue; none however had any solutions to the problem.

To solve the problem, we abandoned the WNJNI architecture and we replaced it with
a solution based on two dynamically linked libraries. This was a complete success. The
test program could be run and we could use WordNet in the CarSim application.

A lot could be learned from the test program but it did not fully meet the
requirements in the CarSim system. A negative point to the WNJN project is that the
low level JNI instructions are intermixed with display formatting instructions of the
information received. They are not easily separated and it presents a problem because in
CarSim it is not valuable to get all the data from a look up in WordNet compressed in
one String. A list of the words is preferred because it is easier to manipulate. This was
discovered very late in the progress of the integration of WordNet. We thought that the
formatting was done by WordNet itself. That led to a lot of String manipulation to
gather the information that indeed was important. This procedure was both difficult and
time-consuming. When a lot of calls are made to WordNet this also leads to a negative
impact on the response time as perceived by the user. A better way would be to rewrite
partially the WNJN Java glue files and it should be taken into consideration to improve
this feature in future releases of CarSim.

4.2.2.2 Link Grammar
Link Grammar is a syntactic parser that was written in C. The problem of getting access
to Link Grammar features in CarSim is quite similar to the ones faced when integrating
WordNet. In the case of Link Grammar however there were no projects available that
solved the problem. The developers of Link Grammar had anticipated a need for
integrating Link Grammar in to other products and hence they have developed an API
called the Link Parser Application Program Interface. The Interface enables other
applications to control the way Link Grammar works. The user can set things like parse
time limit, the maximum links allowed and if words can be left unconnected. One can
also pass a sentence to Link Grammar and receive the result, either formatted for
display or packed into containers for further computer manipulations. We took
advantage of it and we implemented a JNI bridge to be able to access the Link parser
API from the Java side.

Figure 4.2 shows a schematic picture on how the JNI interface to Link Grammar
works. On the Java side, we wrote a class called LinkGrammarAPI and its peer on the
C side called carsim_wrapper. The names can be disputable but the idea is that from

Ola Åkerberg & Hans Svensson 23

CarSim application the class works as an agent for Link Grammar. In fact, from CarSim
it appears as Link Grammar hence the name LinkGrammarAPI. The same is true on the
C side were carsim_wrapper is viewed as any other C program using the Link Parser
API to communicate with Link Grammar. To save time, the JNI solution did not
implement the complete Link Parser API but only functions that bundled the
appropriate Link Grammar instructions together and produced a result needed by
CarSim. All the parse options are set as constants and cannot be altered during run-time.
The options are optimized to get the best results from the type of texts CarSim deals
with.

Link
Grammar

API

CarSim
Wrapper

J
N
I

B
R
I
D
G
E

CarSim2.0

Link Parser
API

Link
Grammar

Figure 4.2 The JNI used to gain access to Link Grammar

In CarSim, the sentence is parsed in three passes. First, Link Grammar uses intricate
rules and then if it fails to produce an output the rules are weakened. This increases the
likelihood of an accurate parsing. Table 4.1 shows the options used in the different sets.
short_length determines how long the links are allowed to be. If the
all_short_connectors variable is set to true, then all connectors have length
restrictions imposed on them. They can be no farther apart than short_length.
islands_ok controls whether or not unconnected words are allowed. To allow the
parser to assign some structure to a sentence even when it cannot fully interpret it,
allow_null can be set to true. Basically, if the parser cannot parse a sentence
normally, it tries to ignore one word in the sentence. It finds all the linkages it can,
ignoring some words. If panic_mode is set to true then it enables the parser to parse
even very long sentences quickly, but with considerably reduced accuracy. Link
Grammar utilizes a system for assigning a cost to a linkage. This allows the parser to
express preferences among the linkages it finds. It is controlled by the parameter
disjunct_cost. MAX_SENTENCE is the largest number of words in one sentence that
Link Grammar can parse. Table 4.1 shows the option sets which Link Grammar utilizes.

24 Development and Integration of Linguistic Components

 Set 1 Set 2 Set 3
Name Value Value Value
verbosity False False False
islands_ok True True True
allow_null True True True
panic_mode False False False
max_sentence_length 1000 1000 MAX_SENTENCE
max_parse_time 30 s 30 s 60 s
linkage_limit 10 000 10 000 100
short_length 10 10 6
disjunct_cost 2 2 3
min_null_count 0 1 1
max_null_count 0 Length

of sentence
MAX_SENTENCE

all_short_connectors False False True

Table 4.1 Link Grammar options

The bundled methods supported in the carsim_wrapper class are:

Java_se_lth_cs_carsim_LinkGrammarAPI_allocStaticLinkGrammarStructs
Java_se_lth_cs_carsim_LinkGrammarAPI_freeStaticLinkGrammarStructs
Java_se_lth_cs_carsim_LinkGrammarAPI_parse

The peers in LinkGrammarAPI are declared:

private static native void allocStaticLinkGrammarStructs();
private native void freeStaticLinkGrammarStructs();
private native void parse(String input);

The LinkGrammarAPI class is implemented following the Singleton programming

pattern. This means that measures are taken to assure that only one instance of the class
is created and used. The reason for this is to limit resources used by the CarSim system.
The library is loaded in a static initializer. Right after the system is loaded, the
allocStaticLinkGrammarStructs method is called. It initializes some resources
used by Link Grammar. It notably reads the dictionaries from files and creates the parse
option sets. This is a time-consuming task but it is only done once during a run of
CarSim, when LinkGrammarAPI is created. These resources are freed when the
application shuts down. This is done in the destructor finalize statement.

To parse a text, the method parse is called and the sentence is passed as a
parameter. Observe that Link Grammar only parses one sentence at a time. This means
that the text has to be split up into sentences. It is not as easy as it sounds. Callback
methods are used to pass information from the C side to the Java side. They are declared
as follows.

private void callBackSaveParsedWord(String saveString)
private void callBackSaveLink

(int LeftWordIndex, int RightWordIndex, String LinkLabel)

Ola Åkerberg & Hans Svensson 25

In order to make it possible to call these functions from the carsim_wrapper a
certain procedure has to be followed. First a class look up is made to determine what
type of Java object that should be called:

jclass classInstance;
classInstance = (*env)->GetObjectClass(env, obj);

The env and the obj resources are provided as parameters in the call of the C

functions. Env which is of type JNIEnv accesses the virtual machine functionality by
calling various functions exported through the JNIEnv interface pointer. Obj is of type
jobject and is a reference to the object calling the C code.

The next step is to get a method ID. The native method calls the JNI function
GetMethodID, which performs a lookup for the Java method in a given class. The
lookup is based on the name of the method as well as the method signature. The method
signature can be generated with the Java class file disassembler tool javap. We use
javap with the flags –s and –p to create a file with the signatures of the target class.
Because a class look up is a rather an expensive operation, a technique called caching of
method IDs is employed. The effect of this is that the class look up is only made once
during an execution and the time spent in this code is reduced.

mid1_s = (*env)->GetMethodID
 (env, cls,"callBackSaveParsedWord", (Ljava/lang/String;)V");

mid2_s = (*env)->GetMethodID

(env, cls, "callBackSaveLink", "(IILjava/lang/String;)V");

Java objects must be prevented from being unloaded from the Java Virtual Machine.

This is accomplished by keeping a reference to the Java object in a static variable. The
reference must be kept in a global reference to make it work. The global reference must
be freed when it is not used anymore.

jclass cls1 = (*env)->GetObjectClass(env, obj);
cls = (*env)->NewGlobalRef(env, cls1);

The variable referring to the looked up method ID is of type jmethodID. Lastly, the

native method calls the JNI function CallVoidMethod. The CallVoidMethod
function invokes an instance method that has a void return type. You pass the object,
method ID, and the actual arguments to CallVoidMethod.

(*env)->CallVoidMethod(env, obj, mid1_s,

(*env)->NewStringUTF(env, a_parsed_word));

And now the information about the structure of the sentence is successfully passed to

the Java side and can be further manipulated.

4.2.3 Splitting texts up into sentences
The Link Grammar parser only works on a sentence at a time. This means that a whole
text has to be split up into sentences before it is submitted to Link Grammar. It may
seem a simple task to split a text up into sentences however it is not. The punctuations

26 Development and Integration of Linguistic Components

of for example dates and abbreviations as well as the capital letters in names make it
more difficult to determine the beginning and end of a sentence.

We searched resources and we decided to use the BreakIterator class. We choose
it because it is a part of the Java Development Kit (JDK). BreakIterator is a
convenient class to use when manipulating texts in natural language. It is very versatile
and implements methods for finding the location of boundaries in text. Instances of
BreakIterator maintain a current position and scan over text returning the index of
characters where boundaries occur. Internally, BreakIterator scans text using a
CharacterIterator, and is thus able to scan text held by any object implementing
that protocol. Examples on the usage of BreakIterator are splitting up texts into
characters, words and lines. In CarSim, the interesting feature was to split a text into
sentences. When this was implemented, we detected a flaw in the BreakIterator
algorithm. In abbreviations such as “ U. S. State Route 7” and “ Mr. Johnson” there is a
period and BreakIterator wrongly interprets this as a full stop. The texts scanned by
CarSim contain a lot of abbreviations and BreakIterator fails miserably. However,
we found the rest of the functionality of BreakIterator useful so we made the
decision to add a post-processing stage in the split. Example 4.1 and Example 4.2
illustrate the error.

Example 4.1 A first example of incorrect tokenization made by BreakIterator

Sentence: “ I was just talking to Mr. Johnson about the problem”
After split: “ I was just talking to Mr.”

“ Johnson about the problem”

Example 4.2 A second example of incorrect tokenization made by BreakIterator

Sentence: “ I was driving on U. S. 13 when it started to rain”
After split: “ I was driving on U. S.”

“ 13 when it started to rain”

The functionality of the post processing stage includes the detection of abbreviations

at the end of a sentence previously split up using BreakIterator. When such a
sentence is found the next sentence, it is concatenated to the next sentence. This newly
constructed sentence is then set as active sentence; the next one to be examined.

The detection of abbreviations is done by isolating the last word of a sentence and
checking it with regular expressions to see whether or not it matches the desired
patterns. The patterns used in this scheme are gathered from Greffenstette and
Tapanainen (1994), adapted to our specific needs. In some cases, we constructed
completely new patterns. Table 4.2 shows regular expressions useful in determining an
abbreviation.

Fractions, dates, decimal numbers and statements with the “ %” sign also pose
problems. We did not take them into consideration because they are correctly
interpreted by BreakIterator. Using this method, CarSim achieved a 100 percent
success on the corpus. All the twenty-three texts in the corpus were split up into
sentences correctly.

Ola Åkerberg & Hans Svensson 27

Rule

Regular Expression Description

1 ([A-H,J-Z,a-z]\\.([A-Z,a-
z,0-9]\\.)+)

This pattern tries to match a sequence of
letter-period-letter-period. The letter “ I”
is not handled because it could refer to a
non abbreviation construct. Examples:
“ U. S.” or “ m.p.h.”

2 ([A-Z][bcdfghj-np-tvxz]+) The regular expression describes a
pattern of capital letter followed by a
sequence of consonants followed by a
period. Examples: “ Mr.” and “ Mrs.”

Table 4.2 Regular expressions used to find abbreviations

The newly released version of the Java SDK 1.4.0 has modified the
BreakIterator class. This renders the workaround solution that cleans up
abbreviations obsolete. The BreakIterator can now handle some abbreviations such
as “ U.S. 13” and “ m.p.h.” . It still cannot correctly interpret abbreviations as “ Mr. Jones”
and “ U. S. 13” . In the last example, there is a space character between “ U.” and “ S.” .
We designed a new regular expression to adapt to the new behavior of
BreakIterator (Table 4.3).

Rule # Regular Expression Description
1 ([A-Z,a-z]\\.(\\s[A-Z,a-

z,0-9]\\.)*)
The only difference is that a space
character “\\s” is added. The group
([A-Z,a-z,0-9]\\.)*) has been
converted into (\\s[A-Z,a-z,0-
9]\\.)*) Examples: “ U. S. 13”

Table 4.3 Updated regular expressions used to find abbreviations

4.2.4 Building a dictionary of words using WordNet
The class WNDictionary contains a dictionary of the words that are used in this
project. Most of the words are looked up in WordNet. The program calls WordNet to
find the hyponym trees of different selected super words. They are saved as String
objects. The strings that are created in WNDictionary are configured in a way that
makes it possible to do pattern matching with regular expressions without changing
anything. The structure conforms to a standard: left parenthesis, word, vertical bar,
word, vertical bar, and so on. The string ends with a right parenthesis. Table 4.4 shows
the words used by the WNDictionary class.

The result from WordNet is not always the best in terms of extraction success and we
had to add some words manually to WNDictionary. When looking up words in
WordNet there are some parameters to ponder. As mentioned in section 3.4.1, a
WordNet entry comprises a part of speech, a sense and a super word. The super word is
the word that WordNet uses as a starting point when searching for hyponym trees. One
other operation that WordNet does not do is to conjugate verbs. The solution to bypass

28 Development and Integration of Linguistic Components

this problem is to apply a morphological look up on the list of verbs returned from
WordNet. Each verb in the list is used as a key in a HashSet and the value contains the
verbs conjugated forms. The values in the HashSet are hard coded. Both the
conjugated forms and the verb looked up in the WordNet database is saved in a String
in WNDictionary.

Some words are also removed from the hyponym trees. This is done because they are
ambiguous (have two or several meanings). The words we removed are shown in Table
4.4. For example, “ obstruction” is a super word and the word “ stop” is included in the
hyponym tree resulting from a look up. If “ stop” is not removed it will be detected twice
in the CarSim system. Once when extracting obstructions and once when detecting
movements of vehicles.

The next task is to find words describing the 3D object BLOCK which symbolizes
heavy vehicles. The approach is a little different. As can be seen in Table 4.5, truck, bus
and trailer are looked up in WordNet and the resulting hyponym trees are put together in
the same string.

An explanation of the heads in the table follows.

Super word The top word that is looked up in WordNet.
Sense Which sense that is looked at for the specific word
POS Part of speech.
Hard code Yes, if the word is hard coded.
Remove Which word that was removed.
Add Which word that WordNet did not have in its word bank.

Super Word Sense POS Hard

coded
Remove Add

Road 1 Noun No Interstate
Initial

direction
 Yes

Bend 1, 3 Noun No
Intersection 2 Noun No

Sign 2, 4 Noun No Stop sign
Light 13 Noun No

Obstruction 1 Noun No Turnpike,
stop,

Tree, curb, kerb, ditch,
embankment

Hit 2, 3 Verb No Drive into
Car 1 Noun No Bus Patrol wagon, paddy wagon,

Police car
Bus 1 Noun No

Trailer 3 Noun No
Truck 1 Noun No

Traveling 1 Noun No Turn, way En route, traveled
Move, veered Yes

Turn Yes
Overtake Yes

Stop Yes

Table 4.4 Words that the system uses

Ola Åkerberg & Hans Svensson 29

3D Object Remove Add
Block Patrol

wagon,
paddy
wagon,

police wagon

Tractor-semi
trailer

Table 4.5 The special modifications for heavy vehicles

4.2.5 Detecting the road configuration
The road configuration is the physic shape of the road where the accident occurs.
CarSim can handle four types of roads: straightroad, left_turn, right_turn
and crossroad. There are some restraints on these road types. A straightroad has
an east to west orientation. A left_turn has an east to north orientation and a
right_turn has an east to south orientation. The actual orientation of the road and
hence the initial directions of vehicles have to be translated into values, which the
graphical module can display. This is explained further later on.

The extraction of road configuration uses regular expression and WordNet. The
principle is fairly simple. Two categories of words are used: intersections and bends.
The hyponym trees of these words are looked up in WordNet and used in regular
expressions. The regular expression then scans the text and reports any findings. First,
the text is searched for words of intersection type. If that fails, the scan moves on to
bend types. If that fails a straight road is assumed. Observe if the first two pattern
matching techniques fail, the information extraction is done No further work will be
performed. As CarSim makes use of directed information extraction, any text, may it be
a poem, should produce a accident description. To make this feasible, if no intersections
or bends are found, a default straight road is added.

The information extracted about road configuration is added to the template as a
child node to the static objects structure.

4.2.6 Extracting the names of the roads
The task of extracting the names of roads makes heavy use of regular expressions. The
method is fairly similar to that used when extracting road configuration but is more
complex.

Names of roads in the United States follow a certain pattern that can be used when
trying to locate them in a text. Examples are “ Pennsylvania Turnpike” , “ State Route
30A” , “ U.S. 160” and “ Farm to Market Road” . Each name begins with a capital letter.
In each name phrase, a word depicting some type of road word like “ Turnpike” ,
“ Route” and “ Road” is usually present in the examples of our corpus. Another family of
road names is the abbreviations. They comprise a number of capital letters and an
integer. “ U.S. 160” and “ I-22” are typical members of this family.

The trick to extract these involves the usage of WordNet and regular expressions.
WordNet is used to look up words to target and match road words as discussed above.
Hyponyms of word “ road” makes up a lexicon that can be used to build regular
expression patterns. The regular expression pattern used to find names of roads from the
first family are constructed to take in to consideration different types of combinations.

30 Development and Integration of Linguistic Components

Rule

Regular expression Description

1 ([A-Z][A-Za-z0-
9\\.]*\\s?(to\\s)?)*

This regular expression is designed to find
constructs with a word starting with a capital
letter and then a space character followed by
the word “ to” then again a space character.
Example: “ Farm to Market Road”

2 (\\([A-Z]\\w+\\)\\s)? This pattern matches a construct enclosed in
parenthesis and starting with a capital letter.
After the parenthesis expression there must be
a space character. Example: “ (Florida)” in
“ Levy County (Florida) Road C-32”

3 \\s([A-Z]\\w+\\s?)? A word with a capital letter in the beginning
and with a starting space character and an
optional trailing space character. Example:
“ State” in “ State Route 7”

4 (\\d+\\w?)? A sequence of integers, ending with optional
letters. Example: “ 30A” in “ State Route 30A”

5 (\\w-\\d+)? The pattern matches a group of integers
followed by a dash and ending group of
letters. Example: “ I-95”

Table 4.6 Regular Expression used to find road named from the first family

Rule

Regular expression Description

1 [A-Z]\\.?
This part of the pattern matches one capital letter
followed by a optional dot. Example: “ U.” as in
“ U. S. 13”

2 (\\s?[A-Z]\\.?)*

One optional space character followed by one
character in upper case and one optional ending
dot. Observe that the whole group must exist zero
or more times. Example: “ S.” as in “ U. S. 13”

3 (\\s|-)\\d+
This group starts either with one space character or
a dash. Must be followed by one or more integers.
Example: “ -2” as in “ IS-2”

4 (\\s|,|\\.|\\?|\\!)

Here just one character is sought but it has to be a
space character or a comma sign or a dot or a
question mark or a exclamation mark. Example:
“?” as in “ U. S. 13?”

Table 4.7 Regular Expression used to find road named from the second family

Table 4.6 shows the regular expressions used to find road names from the first
family. These make up a pattern that finds most of the road names that are constructed
with a phrase containing some type of road word. The subparts are concatenated as

Ola Åkerberg & Hans Svensson 31

follows 1 + 2 + “ a list of road words looked up using WordNet” + 3 + 4 + 5. This
pattern is used in the first pass of the text. In the second pass, another pattern is used.
Table 4.7 lists the subcomponents.

This pattern is created by concatenating the subpatterns in the order they are
presented in Table 4.7. With this pattern, CarSim can detect constructs such as “ U.S.
13” , “ U. S. 13” , and “ II-2” which are members of the second family of road names as
described above. In most cases, successful matches are found but the second pattern
introduces an error, which cannot easily be avoided. Consider the sentence in Example
4.3.

Example 4.3

“ On March 2, 1999, a 1979 Motor Coach Industries MC-9, 47-passenger charter
motorcoach, owned and operated by Shuttle Jack, Inc., (Shuttle Jack) of Santa Fe,
New Mexico departed the Santa Fe Ski Basin, carrying the driver, 2 adult chaperons,
and 34 middle school-age children.”

The phrase “ MC-9,” in this sentence would be detected by the second regular

expression pattern as a valid name of a road. This is wrong but only one occurrence has
been observed in the corpus used by the CarSim project. Many road names belonging to
the second family are however correctly detected and the conclusion is that this pattern
does more good than harm.

In some other cases, the system does not detect the road names properly. One reason
is that some summaries do not mention the road names. One other reason is the
inadequacy of our regular expressions.

There is also the problem of connecting a dynamic vehicle to the road on which it is
driving. The name of the road is an attribute to the Dynamic vehicle construct in the
template and is called startSign. No co-referencing techniques are employed and
more vehicles are detected than actually present. A personal pronoun such as “ it” that
co-refers to a noun is interpreted as a unique vehicle. Hence, these references are not
connected to a road name.

4.2.7 Extracting the static objects
Static objects represent a category containing the road configuration and the non-
moving entities that interact with vehicles in the accident. Examples of the static objects
are trees and signs. Any type of static obstacles belongs to this category. The objects
that CarSim includes are road, tree, sign, trafficLight, and
levelCrossing.

One can argue about the logic of this selection. The subject of discussion is whether
this set is consistent. The road configuration is static but cannot participate directly in an
accident situation. It is essential to the animation though as it is the base of the view
upon every other object is placed. The issues of levelCrossing are very similar to
that of road. Maybe it would have been a better solution to break out these objects and
divide them in two or more categories to minimize confusion. However one of the goals
of CarSim is to keep the template representation as short and simple as possible and
CarSim was designed to be compatible to the old template structure.

In addition to these objects, the new CarSim information extraction module can
detect a group called obstacles. The obstacles cover a wider range of possible entities
that are capable of direct interaction in an accident situation. The vision is that as an

32 Development and Integration of Linguistic Components

extension to the existent static objects two new categories are added: vertical obstacles
and horizontal obstacles. Examples of the first groups are different kinds of signs,
streetlights. Fences, embankments and rails would fit into the horizontal obstacle
category. The implementation of the information extraction of these is done however;
the template structure cannot represent these objects.

Streetlights are represented as trafficLight. All obstacles will appear as tree.
Different kind of signposts are entered in the sign category. Note that the sign
category can currently only represent stop signs, although it may seem as a group that
can reflect a wider variety of signs.

The technique used to extract static objects is to combine the pattern matching
strength of regular expressions and the versatility of WordNet in the respect of
extracting groups of words that are similar and describes the same meaning. This
technique was applied when searching for extraction of road configuration and the
names of roads. To get a list of words that fit each category a survey of WordNet was
made and the proper hypernyms was selected.

The base algorithm introduces errors because some words are missing and some
words that do not fit the category satisfyingly are found using WordNet. The hyponym
trees delivered from WordNet are inspected and some words will be removed while
some other words will be added. The reason for this is achieving the highest throughput
possible in regards of correctly interpreted texts.

The slightly altered hyponym tree for each group is then combined with some regular
expression constructs. These are added to make sure that only a whole word is matched,
not a part of a word. This is done by matching a white space character in the beginning
and any of “ ,” , “ .” , “ ?” , “ !” or a white space character at the end. The whole group is
extracted so these characters have to be trimmed away. A static method called
rightTrim in the class Util is provided to perform this operation.

We also implemented a RegExWordFinder class that provides tools for finding
information in the vicinity of a matched phrase. It works in conjunction with a class
called RegularExpression, which actually does nothing but wraps the Java standard
classes Pattern and Matcher. Consider the following example:

“ The driver veered to the left of the road and crashed into a tree.”

The thought is that when the word “ tree” is found in the sentence there may be

additional clues to extract about the location of the tree. Here it is obviously stated that
the tree is located on the left hand side of the road. In CarSim, this is handled by the
class RegExWordFinder, from the index of the matched word, in this case “ tree” .
RegExWordFinder makes it possible to inspect the words on either side of the match.
In the example, there are no words to the right of the match but many to the left. The
interesting word that is desired to be extracted is “ left” . The RegExWordFinder is
setup to search for the words “ left” or “ right” . It tries to match these words against the
words found directly adjacent to the match on either side. If it finds a match this is
reported and the search is over. In case of failure, the second nearest two words are tried
and so on. If no matches are found when the whole sentence is checked, a default
location will be added. Furthermore, RegExWordFinder does not read past a comma
sign but ends the search. This is done to prevent a case where a false location is added
to the information extracted about the “ tree” . This idea is based on the locality of
information. This means that the information about the “ tree” should be located close to
the words location in the sentence hence the search from the word outwards towards its
boundaries.

Ola Åkerberg & Hans Svensson 33

Internally the RegExWordFinder uses regular expressions and the class
BreakIterator. The BreakIterator is used to step through the sentence one word
at a time, beginning from the match and outwards towards the sentence boundaries.
Regular expressions are constructed using the words specified in the search criteria, for
example “ left” and “ right” . The regular expressions in RegExWordFinder are then
applied to match the words provided from the BreakIterator.

Example 4.4

RegularExpression myRegEx = new RegularExpression("tree", sentence);
while (myRegEx.hasNextMatch()) {

Tree myTree = new Tree(RegExParser.TREE, myRegEx.nextMatch());
if (myRegEx.hasAdjacentMatchingWord("left"))

 put tree on the left hand side of the road
else

 put tree on the right hand side of the road}

Example 4.4 is somewhat simplified but shows how it is intended to be used. The use

of RegExWordFinder is hidden inside the class RegularExpression but the
principle of how this method is used should be apparent.

In the case of obstacles, it is used to get a location of the object. The color of a traffic
light is also extracted using this method. To save the information extracted, three
container classes were implemented: Road, StaticCrashableObject and Light. As
discussed above a road configuration differs a lot from the other types of static objects
and is therefore represented by a separate class. Tree, sign and level Crossing share the
same target attributes extracted from the text and are saved in the class
StaticCrashableObject. Traffic lights have very similar attributes to tree, sign and
level Crossing but have the additional parameter of color. A container class called
Light was created to hold data about this object. Light inherits from
StaticCrashableObject and adds only constructs for handling of operations tied to
the color attribute. The type of the object is indicated by a member variable in the
StaticCrashableObject class.

4.2.8 Integrating the detection of collisions
As described above, the CarSim project includes the implementation of a JNI interface
to Link Grammar. It does not however include the work of collision detection. This
work was carried out by Torbjörn Ekman and Anders Nilsson (2002), two PhD
employees of the Computer Science department at the Lund Institute of Technology.
The collision detection makes use of the Link Grammar JNI interface. It first tries to
locate the interesting sentences by searching crash verbs with regular expressions. Crash
verbs are commonly found in language constructs to describe an accident situation.

When these sentences are singled out, they are passed to Link Grammar. With the
information provided about the sentence, a technique is applied which follows certain
types of links. This enables to us to connect the actor and the victim to the crash verb.
Observe that this solution does not cover a sentence using the passive form,

We used an expansion of the technique to connect a verb to the actor and the victim
to determine the movement of the vehicles. It involves the vehicle directions so the
model has to be adapted to extract additional information. New link combinations were
added to achieve this. We explain this later in the report.

34 Development and Integration of Linguistic Components

4.2.9 Mapping information into a predetermined accident structure
The collision detection enables the system to extract information about accidents. The
collision detection system gathers the data about an accident situation and stores this
data in a structure called VerbPhrase. It holds information about a subject-verb-
object chain. It is in some ways a wrapper to the Collision class and in fact,
VerbPhrase inherits from it. Anders Nilsson and Torbjörn Ekman implemented the
Collision class but the interface provided did not suite the needs in the CarSim
project.

The VerbPhrase class manipulates the information provided from the collision
detection and presents it in way that makes it simpler to use. It provides the means for
extracting what parts of a vehicle are involved in the accident. It determines whether it
is a frontal, a rear or a side collision. VerbPhrase also connects actors to dynamic
objects and victims to either dynamic or static objects. VerbPhrase has additional
functionalities that will be further explained in section 4.2.10.

The extraction of the vehicle parts that participates in the accident uses subject and
object modifiers. Modifiers are dependents of the head nouns such as adjectives as for
instance “ old” and “ blue” in the sentence “ The old blue car struck a tree” . In addition to
the subject and object, the collision detection extracts some of their modifiers.
VerbPhrase puts the modifiers in a list for future reference. CarSim searches the
words left, right, front and back as well as variations of them.

The VerbPhrase class itself is used as a container for the accident information and
implements means to output the data in the old template format.

4.2.10 Detecting movement
The strategy to determine the vehicle movements described in the text is similar to the
collision detection. Instead of crash verbs, any verb that could initiate a movement is
used to locate sentences of interest. Examples on such verbs are driving and traveling.
In CarSim, the movements have been divided into five subcategories: travel, overtake,
stop, turn, and sideways movements. These groups are filled with words using
WordNet. The words in the travel group use “ travel” as a hypernym. The other groups
did not fit well in the WordNet hierarchy so we determine them specifically for the
program. The sideways movement group contains words such as move and veer. These
words are usually used in conjunction with a direction. The same is true with the words
in the turn category. As a contrast to these, the words in the groups stop and overtake
almost never take a direction as a modifier.

The collision detection system uses the class VerbPhrase again to represent the
information it gathers. Compared with the collision detection, the rules are weakened.
The collision detection extracts the subjects and the objects. The direction detection
only considers the subjects and if possible the objects. The examination starts with the
location of the subject in the sentence. It inspects each word to the right of the subject
and it tries to match words to determine whether it describes a movement to the left or
the right. The detection is rather aimed at change in the movement than in the usual
sense of movement. Compared with the collision detection, we added some new link
chains to interpret more sentences correctly and return a result in more cases.

The data produced in this step is then used to figure out the events that a vehicle
experience according to the text.

Ola Åkerberg & Hans Svensson 35

4.2.11 Linking dynamic and static objects to accident frames
When all information is extracted, CarSim fills the accident frames with the dynamic
and static objects. It applies a resolution algorithm to the information gathered from the
collision detection system. The algorithm identifies dynamic objects from subjects and
objects. It maps each entity it identifies to an instance of the class DynamicObject that
holds data about the vehicle. Some of the DynamicObjects have already been created
in the direction detection phase. The algorithm checks whether the object already exists
if not creates an instance of it. This is notably the case for pronouns.

When a new dynamic object is found it is significant to know its membership. As
said before there are two different dynamic types: cars and trucks. The algorithm tries to
match the name of the new dynamic object to CAR elements contained in
WNDictionary. If the match succeeds, the dynamic object type will be set to car
otherwise to truck. Figure 4.3 shows how a car and a truck look like in the system.

The object in a subject-verb-object chain can be a static object for instance when a
car hits a tree. The DynamicObject class binds the actors and victims in an accident to
the appropriate dynamic or static objects.

In addition to resolving dynamic and static objects, an event list is build for each
dynamic object. Events that can be detected are driving_forward, stop,
overtake, turn_left, turn_right, change_lane_left and
change_lane_right. A separate class, called Event, has been implemented that
manages all operations necessary when dealing with events.

Figure 4.3 How the car and truck looks in the CarSim system

An example will be discussed in the text below to illustrate the procedure. First, the

collision detection system analyzes the sentence in the collision detection mode. It finds
the verb “ crashed” and identifies the subject and object of this verb: “ car” and “ tree” .
The VerbPhrase object saves this information and is equivalent to the accident object.
Then, the collision detection system is run in the movement detection mode and detects
the verb “ departed” . Again, a search for subject and object is carried out and it detects
the subject “ car” . Remember that when in the movement detection mode, the subject
suffices for a successful extraction. This results in a new VerbPhrase object. In the
next steps of this example, we assume that no DynamicObject have been created
earlier.

The two VerbPhrase’s are scanned. It investigates the first VerbPhrase and
creates a new DynamicObject from the subject. It finds that the grammatical object is
a static object that already exists as an object in the static object list. The VerbPhrase
describes a collision and it is saved. The VerbPhrase (which represents an accident)
are assigned with one reference to the new DynamicObject and one reference to the

36 Development and Integration of Linguistic Components

static object. Now the system has a description of an accident and references to the
participants. The algorithm investigates the second VerbPhrase. Since the subject
nouns of both sentences are exactly equal, the system will find the dynamic object
extracted earlier and determine that they are referring to the same entity.

The system then tries to find out if any valid events can be found in the
VerbPhrase. The verb depart is in a category of words that is likely to take a direction
as a modifier. The sentence is searched to the right of the verb for a clue indicating in
which direction the movement takes place. The word “ left” is found and this generates
an event of type change_lane_left. This is not completely correct as
change_lane_left event is intended to be used in an overtake situation but it is the
closest event that the graphical module can interpret. However, the accident planner is
intelligent enough to render the scene of the collision in a realistic way. Note that the
word “ left” will also be used when extracting the static object “ tree” . This will assure
valid coordinates of the location of the “ tree” in the animation.

Finally, since the second VerbPhrase does not describe a collision and we delete it.
Example 4.5 and Figure 4.4 show an overview of the solution to the problem.

Example 4.5

Sentence: “ The car departed the left side of the roadway and then crashed into a
tree.”

Subject-verb-object chain: car-crashed-tree

Class VerbPhrase

 ”car”

 ”crashed”

 ”tree”

Class DynamicObject

 ”car”

Class StaticCrashableObject

 ”tree”

List of
Events

Figure 4.4 Generated objects

Ola Åkerberg & Hans Svensson 37

4.2.12 Initial directions
With the knowledge of the subject-verb-object chain and their individual locations in
the sentence, this task investigates in what direction the vehicles (dynamic objects) are
moving.

All the dynamic objects, which are detected and created, need an initial direction.
This is important because the simulator requires an initial direction to know where the
dynamic objects start. If the direction is not set, the system will throw an exception. At
this point in the program, the accidents are detected and the involved dynamic objects
are set. The detection algorithm has the following steps:

38 Development and Integration of Linguistic Components

• Try to detect traveling words.
• Find a subject and a direction.
• If only a subject and a traveling word are detected, try to find direction with pattern

matching.
• If a dynamic object is detected, check if it is already in the list of existing objects,

otherwise create a new one.
• Check if all the dynamic objects have an initial direction, otherwise try to set one

using rules. If that fails, set a default direction.

The detection of directions is similar to the detection of the subject, crash verb, and

object set. The class Template contains the direction settings. The first task consists of
the detection of traveling words in the accident description. It uses pattern-matching
techniques. The system obtained the traveling words from WordNet and stored them in
the class WNDictionary.

The second task involves the detection of the subject and the direction. It uses the
links produced by Link Grammar. Sometimes, the links lead to a word that is not a
direction. These are singled out using pattern-matching techniques. If the word is not a
direction, it will be replaced by an empty String. Later in the program, that string will
be set to a default initial direction.

Sometimes, the system only detects a subject and the traveling verb. The system then
tries to find a direction with regular expressions. The system looks at the words
following the traveling verb in the sentence. It scans the words until it matches a
direction or a comma. This is the third task.

In the fourth task, the program searches the already detected dynamic objects and
checks if the subject found in task two refers to the same entity. If a match succeeds,
then the initial direction found in task two is set to this dynamic object. The entity
represented by the subject does not have to be involved in an accident. It can simply be
a vehicle driving on the road. In that case, a new dynamic object is created and the
initial direction is set.

The last task checks all the dynamic objects to ensure that an initial direction has
been set. At this point, there can only be two kinds of directions: the first one is a valid
direction or the second one is an empty String. The system scans the objects to
replace the empty Strings. It sets initial direction values using heuristic rules
contained in the Rulemap class. The rules consider the extracted information for the
other vehicle in the dynamic object list:

• The part of the first vehicle directly involved in the accident: rear, left_side,

right_side, front or unknown.
• The part of the second vehicle directly involved in the accident, the same as above.
• Road configurations: straightroad, turn_right, turn_left or crossing.
• The initial direction of the second vehicle: the four cardinal points.

The second dynamic object may have no initial direction either (an empty String).

This gives a fifth potential value for the initial direction.
The algorithm maps each combination of values to an initial direction. The number

of combinations of these different variables is large and we only give an example to
show the principles of the decision algorithm. Consider the following situation:

Ola Åkerberg & Hans Svensson 39

• The first vehicle’ s initial direction string is empty.
• The second vehicle’ s initial direction is west.
• The part of the first vehicle directly involved in the accident is front.
• The part of the first vehicle directly involved in the accident is front.
• The road configuration is straightroad.

In this case, the system will set the initial direction to east for the first vehicle.

When looking at the corpus, the most common accident on a straight road is a front-rear
collision. We took this into consideration when creating the rules. The conclusion is that
if the system has not been able to detect what kind of vehicle parts have been directly
involved in the accident, it tries to set possible directions matching a front-rear collision.
The system cannot always decide the direction using the RuleMap. In this case, the
system will set the initial direction to the default value of east.

4.2.13 Direction wrapper
The CarSim visualization module can only simulate straight roads from east to west and
not from south to north. In the same way, it can only visualize left turns from east to
north and right turns from east to south. To avoid situations where a road cannot be
correctly displayed; the class DirectionWrapper translates the orientation to a
legitimate case. Of course, it would work without the translation, but vehicles that have
an initial direction with the north value on straight road will start orthogonal to the road.
DirectionWrapper adjusts the template before it is passed to the simulator. The
system looks at the road type parameters and the vehicles initial direction. It checks all
the dynamic objects. Table 4.8 below shows which parameters the class uses and how
they are changed.

Road type Which road type for this simulation.
Initial
direction

The initial direction on the dynamic object.

Change to The new initial direction on the dynamic object.

Road type Initial direction Change to
Straight road North East
Straight road South West
Turn left North West
Turn left South West
Turn right North East
Turn right South East

Table 4.8 Describing how the system changes initial directions.

4.2.14 Output data according to template format
When we started our project, we developed the output layer with the CarSim 1.0
template format to be compatible with the visualization module. We rewrote it in XML
when Bastian Schulz (2002) started the development of the new graphical module.

40 Development and Integration of Linguistic Components

The first output layer was integrated in each object: The objects could present the
data they contained. The XML output layer uses a separate class. This enables us to use
the two output formats in parallel.

We first tried to use SUNs standard development classes to write the XML output
layer. These classes output XML tags without blank separators. This was not acceptable
because we wanted to give the user possibility to proofread the XML output. A file with
no blank separators is extremely difficult to read. We decided to use the Xerces package
instead, which is part of the XML manipulating tools from Apache. Xerces provides
tools for easy formatting.

We wrote the class XMLPrint that constructs the XML output of CarSim project. It
uses xercesImpl.jar and xmlParserAPIs.jar from the Xerces package. This
class reads the object structure that represents the information gathered from the texts,
format it, and write it to a character stream. The new CarSim graphical user interface
handles the file input/output operations. The GUI does not have any options to receive
the data in the old template format but the information extraction module can deliver it
if desired.

Example 4.6 shows an example of a minimal template in XML format. The first line
is just a description of the format in the file. The second line indicates a DTD Document
Type Definition containing rules of the format of the XML file. The DTD is presented
in appendix C. It is followed by the data gathered from texts.

Example 4.6 Minimal template

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE accident SYSTEM "accident.dtd">
<accident>

<staticObjects>
<road kind="straightroad"/>
<tree id=”tree1”>

<coords x="-5.0" y="5.0"/>
</tree>

</staticObjects>
<dynamicObjects>

<vehicle id="truck1" initDirection="south"
kind="truck">

<eventChain>
<event kind="driving_forward"/>

</eventChain>
</vehicle>

</dynamicObjects>
<collisions>

<collision>
<actor id="truck1" side="unknown"/>
<victim id="tree1" side="unknown"/>

</collision>
</collisions>

</accident>

Ola Åkerberg & Hans Svensson 41

4.2.15 Development GUI
The information extraction task of the first version of CarSim was written in Prolog
with a command-line interface. The new information extraction engine is written in
Java. With Java, a whole new range of possibilities are presented, one of them is to
create a graphical user interface GUI, which is preferable, compared to a command-line
interface. It is easier to interact with a descriptive GUI. In CarSim, it was decided to
create a GUI. As a GUI can take a lot of time for the inexperienced programmer to
create, the graphical module of the old system was taken as a model. This was however
written with the Java AWT components, in the new CarSim Java Swing components
were used but the basics structure were inherited from the old one. This GUI was
rendered obsolete when the information extraction engine and the graphical module was
combined and controlled from one new user interface described in section 4.2.16 but the
original GUI was very helpful developing the project.

4.2.16 Graphical User Interface
Bastian Schulz (2002) created a new GUI (Graphical User Interface) for CarSim. This
GUI is based on windows, icons, menus, and pointers (WIMP). The new GUI gives a
sharper and more professional look to CarSim. It integrates the information extraction
and the visualization modules.

This new version has four drop-down menus. The first one gives the user the ability
to choose language. The languages available are English, German, Spanish, French and
Swedish. It also contains an exit item. The second menu gives the user the ability to
create and delete files. The user can write a new text, save it to file and parse it with the
information extraction module. The third drop-down menu enables the user to create
XML files, save or delete them. It also enables validation of the XML code, check if it
conforms to the DTD (Document Type Definition). The last drop-down menu is called
3D. It starts the simulation. Demonstrations and configuration can be accessed from this
menu as well.

Figure 4.5 below shows a screenshot of the Graphic User Interface.

42 Development and Integration of Linguistic Components

Figure 4.5 A picture of the new GUI

4.2.17 Snapshots of the visualization
The final objective of the system is to visualize the accident in a 3D environment.
Figure 4.6 shows a snapshot from the visualization of the text Har0001. The text
describes a bus that first changes lane to the right into an emergency parking area and
there hits a parked tractor semi-trailer and that parked semi-trailer hits another parked
semi-trailer in the rear. The information extraction module correctly extracts all the data
from text. The problem is that the parked tractor semi-trailers start from the same
coordinates as the bus. This leads to an incorrect visualization. We discuss this kind of
problem in section 5.2.

Ola Åkerberg & Hans Svensson 43

Figure 4.6 A snapshot from the visualization of text Har0001

44 Development and Integration of Linguistic Components

Figure 4.7 shows a snapshot from the text Har0002. The text describes a collision
between a bus and a truck at an intersection. The bus is driving on State Route 30A as
can be seen in the picture. This is how it looks when the system makes a correct
extraction of the text and a flawless visualization.

Figure 4.7 A snapshot from visualization of the text Har0002

Ola Åkerberg & Hans Svensson 45

Chapter 5 Conclusion

5.1 Results
Table 5.1 shows the complete results of the CarSim project. We ran the system on 23
different texts from NTSB. The extracted information is shown below here. Table 5.2
includes comments about texts, telling what went wrong or if it works.

Name Explanation
1 correct
0 false
? Can’ t be extracted from the text. It means that information cannot be

found in the text.
The text Which text that has been parsed.
Actors If the number of actors are correct extracted.
Crash If the crash/crashes was/were correct detected.
Events Is a control over the dynamic objects´ event lists.
Initial direction Checks if the initial directions were right
Coordinates A control over the static objects placements.
Static Objects Controls if the static objects are correct.
Number of
elements found

Gives the number of how many objects that were detected in the
text.

Realistic True, if all the facts from the text are correct extracted and the
visualization is correct

Correct IE True, if the information extraction of the text is correct
Correct without
the events

True, if the extracted text is correct disregarding the event lists.

The text Actors Crash Events Initial

direction
Coordinates Static

objects
Number of
elements found

Realistic Correct
IE

Correct without
the events

Har91_01 0 1 0 0 0 ? 6 False False False
Har91_sp 1 0 1 ? ? ? 1 False False False
Har0101 0 0 0 1 1 1 5 False False False
Har0102 0 0 0 ? 1 1 1 False False False
Har8506 1 1 0 1 ? ? 2 False False True
Har8602 0 1 0 0 ? ? 6 False False False
Har8603 0 1 0 0 1 1 6 False False False
Har8702 0 0 0 1 1 1 6 False False False
Har8703 0 1 0 1 ? ? 3 False False True
Har8705 0 1 0 1 ? ? 3 False False True
Har8706 0 0 0 0 ? ? 1 False False False
Har8901 0 1 0 1 ? ? 4 False False True
Har8902 1 0 1 1 ? ? 2 False False False
Har8801 0 0 0 0 ? ? 1 False False False
Har8903 1 0 1 0 1 1 2 False False False
Har9002 1 1 0 0 1 1 4 False False False
Har9101 1 1 1 ? 1 0 6 True True True
Har9201 1 0 1 ? ? ? 1 False False False
Har9202 0 1 0 0 ? ? 5 False False False
Har9503 0 0 0 0 ? ? 2 False False False
Har0001 1 1 1 0 ? ? 3 False True True
Har0002 1 1 1 1 ? ? 2 True True True
Har87_02 0 0 0 0 0 1 2 False False False

Table 5.1The results of the CarSim project over 23 texts

Har91_sp The vehicle in this text overturned. “ Overturned” is a crash verb that the
system does not detect.

Har91_01 This text does many co-referencing mistakes. The system detects the crash
verb but the links from Link Grammar are incorrect.

Har0101 This is a single driver accident where the bus crashes with static objects.
The system does not properly extract this kind of accidents.

Har0102 Here is one more single driver accident. The system is also unable to detect
the bus.

Har8506 This text almost passes through the system correct. The error is in the event
list of one of the vehicles. Another mistake is that Link Grammar does not
link to the right names of the vehicles but in this case it will be correct
anyway.

Har8602 The system detected properly the accidents but created too many dynamic
objects. A co-referencing module would solve this problem.

Har8603 This text is hard and CarSim totally failed.
Har8702 The accident verb in this text is overturned that why no accident was

detected. The system detects too many dynamic objects as well.
Har8703 This accident describes a bus which overtakes 3 trucks and went back to the

right lane and then hit a fourth truck in the rear. The system cannot detect
the three trucks, which are overtaken and it creates an extra dynamic object.
The crash though is correctly detected but the event list of the truck that is
hit is wrong.

Har8705 Here is another co-referencing problem and Link Grammar does not link to
the right word in the accident, so both the actor and victim in the crash have
wrong names. The system also creates an extra dynamic object.

Har8706 This text is hard and CarSim totally failed. No detection of an accident was
made.

Har8801 This text is hard and CarSim totally failed. No detection of an accident was
made. The system did detect the bus and gave it a correct initial direction.

Har8901 Link Grammar links the wrong words in the accident. The accident are
correctly detected. There is also a co-referencing problem.

Har8902 The system finds two vehicles in this text and gives them a correct initial
direction. The accident is not detected.

Har8903 This text describes a single driver accident and the system is not able to
detect them. That is why the accident was not detected.

Har9002 The system detects the crash verb but the links from Link Grammar to the
subject and object are wrong.

Har9101 Here is another single driver accident where the truck crashes into an
embankment ditch. Here is also a co-referencing problem but because there
is only one dynamic object it becomes right anyway. The system creates too
many static objects in this text.

Har9201 Another single driver accident with crash verb overturned. That is as said
before, the system unable to detect such verbs.

Har9202 This text describes a chain collision with many vehicles. The system cannot
separate all the vehicles.

Har9503 This text is hard and CarSim cannot extract the information.
Har0001 The system is unable to detect the initial direction, which is west and one of

the dynamic objects is called it where it relates to the bus. Luckily, it will
be correct here anyway but with a working co-reference module, it would
have been perfect. Another thing is that two of the dynamic objects are

48 Development and Integration of Linguistic Components

parked. That means they will start from their initial direction corner and
they will be standing there. They should have started from the center of the
screen.

Har0002 Works!
Har87_02 This report describes a single car accident and it does not work. Link

Grammar was unable to set links for this sentence.

Table 5.2 Comments about the texts that the system has extracted

As we can see, many failures are due to the lack of a co-reference module and to the
incorrect links produced by Link Grammar. Section 5.2 discusses the future
development of a co-reference module. Another issue is how to improve Link Grammar
to raise the correct throughput. It also discusses the insertion of some verbs the system
cannot currently detect, such as overturn.

According to the results in Table 5.1, the CarSim-project is able to extract
information from approximately 10-15% of the texts. This is a promising start although
much work remains to be done. We believe that the platform we have created and the
tools we have developed will give a good fundamental ground to start with.

5.2 Future Development
There are crucial modules to develop to improve the current version of CarSim.
Features that should be implemented include co-reference resolution and the detection
of accidents in the passive form. These are known issues and our initial idea was to
implement them. However, the time dedicated to this project did not permit it.

A co-reference module would connect a pronoun to its antecedent. Consider the
following sentence:

Example 5.1

“ As the pickup truck rotated during impact, it struck a passenger car travelling
southbound...”

The pronoun in Example 5.1 is “ it” and refers to the head noun “ truck” . CarSim will

detect them as two separate vehicles although they form one single entity. This leads to
a long list of vehicles and the graphical module will not display the accident in the text
correctly. Co-reference resolution techniques are well known and some are quite simple
although not with the highest success rate. We studied anaphora resolution techniques
but we had no time to integrate them. The co-reference resolution would solve many
problems with the current version of CarSim.

The grammatical function module (Ekman and Nilsson 2002) does not consider
sentences in the passive form. Example 5.2 illustrates it.

Example 5.2

“ The bus was struck by the dump truck.”

Ola Åkerberg & Hans Svensson 49

The grammatical function module inverts the actor and the victim when a sentence is
in the passive form. It leads to the incorrect animation of Example 5.2 where the “ bus”
will hit the “ dump truck” . A future work to extract the accidents should extend CarSim
to cover this case as well. This should not be particularly hard to implement from the
Link Grammar output.

We ran CarSim on a corpus written in technical English. The NTSB reports use a
somewhat unwieldy language and Link Grammar is not always able to produce correct
results. We observed that Link Grammar had particularly problems with long noun
phrases. Example 5.3 displays an example of such a phrase from the corpus.

Example 5.3

“ About 3:14 p.m. mountain standard time on April 29, 1985, a Bell Creek,
Inc. tractor-semitrailer transporting 99 head of cattle and traveling about 59
mph struck the rear of a 1977 Tuba City Unified School District schoolbus on
eastbound U.S. 160 about 16 miles north of Tuba City Arizona.”

The long expression “ 1977 Tuba City Unified School District schoolbus” with many

modifiers to the head noun creates huge problems for Link Grammar. Not only in the
sense of time spent analyzing such a sentence but also in the failure to produce a valid
linkage. The suggestion to a solution involves a pre-processing step were these phrases
are identified and replaced. The modifiers very often contain names, words starting with
one capital letter. These could easily be found using regular expressions. The noun
phrases could be replaced by an arbitrary but unique identifier for example the word
“ vehicle” in conjunction with a sequence number. This would increase the correct
throughput of Link Grammar and as the extraction relies heavily on the performance of
Link Grammar the overall result would be significantly improved.

The template format shared between the information extraction module and the
graphical module is not by any means perfect. In conjunction with more 3D objects of
vehicles, more values could be added to the type of a dynamic object. This would
enhance the animation and convey more information. For example, all busses, trucks,
and tractors are displayed using the same 3D object and information so painstakingly
extracted is lost during animation. The actions “ parked” and “ overturned” were
frequently found in the corpus but there is no way to animate these events. The event
“ overturned” has no close relationship with the events that are specified in the template
format. “ Parked” is assimilated as a stop event. However, the animation will not
resemble the reality. Consider the accident sequence of Example 5.4.

Example 5.4

“ As the bus approached milepost (MP)
184.9, it traveled off the right side of the roadway into an emergency parking area,
where it struck the back of a parked tractor-semitrailer, which was pushed forward
and struck the left side of another parked tractor-semitrailer.”

The two parked “ tractor-semitrailer” entities will both only get a stop event and be

placed at the beginning of a road. The animation will not bear a resemblance to the story
of the text.

50 Development and Integration of Linguistic Components

The corpus the CarSim system was tested on did not include any level crossings, nor
any traffic light so these are not thoroughly tested.

The time spent during parsing can be perceived as annoyingly drawn out. The largest
amount of time during an execution is spent in the Link Grammar parse phrase. The
way Link Grammar is set up it can do three passes on one sentence using different
options. The current system does not take into consideration that a sentence may be
parsed twice. For example, it parses the text for the accident extraction and then again
during the movement extraction. The same information is returned from Link Grammar
in both cases. To minimize time spent parsing with Link Grammar the system should
cache information returned from Link Grammar. The next time information is requested
about this sentence the cached version of the result should be returned. In conjunction
with this problem, the splitting of sentences is done each time Link Grammar is used.
This is not an expensive task although the work performed is redundant. A system that
keeps track of what sentences have been parsed should be considered. Both the sentence
split and the parsing of each sentence should only be done once.

Another time consumer is WordNet look-ups. This action is only performed once
when the first sentence is parsed and is therefore not the biggest time consumer in the
CarSim system. We used the WNJN as is. We did not want too analyze the lower levels
of the WordNet API. However, this means that the result from a hyponym tree look-up
is formatted and cannot be directly manipulated. We could filter out the characters not
conveying any information. They exist solely to produce a pleasant output.

Many string operations have to be done to ensure that the words are separated from
the garbage characters and put in a container to enable easy manipulation of the data.
This extra work can be made obsolete if the class Synset is rewritten or if one desires
to retain the structure of the WNJN. A new class can be constructed that inherits from
Synset. This should further improve the perceived response time of the program. An
attempt was made but had to be abandoned due to lack of time.

To lower the perceived response time of the program the extraction can be run in a
different thread. A solution employing threads was tried out but rejected due to the lack
of time. A threaded architecture would remove the GUI lock up when no redrawing is
performed. This is would improve the behavior in terms of user friendliness.

A feature that easily could be added is an interface to Link Grammar and WordNet.
The tools are already hooked up and available from within the code of CarSim. Why not
make a simple interface so the user has the advantage of the full set of powerful features
of these linguistic analyzing resources. Another feature that would be interesting is the
possibility to alter the options, which controls the way Link Grammar handles a
sentence.

Ola Åkerberg & Hans Svensson 51

Chapter 6 References
Bou Bernard. “ WordNet JNI Java Native Support” , Technical report of Lycée
Champollion, Figeac, France. 6 April 2002, ,http://wnjn.sourceforge.net/

Church Ken “ A Stochastic Parts Program and Noun Phrase Parser for Unrestricted
Text” . In Proceedings of the Second Conference on Applied Natural Language
Processing Morristown, NJ, 1988

Collins Michael. “ Head_Driven Statical Models for Natural Language Parsing” PhD
thesis, University of Pennsylvania, Philadelpiha, PA, 1999

Coyne Bob and Richard Sproat. “ Wordseye: An Automatic Text to Scene Conversion
System” , In Proceedings of SigGraph, 2001.

Dupuy, Sylvain Arjan Egges, Vincent Legendre and Pierre Nugues. “ Generating a 3D
Simulation of a Car Accident from a Written Description in Natural Language: the
CarSim System” . In The Proceedings of the ACL Workshop on Temporal and Spatial
Information Processing, Toulouse, July 2001.

Ekman Torbjörn and Anders Nilsson. “ Identifying Collisions in NTSB Accident
Summary Reports” Technical Report. Computer Science Department LTH 2002.

Fellbaum, Christiane (Ed.), WordNet: An Electronic Lexical Database. MIT Press,
1998.

Greffenstette Gregory Pasi Tapanainen, “ What is a word, What is a sentence? Problems
of Tokenization” . Rank Xerox Research Centre Grenoble Laboratory Meylan, France 7
July 1994.

Hobbs Jerry R., Douglas Appelt, John Bear, David Israel, Megumi Kameyama, Mark
Stickel, and Mabry Tyson. “ FASTUS: A Cascaded Finite-State Transducer for
Extracting Information from Natural-Language Text” , In Finite-State Language
Processing, Emmanuel Roche and Yves Schabes (Eds), Chapter 13, MIT Press, 1997.

National Transportation and Safety Board.” Highway Accident Reports Publications”
http://www.ntsb.gov/Publictn/H_Acc.htm

Schulz Bastian “ Development of an Interface and Visualization Components for a Text-
to-Scene Converter” Technical Report. Computer Science Department LTH 2002.

Sleator Daniel and Davy Temperley. “ Parsing English with a Link Grammar” , Carnegie
Mellon University Computer Science technical report CMU-CS-91-196, October 1991

52 Development and Integration of Linguistic Components

Appendix

Appendix A

The texts, on which CarSim was tested, were downloaded from National Transportation
Safety Board, NTSB homepage. NTSB is an independent federal agency working in the
United States. Their investigators examine major civil transportation accident on air,
see, and land. They try to clear out how and why the accident occurred and to give
suggestions so accidents of that kind will not occur again.

When a major accident happens, NTSB investigators investigate it. They write down
what happened in a thorough report and a short abstract of it. This appendix contains all
these abstracts. They are written in technical English and some of them include
typographical errors. We have corrected these errors and the changes are in Appendix
B.

Har0001
About 4:05 a.m. on June 20, 1998, a 1997 Motor Coach Industries 47-passenger
motorcoach, operated by Greyhound Lines, Inc., was on a scheduled trip from New
York City to Pittsburgh, Pennsylvania, traveling westbound on the Pennsylvania
Turnpike near Burnt Cabins, Huntingdon County, Pennsylvania. As the bus approached
milepost (MP) 184.9, it traveled off the right side of the roadway into an emergency
parking area, where it struck the back of a parked tractor-semitrailer, which was pushed
forward and struck the left side of another parked tractor-semitrailer. Of the 23 people
on board the bus, the driver and 6 passengers were killed, the other 16 passengers were
injured. The two occupants of the first tractor-semitrailer were injured, and the
occupant of the second tractor-semitrailer was uninjured.
Har0002
About 10:30 a.m. on October 21, 1999, in Schoharie County, New York, a Kinnicutt
Bus Company school bus was transporting 44 students, 5 to 9 years old, and 8 adults on
an Albany City School No. 18 field trip. The bus was traveling north on State Route
30A as it approached the intersection with State Route 7, which is about 1.5 miles east
of Central Bridge, New York. Concurrently, an MVF Construction Company dump
truck, towing a utility trailer, was traveling west on State Route 7. The dump truck was
occupied by the driver and a passenger. As the bus approached the intersection, it failed
to stop as required and was struck by the dump truck. Seven bus passengers sustained
serious injuries; 28 bus passengers and the truckdriver received minor injuries. Thirteen
bus passengers, the busdriver, and the truck passenger were uninjured
Har87_02
About 2:43 p.m. central standard time on November 11, 1985, a schoolbus owned by
R. W. Harmon and Sons, Inc. was eastbound on II-70 transporting 13 high school
students to their homes in St. Louis, Missouri, from the Parkway North Senior High
School. As the schoolbus was approaching the Lucas and Hunt Road exit it went out of
control, swerved to the right, and the right front of the schoolbus struck a guard rail, a
concrete pedestal and a sign support pillar located adjacent to the right eastbound
roadway. The schoolbus body and the steering axle separated from the chassis during
the collision. The weather was cloudy and the pavement was dry. The schoolbus did
not catch fire. Two students were killed; the schoolbus driver and one student sustained
serious injuries and the remaining 10 students sustained minor to moderate injuries.

Ola Åkerberg & Hans Svensson 53

Har91_01
About 5:40 p.m. on July 26, 1990, a truck operated by Double B Auto Sales, Inc.,
transporting eight automobiles entered a highway work zone near Sutton, West
Virginia, on northbound Interstate Highway 79 and struck the rear of a utility trailer
being towed by a Dodge Aspen. The Aspen then struck the rear of a Plymouth Colt,
and the Double B truck and the two automobiles traveled into the closed right lane and
collided with three West Virginia Department of Transportation (WVDOT)
maintenance vehicles. Fire ensued, and the eight occupants in the Aspen and the Colt
died. The Aspen, Colt, Double B truck, and two of the three WVDOT vehicles were
either destroyed or severely damaged. The Double B truckdriver and one firefighter
sustained minor injuries.
Har91_spec
On August 3, 1991, about 6:45 a.m., a Greyhound bus traveling from New York City to
Buffalo, New York, ran off the right side of the roadway, and overturned on State
Route 79 near Caroline, New York. The driver and 33 passengers were injured, and 5
passengers were uninjured.
Har0101
On May 9, 1999, about 9:00 a.m., a 1997 Motor Coach Industries 55-passenger
motorcoach, operated by Custom Bus Charters, Incorporated, was traveling eastbound
on Interstate 610 in New Orleans, Louisiana. The bus, carrying 43 passengers, was en
route from La Place, Louisiana, to a casino approximately 80 miles away in Bay St.
Louis, Mississippi. As the bus approached milepost 1.6, it departed the right side of the
highway, crossed the shoulder, and went onto the grassy side slope alongside the
shoulder. The bus continued on the side slope, struck the terminal end of a guardrail,
traveled through a chain-link fence, vaulted over a paved golf cart path, collided with
the far side of a dirt embankment, and then bounced and slid forward upright to its
final resting position. Twenty-two passengers were killed, the busdriver and 15
passengers received serious injuries, and 6 passengers received minor injuries.
Har0102
On March 2, 1999, a 1979 Motor Coach Industries MC-9, 47-passenger charter
motorcoach, owned and operated by Shuttle Jack, Inc., (Shuttle Jack) of Santa Fe, New
Mexico, departed the Santa Fe Ski Basin, carrying the driver, 2 adult chaperons, and 34
middle school-age children. The bus began to descend a 14-mile mountainous
roadway. About halfway down the grade, the driver discovered that the vehicle's air
brakes were no longer capable of slowing or stopping the bus. He noted that the brake
air-pressure-gauge reading was between 90 and 120 pounds per square inch, which was
the normal system operating pressure for this vehicle. During the next 3.5 miles, the
driver made several unsuccessful attempts to bring the bus under control by pumping
the air brakes, downshifting the automatic transmission, pulling on the
emergency/parking brake valve, and shutting off the engine. Eventually, the driver lost
control of the bus while rounding a left-hand curve. The bus departed the right side of
the roadway, crashed into a rock embankment, and then rolled onto its left side back
onto the roadway. (See figure 1.) The calculated speed of the bus was 60 to 65 mph at
the time of the collision. Two passengers were fatally injured, and the 35 other
occupants received varying degrees of injuries
Har8506
About 3:14 p.m. mountain standard time on April 29, 1985, a Bell Creek, Inc. tractor-
semitrailer transporting 99 head of cattle and traveling about 59 mph struck the rear of
a 1977 Tuba City Unified School District schoolbus on eastbound U.S. 160 about 16
miles north of Tuba City Arizona. The schoolbus was stopped with its warning lights

54 Development and Integration of Linguistic Components

flashing in the eastbound lane of the two-lane highway to discharge passengers. The
weather was clear, the pavement was dry, and there were no visibility obstructions for
about 1.4 miles to the rear of the schoolbus. Of the 32 schoolbus passengers (ages 5 to
21 years), 2 were fatally injured, 4 sustained serious injuries 4 received moderate
injuries, 18 sustained minor injuries, and 4 were not injured. The truckdriver and the
schoolbus driver received minor injuries.
Har8602
About 3:20 p.m. on May 31, 1985, a northbound Military Distributors of Virginia,
Ine.9 tractor-semitrailer collided with two southbound vehicles on a curve on U.S. 13,
about 2.3 miles south of Snow Hill, North Carolina. The first collision on the two-lane,
undivided highway was with a 1982 schoolbus operated by the Greene County (North
Carolina) Board of Education. After this collision, the Military Distributors vehicle
continued northbound and struck a tractor-semitrailer loaded with grain, which had
been following the schoolbus on the two-lane highway. During the collision with the
grain truck, the Military Distributors semitrailer separated from its tractor, continued
northbound and overturned onto its right side in the northbound lane. The rear of the
grain trucks semitrailer remained on the highway and was struck by a passenger
automobile. After the collisions, the Military Distributors tractor, and the front of the
grain truck’s semitrailer caught fire. The weather was clear and the pavement was dry.
The Military Distributors truckdriver sustained fatal injuries. Of the 27 schoolbus
passengers (ages 5 to 13)15 sustained minor or moderate injuries, 10 sustained serious
or severe Injuries, and 2 received critical Injuries. Six of the passengers died. The
schoolbus driver, the grain truck driver, and the automobile driver and passenger
sustained minor injuries.
Har8603
About 7:51 p.m. on June 21, 1985 a privately-owned, 70,000-pound tractor-semitrailer
operating in interstate commerce under a trip-lease agreement with C. Maxwell
Trucking Company, Inc., lost control while descending a steep 3, 439-foot-grade on
southbound State Route 59 in downtown Van Buren, Arkansas. The truck collided with
the rear of and overrode a station wagon which was stopped at the bottom of the hill.
The truck and the station wagon continued 84 feet forward, across an intersection, up a
curb, and through a guardrail. They then traveled another 22 feet and struck two
commercial buildings. A fire ensued and engulfed both vehicles and three buildings.
Both occupants in the truck and the seven occupants in the station wagon were fatally
injured.
Har8702
About 12:40 p.m., e.d.t on September 6, 1985, a 1902 GMC 2-axle truck fitted with a
1973 MC-331 cargo tank overturned while traveling southbound on the Capital
Beltway, I-95, near Largo, Maryland. The 2,500-gallon capacity cargo tank contained
about 1,375 gallons of propane. The Poist Gas Company truck was traveling between
50 and 55 mph when, according to the drivers the steering wheel started shaking
violently and "flew out of my hands." The driver stated that he took his foot off the
accelerator but did not brake because be believed that one of the vehicle’s tires was
experiencing a blow out. The truck veered across the right paved shoulder of the
highway and onto a grass shoulder. It then traveled 300 feet down the grass shoulder
until the driver steered the truck back to the left to avoid hitting a tree. The truck
slipped the north end of a guardrail when it reentered the paved shoulder of the
highway as the driver tried to regain control of the truck. The truck then traveled 510
feet down the paved shoulder and the right travel lane of the highway before rotating
clockwise about 80" and overturning on Its left side. The vehicle continued to rotate

Ola Åkerberg & Hans Svensson 55

another 100'* as it slid 400 feet down the highway on Its left side. The truck came to
rest facing north (180'* opposite its original direction of. travel) with the top of the
cargo tank parallel with and against the guardrail At the time of the accident the
roadway was dry and the weather was clear.
Har8703
On September 29, 1986, a Leatherwood Motor Coach Corporation charter bus carrying
38 passengers was traveling northbound on I-295, a four-lane divided highway near
Camey's Point, New Jersey en route to Atlantic City, New Jersey. After passing three
tractor-semitrailers in the left lane, the bus moved into the right lane and struck the rear
of another slower moving tractor-semtrailer. The two vehicles continued forward and
traveled northbound about 432 feet before coming to a stop. Two bus passengers were
seriously injured, 5 bus passengers were moderately injured and the busdriver and 31
bus passengers received minor injuries. The truckdriver was not injured.
Har8705
About 4:15 a.m. on Monday, July 14, 1986, an intercity bus operated by Trailways
Lines, Inc. was traveling eastbound on I-40 near Brinkley, Arkansas when it collided
with the left rear of a tractor-semitrailer combination operated by Rising Fast Trucking
Company, Inc. (RFT). At the time of the collision the RFT vehicle was making a U-
turn which resulted In the RFT semitrailer's blocking both eastbound traffic lanes at a
highway crossover from the eastbound to the westbound lanes of I-40 at milepost 210.4
near Brinkley, Arkansas. At the time of the collision the bus was transporting 28
passengers from Little Rock, Arkansas, to Memphis, Tennessee, on a leg of a
regularly-scheduled run. One passenger reported that the busdriver screamed, "Hang
on" just before the collision. The force of the collision caused the RFT semitrailer to
rotate In a counterclockwise direction, and it came to rest In the highway median. The
RFT semitrailer did not separate from its truck-tractor and came to rest In the highway
crossover facing northwest with the front of the tractor partially blocking the Inside
lane of westbound I-40. (See figures I and 2.) After the collision the bus continued in a
southeasterly direction, left the pavement of the eastbound roadway, overturned 90o to
the left, and came to rest on its left side on a grassy slope facing south with the rear of
the bus about 17 feet south of the edge of the eastbound shoulder of the roadway. (See
figure 3.) The weather, was clear, it was dark with no artificial highway lighting at the
site, and the pavement was dry. The vehicles did not catch fire.
Har8706
About 7:34 a.m. on October 9, 1986, two charter intercity tour buses loaded with
European tourists were traveling westbound in the right lane on State Route (SR) 495
m.p.h. in North Bergen, New Jersey, en route to Washington, D.C. As the westbound
buses approached the Kennedy Boulevard exit on SR-495, the second bus suddenly
veered leftward into the adjacent lane, struck the left rear of a passenger car traveling in
that lane, then crossed into the eastbound contraflow lane, and struck a transit bus
loaded with commuter passengers en route to New York City. One bus passenger
aboard the transit bus was fatally injured and 26 other occupants aboard both buses
sustained serious to minor injuries.
Har8801
About 1:45 p.m. on May 4, 1987, while traveling eastbound on Interstate 10 (I-10) in
Beaumont, Texas, a tractor-semitrailer (truck) operated by Graebel Van Lines, Inc.
(GVL), Jackknifed in the center lane, veered leftward across the left land and median
strip, and struck a Trailways bus traveling westbound on I-10 in the left lane. A small
fire which started in the bus below the driver's seating area was quickly extinguished
by a passerby. The busdriver and 5 bus passengers sustained fatal injuries, 17 bus

56 Development and Integration of Linguistic Components

passengers sustained serious to minor injuries, and 6 bus passengers were not injured.
The truck driver and helper sustained moderate and minor injuries, respectively. It was
raining at the time of the accident.
Har8901
About 10:55 p.m. eastern daylight time on May 14, 1988, a pickup truck traveling
northbound in the southbound lanes of Interstate 71 struck head-on a church activity
bus traveling southbound in the left lane of the highway near Carrollton, Kentucky. As
the pickup truck rotated during impact, it struck a passenger car traveling southbound
in the right lane near the church bus. The church bus fuel tank was punctured during
the collision sequence, and a fire ensued, engulfing the entire bus. The busdriver and
26 bus passengers were fatally injured. Thirty-four bus passengers sustained minor to
critical injuries, and six bus passengers were not injured. The pickup truck driver
sustained serious injuries, but neither occupant of the passenger car was injured.
Har8902
On August 28, 1987, a 1982 school bus carrying 21 passengers was traveling
westbound on Levy County (Florida) Road C-32 when it collided with a two-axle
flatbed truck traveling northbound on Levy County Road C-337 near Bronson, Florida.
The school bus driver and 5 passengers died; the truckdriver sustained critical injuries
and 16 school bus passengers were injured.
Har8903
About 6:45 a.m., central standard time, on November 19, 1988, an intercity bus with 45
occupants, traveling southbound through a construction zone on Interstate Highway 65
in Nashville, Tennessee, suddenly went out of control during a steering maneuver,
rotated 190 degrees clockwise in the southbound lanes, overturned on its left side, and
came to rest facing northbound on the southbound embankment. Witness reports
indicate that the bus was traveling at a high rate of speed in conditions of heavy rain.
The unrestrained bus driver and 38 passengers were injured in the accident. Twelve
passengers sustained serious injuries, and the bus driver and 26 passengers received
minor injuries. Six passengers were not injured. Injured persons were taken to seven
area hospitals for treatment.
Har9002
About 7:34 a.m., central daylight time, on Thursday, September 21, 1989, a westbound
school bus with 81 students operated by the Mission Consolidated Independent School
District, Mission, Texas, and a northbound delivery truck operated by the Valley Coca-
Cola Bottling Company, McAllen, Texas, collided at Bryan Road and Farm to Market
Road Number 676 (FM 676) in Alton, Texas. After the collision, the truck came to rest
facing west on he right shoulder of FM 676. The school bus continued in a northwest
direction and dropped approximately 24 feet into a caliche pit (excavation pit) partially
filled with water, located in the northwest corner of the intersection. The bus came to
rest on its left side facing southeast, totally submerged in approximately 10 feet of
water, approximately 35 feet from the nearest shoreline. The bus front boarding door
was jammed shut, but the rear emergency exit door was operable. No other emergency
exits were on the bus. Nineteen students died at the accident scene, and two died later
in the hospital. The 21 fatalities were the result of drowning or complications related to
the submersion. Furthermore, 3 students sustained serious injuries, 46 others sustained
minor injuries, and 11 students were not injured.
Har9101
About 3 a.m. Pacific standard time on February 13, 1991, a tractor-semitrailer (cargo
tank) overturned as the vehicle was traveling on a main urban roadway in Carmichael,
California. The tractor and semitrailer were owned and operated by Calzona Tankways,

Ola Åkerberg & Hans Svensson 57

Inc., of Phoenix, Arizona. At the time of the accident, the truck was being used for the
intrastate delivery of gasoline to service stations; the cargo tank contained about 8,800
gallons of automotive gasoline. The driver lost control of the vehicle in a curve. The
vehicle overturned onto its side and struck the embankment of a drainage ditch located
in a dirt field beside the road. The cargo tank bounced and came to rest in the dirt field
and adjacent to the drainage ditch. The rear end of the cargo tank landed on an
unoccupied car parked in the field. Gasoline from the cargo tank spilled into the
drainage ditch, which extended under the roadway and behind private residences
nearby. About 15 minutes after the overturn, the gasoline ignited behind a residence.
The fire flashed back and engulfed the overturned cargo tank, and the car under the
cargo tank. A second unoccupied car parked near the overturned tank truck also caught
fire. Gasoline runoff in the drainage ditch entered the underground drainage system and
was also ignited. In addition to the total loss of the tank truck, its cargo, and the two
parked cars, four homes and their contents were destroyed or heavily damaged by fire,
and the residents from a 2-mile-square area were evacuated. Total property damage and
cleanup costs were estimated at nearly $1 million. There were three minor injuries.
Har9201
On June 26, 1991, about 1:50 p.m., a Greyhound bus traveling from Cleveland, Ohio,
to Washington, D.C., ran off the right side of the roadway and overturned on the
Pennsylvania Turnpike near Donegal, Pennsylvania. One passenger was fatally injured,
the driver and 14 passengers were injured, and 1 passenger was uninjured.
Har9202
About 9:10 a.m. on December 11, 1990, a tractor-semitrailer in the southbound lanes of
I-75 near Calhoun, Tennessee, struck the rear of another tractor-semitrailer that had
slowed because of fog. The uninjured truckdrivers exited their vehicles and attempted
to check for damage. After the initial collision, an automobile struck the rear of the
second truck and was in turn struck in the rear by another tractor-semitrailer. Fire
ensued and consumed two trucks and the automobile. Meanwhile, in the northbound
lanes of I-75, an automobile struck the rear of another automobile that had slowed
because of fog. Then, a pickup truck and two other automobiles became involved in the
chain-reaction rear end collision. No fatalities, injuries, or fires occurred. Subsequently,
99 vehicles in the northbound and southbound lanes were in multiple-vehicle chain-
reaction collisions that killed 12 people and injured 42 others.
Har9503
About 1:50 a.m. on Monday, January 9, 1995, a multiple-vehicle rear-end collision
occurred during localized fog at milepost 118 on Interstate 40 near Menifee, Arkansas.
The collision sequence initiated when an uninvolved vehicle and the accident lead
vehicle entered dense fog. As the lead vehicle reportedly slowed from 65 miles per
hour (mph) to between 35 and 40 mph, it was struck in the rear. Subsequent collisions
occurred as vehicles drove into the wreckage area at speeds varying from 15 to 60 mph.
The accident eventually involved eight loaded truck tractor semitrailer combinations
and one light-duty delivery van. Eight vehicles were occupied by a driver only, and one
vehicle had a driver and a codriver. Three truckdrivers, the codriver, and the van driver
were killed. One truckdriver received a minor injury, and four truckdrivers were not
injured.

58 Development and Integration of Linguistic Components

Appendix B

NTSB file: Our file: Fault in text: Changed to:

HAR-87/06 Har8706 SR-495, the se6ond SR-495, the second
 About 7.34 a m. About 7.34 a.m.
 to Washington,, DC to Washington, DC

HAR-87/02 Har87_02 Moderate Injuries Moderate injuries
HAR-87/05 Har8705 1-40, this error occurred

twice in text
I-40

 Hang onl Hang on
 Arkansas when It collided

with
Arkansas when it collided
with

HAR-86/02 Har8602 U. S. 13, about U.S. 13, about
 on the highway an was

struck
on the highway and was
struck

 and struck a traetor
semitrailer

and struck a tractor
semitrailer

HAR-00/02 Har0001 "?emergency parking area emergency parking area
HAR-87/02* Har8702 vehicie’s vehicle’s
HAR-92/02 Har9202 About 9: 10 a.m. About 9:10 a.m.

 1-75, this error occurred
twice in text

I-75

HAR-90/02 Har9002 About 7.34 a.m ., About 7.34 a.m.,
HAR-85/06 Har8506 32 s’choolbus passengers 32 schoolbus passengers

 Inc.tractor Inc. tractor
HAR-87/03 Har8703 minor Injuries minor injuries

The accident description, NTSB: HAR-92/01, contain two accidents which occurred

with a few days between them, and it was the same company that had these accidents.
We have split this text into two files. Their names are Har9201.txt and Har 91_spec.txt

Ola Åkerberg & Hans Svensson 59

Appendix C

<!ELEMENT accident (staticObjects?, dynamicObjects?, collisions?)>

 <!ELEMENT staticObjects (road | tree | sign | trafficLight |

levelCrossing)*>
 <!ELEMENT road EMPTY>
 <!ATTLIST road
 kind (crossroad | straightroad | turn_left | turn_right

) #REQUIRED
 >
 <!ELEMENT tree (coords)>
 <!ATTLIST tree
 id ID #REQUIRED
 >
 <!ELEMENT sign (coords)>
 <!ATTLIST sign
 kind (stop) #REQUIRED
 >
 <!ELEMENT trafficLight (coords)>
 <!ATTLIST trafficLight
 id ID #REQUIRED
 colorType (red | orange | green | inactive) #REQUIRED
 >
 <!ELEMENT levelCrossing (coords)>

 <!ELEMENT dynamicObjects (vehicle)*><!-- possible extensions:

train -->
 <!ELEMENT vehicle (startSign?, endSign?, eventChain?)>
 <!ATTLIST vehicle
 id ID #REQUIRED
 kind (car | truck) "car"
 initDirection (north | east | south | west)

 #REQUIRED
 >
 <!ELEMENT startSign (#PCDATA)>
 <!ELEMENT endSign (#PCDATA)>
 <!ELEMENT eventChain (event)+>
 <!ELEMENT event EMPTY>
 <!ATTLIST event
 kind (driving_forward | turn_left | turn_right |

stop | overtake | change_lane_left | change_lane_right) #REQUIRED
 critical (yes | no) "no"
 >

 <!ELEMENT collisions (collision)+>
 <!ELEMENT collision (actor, victim, coords?)>
 <!ELEMENT actor EMPTY>
 <!ATTLIST actor
 id IDREF

 #REQUIRED
 side (front | rear | leftside | rightside |

unknown) #REQUIRED
 >
 <!ELEMENT victim EMPTY>
 <!ATTLIST victim
 id IDREF

 #REQUIRED

60 Development and Integration of Linguistic Components

 side (front | rear | leftside | rightside |
unknown) #REQUIRED

 >

 <!ELEMENT coords EMPTY>
 <!ATTLIST coords
 x CDATA "0"
 y CDATA "0"
 >

Ola Åkerberg & Hans Svensson 61

Appendix D

In our project, we have used auxiliary programs. They improved the software
engineering part and made the development easier to manage. Most of these programs
are free and can be found on the Internet. The programs are easy to install and by using
the work and experience of others, the development time can be shortened.

Log4j
Inserting log statements into your code is a low-tech method for debugging it. It may
also be the only way because debuggers are not always available or usable. On the other
hand, some people argue that log statements pollute source code and decrease legibility.
In the Java language for which a preprocessor is not available, log statements increase
the size of the code and reduce its speed, even when logging is turned off. Given that a
reasonably sized application may contain thousands of log statements, speed is of
particular importance.

With log4j, it is possible to enable logging at runtime without modifying the
application binary. The log4j package is designed so that these statements can remain in
shipped code without incurring a heavy performance cost. The programmer can control
logging behavior by editing a configuration file without touching the application binary.
When logging is wisely used, it can prove to be an essential tool. One of the distinctive
features of log4j is the notion of inheritance in loggers. Using a logger hierarchy it is
possible to control which log statements are output at arbitrarily fine granularity but also
great ease. This helps reduce the volume of logged output and minimize the cost of
logging.

The target of the log output can be a file, an OutputStream, a java.io.Writer, a
remote log4j server, a remote Unix Syslog daemon, or even a NT Event logger among
many other output targets. On an AMD Duron clocked at 800Mhz running JDK 1.3.1, it
costs about 5 nanoseconds to determine if a logging statement should be logged or not.
Actual logging is also quite fast.

Ant
Apache Ant is a part of Jakarta. It is free to use under the Apache Software License,
Version 1.1. and makes management of project files easier. Apache Ant is a very
powerful tool. It can handle tasks such as Java, Javac, JavaDoc, ftp and telnet. In our
project, we have used Ant for Java, Javac, and to build JavaDoc. An Ant buildfile also
managed the ftp connection to the web server where our homepage was hosted. The Ant
buildfile took care of uploading new versions of our homepage including the JavaDoc
HTML pages.

Ant was used to compile the wnjn project. This includes calling UNIX makefiles,
producing JNI header files, and compiling the Java part of the project. Ant was also
used to build and run The CarSim project in both release and debug versions.

Xerces
Xerces is a program suite handling XML. Parsing, validation, and different kinds of
manipulations of XML are supported. Xerces also provides a partial implementation of
Document Object Model Level 3. The components used are distributed in two jar
archives: xercesImpl.jar and xmlParserAPIs.jar. Xerces was created by the Apache
organization and are licensed with Apache Software License, Version 1.1. In CarSim,
Xerces was used to output well-formatted XML templates.

62 Development and Integration of Linguistic Components

CVS
CVS stands for Concurrent Version System. The CVS system was created by GNU. It is
an open source project and is free to use under the Gnu general public license. CVS
handles the problem of several programmers working on the same part of a project.
CVS also keeps a complete version history of the project files. This means that a project
can be reverted to an earlier state with minimal efforts. The feature of concurrent editing
support was not as valuable as the version history in this situation but the project grew
and it proved wise to use CVS.

JxBeauty and HTML Tidy
The JxBeauty is a tool developed by Johann Langhofer. Its purpose is to parse Java
source files, format, and indent them neatly. The tool was original designed to run as a
plug-in to the JBuilder Integrated Development Environment. In CarSim, we used
emacs to create the Java files and we ran JxBeauty from the command line. JxBeauty is
free to use.

HTML Tidy is similar to JXBeauty but it works on HTML and XML files instead of
Java source files. The ant build files and the homepage of the CarSim project were
formatted using HTML Tidy. HTML Tidy is available under an open source license.

The homepage of the CarSim project was developed using MS FrontPage and
Macromedia Dreamweaver (with Homesite). The reason for using both was that MS
FrontPage was installed under a license at the computer science institution of LTH.
Dreamweaver was used on a private computer.

Debugging
To be able to correct particularly nasty bugs, we used the JSwat debugger. The program
is licensed under the GNU General Public License. It provides an easy-to-learn
environment.

