A multilingual semantic dependency parser for

texts of legislation in the domain of Value
Added Tax (VAT)

Dan Thorin

Master Thesis
Lund University - November, 2008

Abstract

Semantic parsing is a rapidly growing sub-field of computational lin-
guistics, driven by the seemingly endless potential of natural language
processing (NLP) in combination with an increasing demand for applica-
tions guiding and aiding humans in a variety of language related tasks. As
a pilot study, this project investigated whether it was possible to create a
classifier that correctly detected and labeled semantic elements from legal
texts concerning Value Added Tax (VAT), and if it was possible in three
different natural languages: English, Danish and Swedish. By detecting
the semantic elements, the essential meaning of a particular sentence could
be derived. This is a feature that could be used as an artificial semantic
text scanner for applications taking input from small or large databases of
written text. The input corpora were transformed from running text into
a set of predicate-argument structures, modeling the semantics of each
sentence. The results of the project are promising. Almost all of the tar-
get predicates and around 80% of the arguments were correctly detected
and labeled. To demonstrate the performance of the classifiers, a seman-
tic classifier program was implemented, visualizing the way each sentence
was transformed into predicate-argument statements. Not surprisingly, it
showed that short sentences with fairly distinct arguments were generally
easily transformed, while the arguments of longer sentences comprising
several predicates, were less accurately determined.

Acknowledgments

I would like to thank Pierre Nugues of Lund University for his sincere supervision
and tutoring throughout the eight months required to finish this thesis project.
It has been a great experience working with you, and you've always been able
to help me on short notice when facing various problems or difficult decisions.
I would also like to thank Richard Johansson of Lund University for providing
me with the WekaGlue class, used in order to invoke the semantic models and
use them to classify each instance of my corpora. The WekaGlue class formed
the backbone to my semantic classifier demonstration program, and spared me
numerous additional hours from an already immense task.

Contents

Introduction

Theory

2.1 Semanticso e e e e

2.2 Syntactic formalisms L oL oo
2.2.1 Constituent-based grammars
2.2.2 Dependency-based grammars

2.3 Predicatelogic o

2.4 Machine learning oL Lo oo

Research and progression

3.1 PropBank
3.2 The annual CoNLL competition
Task definition
4.1 Objective e
4.2 Possible future application,
Method
5.1 Overall methodology
5.2 Choosing VAT texts
5.3 The annotation process L.
5.4 Tokenization and structuring
5.5 Part-of-speech tagging oo oL
5.5.1 Swedish oo
5.5.2 Danish and English
5.6 Lemmatization
5.6.1 Swedish o
5.6.2 Danish and English, .
5.7 Dependency parsing Lo oo
571 Swedish oo
572 Danish. oo
573 English o s
5.8 Feature extractiono
5.9 Model generation oo oo
5.10 End classifier implementation
Results
6.1 Danish
6.1.1 Target identification
6.1.2 Target classification
6.1.3 Argument identification
6.1.4 Argument classification
6.2 Swedish
6.2.1 Target identification

13
13
13

14
14
14
15
16
17
17
17
19
19
19
21
21
22
22
22
23
24

6.2.2 Target classification 32

6.2.3 Argument identification L. 34
6.2.4 Argument classification 34
6.3 English 36
6.3.1 Target identification 36
6.3.2 Target classification 36
6.3.3 Argument identification L. 38
6.3.4 Argument classification 38
6.4 Probable explanation for certain parsing errors 40
6.5 Semantic classifier demonstration results 40
6.5.1 Thegood 40
6.5.2 Thefair 41
6.5.3 Thenotsogood 42
Constraints and proposed improvements 43
Conclusion 45
References 46
Appendices 49

1 Introduction

Ever since the dawn of the computer age in the 1940s, philosophers and futurists
have envisioned and anticipated computers completely or partially controlled
through written or spoken natural language. A computer with such an interface
would be able to take instructions in a form common to humans, enabling a
more straight-forward interaction requiring less learning and adaptation on the
user’s part. However, the task of creating such a computer has proved to be
anything but simple.

Over the years, the computer has often been compared to the human brain.
Contradictory however, language, that comes very natural to human beings,
comes very unnatural to computers. The explanation is that even though the
computer and the brain can perform some very similar tasks, they essentially
work in two very different ways. The computer needs definite and unambiguous
information to work its way to a conclusion and really has no other ways to infer
missing information. The human brain, on the other hand, fills out missing data
by consulting its big knowledge base that is its memory, based on experience
about the real world and how it functions. Natural language is very indefinite
indeed, relying vastly on omitted information that requires an advanced inter-
preter to decipher the message, but it is also this lack of determination that
makes language so versatile and efficient as a means of communication between
humans. In essence, communicating through natural language enables us to
take linguistic shortcuts and still being able to make a clear statement with a
distinct meaning.

Computational linguistics, an offspring of linguistics and computer science,
focuses on designing mathematical models and algorithms enabling the auto-
matic processing of natural language using a computer. When research began
in the United States in the early 1950s, it was widely assumed that comput-
ers’ outstanding ability to perform arithmetic calculations quite easily could be
ported to various applications of natural language processing (NLP) (Hutchins,
1999). Some of the first tasks included efforts to automatically translate German
post-WWII documents and Russian scientific reports into English. However, the
results proved poor and it was soon realized that machine translation (MT) was
far more complex than what was originally expected. In fact, the influential and
once of MT very enthusiastic Israeli philosopher Yehoshua Bar-Hillel (1960) even
came up with a proof for the non-feasibility of automated MT, claiming that
translators in their work constantly make use of high-level knowledge of the
world or the document being translated. As such information simply was out
of reach for automated MT systems, the aspirations were reduced to a vision
of natural language translation as a mere symbiosis between human translator
and computer.

Research continued on a smaller scale through the 1970s, focusing on computer-
assisted translation. The paradigm at the time included a non-satisfactory MT
process that was preceded, intertwined and/or followed by manual simplifica-
tion or correction. In the mid 1970s however, the wind finally started to change
as the Commission of the European Communities acquired SYSTRAN, an at

the time acclaimed English-French machine translation system, which spurted
later versions capable of translating other languages as well. Activity in the
field of MT again rose in the early 80s as new ideas for research were introduced
and the sources of funding increased, mainly provided by the European Union
and various computer companies. This eventually led to the introduction of
commercial machine translation systems on the market.

In the modern era of NLP, new techniques for coping with the daunting com-
plexity of language have emerged. Instead of the rule-based systems of the early
days, focus has now shifted towards statistical corpus-based methods (Gildea
and Palmer, 2002). Catalyzed by the exponential growth of computing power
in the last 15 years, these stochastic techniques are able to address some of the
previously unsurpassable problems of for instance linguistic ambiguity, quantifi-
cation, anaphora, aspect, modality and idiomatic expressions as well as other
linguistic complexities. However, an inevitable bottleneck for the development
of NLP models using statistical techniques is that it takes vast amounts of man-
ually annotated examples, which are produced by the gruesome work of human
annotators (Johansson and Nugues, 2006). The completion of satisfactory such
corpora takes time, and has to be done for each new linguistic phenomenon
that is to be captured as well as for each new language. However, a possible
rectification to the problem of complete linguistic phenomenon coverage might
be the deployment of a method called automatic frame detection (Giuglea and
Moschitti, 2006), where templates are assigned to seen phenomena that subse-
quently can be ported to unseen ones, thus expanding the scope and increasing
the robustness of the semantic parser. A number of databases of annotated
examples are currently being developed and distributed freely for English, most
notably PropBank, NomBank and FrameNet. Sources of this type for other
languages are unfortunately still scarce.

The rise of the Internet also brought NLP renewed potential as Internet
forms a free and accessible platform for sharing information and making business
between people from different parts of the world. With a growing user base and
a maturing research field, a great number of new types of applications found
its way onto the market. Spelling and grammar checkers, information retrieval,
speech dictation, speech synthesis, voice control of various devices, interactive
voice response systems, conversational agents and the like are becoming common
factors of our everyday lives.

2 Theory

2.1 Semantics

The meaning of language is commonly referred to as semantics and is its own
field of study, resting on the pillars of philosophy and linguistics. Semantics
require some sort of mental store that holds a finite set of words. In humans,
this lexicon of words is not completely static as we constantly learn new words
and forget old ones (Saeed pp 10, 2003). It is clear though, that at any given
time, at least for our native language, we hold thousands of words in our lexicon,
all referring to entities in the physical or abstract world.

An important aspect of natural language is the fact that a finite set of words
can be combined in a virtually infinite number of ways. Humans do this ev-
ery day as our communication is based on the production of sentences we have
never uttered or heard before. The term for this sort of linguistic production is
generative grammar, which was invented and popularized in the 1960s by the
prominent American linguist and philosopher Noam Chomsky. The generative
grammar is built on the conviction that humans possess a language modality
that makes use of recursive rules to form new sentences. This must be true
because there is no way we could store all different word combinations in a se-
mantic mental lexicon, all at one time. Instead, new sentences are improvised
on the fly, and interpreted by the listener on the fly, according the set of rules
that the generative grammar describes. A sentence that is correctly formed
according to the generative grammar of a certain language is said to be compo-
sitional (Saeed, 2003). This implies that the overall meaning of the sentence is
determined by the meaning of its decomposing parts and the way in which they
are combined.

2.2 Syntactic formalisms

Syntactic formalisms are theories about how the composition of language can
be described in a universal way. Chomsky’s groundbreaking book Syntactic
Structures (1957) altered the field of linguistics completely. At that time, the
dominant theories described how mere words of a language could be combined
in a veritable manner. Chomsky addressed the question of composition in a
different way, forming a formal high-level language.

2.2.1 Constituent-based grammars

Chomsky’s theories modeled composition on the basis of a tree structure. The
representation starts in a root node, the so called sentence node. From the
sentence node a number of sub-nodes, or leaves, unfold. These are described by
the lexical category, or part of speech (POS), that the particular phrase consists
of, for instance a noun phrase (NP), a verb phrase (VP), a prepositional phrase
(PP) or a subordinate clause (SC) (Jackendoff pp 74, 1994). These second-
level leaves can in turn be branched out into even more sub-leaves representing

Table 1: A constituent-based tree representation

S
/ N\
NP VP
1 N
N V NP
l ol
I eat N
!
break fast

either another POS phrase or just a POS, if at the end of the tree. Finally, when
the whole syntactic structure of the sentence has been modeled, each word is
projected under its corresponding POS.

By creating models using the constituent based grammar, linguists can define
the syntax of a language in a formal way. This constituent based grammar makes
it possible to state simple rules of what is a well formed sentence or phrase, and
what isn’t. Such a model of a sentence can look like

S — NP, VP

NP —- N

VP — V, NP
which models for instance the short sentence I eat breakfast. The syntactic tree
describing the constituting parts of the formal representation can be seen in
Table 1.

When describing more complex sentences, the model might need additional

rules, like the following set.

S — NP, VP

NP — ArT, N

VP — V, NP

NP — ArT, A, N

NP — ArT, A, N, PP

PP — P, NP
These rules make up a formal representation of for instance the sentence My
mother is a respectful woman with good beliefs. Of course, these rules are able
to describe shorter sentences, but the formalism also offers a way to describe

recursion in a language, which implies there is no definite limit to how many
phrases a sentence can consist of. For instance, the sentence

Harry said that Amy thinks that Sam predicted that Mildred would
believe that Beth is a genius (Jackendoff pp 74, 1994)

is a perfectly correct syntactic sentence, which is modeled using only the follow-
ing rules.

S—NP, VP
NP—N
VP—-V, SC
SC—THAT, S

In this case, the word that constitutes the bridge that connects the current
phrase to the next. Notice how the sentence starts all over again when the
sub-ordinate clause is being used.

The most prominent type of products that syntactic formalisms have given
birth to are applications like spelling and grammar checkers.

2.2.2 Dependency-based grammars

Whereas the traditional constituent-based parsing method can be useful when
trying to formalize the syntax of a language, dependency parsing presents a dif-
ferent approach, taking into account the various semantic roles of the sentence.
The two formalisms have been compared individually in a study by Johansson
and Nugues (2007), where they obtained similar results. However, there is rea-
son to believe that a semantic classifier based on the conjunction of constituent-
based grammars and dependency-based grammars would be able to perform
better, thanks to the more semantic-oriented approach. This standpoint has
been augmented by Hacioglu (2004), who with a constituent-/dependency-based
semantic classifier was able to quite easily outperform the then state-of-the-art
scores of the constituent-based semantic role labelers submitted to the CoNLL
shared task conference of that year.

When parsing a sentence semantically, the goal is to sort out the semantic
dependencies of the sentence. A typical semantic dependency is the bond be-
tween a certain verb and the subject of a sentence, postulating the action and
the entity that performs the action. Another semantic bond is that between
the verb and the object of the sentence, giving information about what entity
is affected by the action. Words describing another word, i.e adjectives or at-
tributes, also make up a semantic dependency, as do conjunctions, modal verbs
and the like. A typical representation of a dependency tree can be seen in Figure
1.

Figure 1: A dependency tree

/AN L AN

The little boy scratched his knee on the pavement.

When examining Figure 1, the reader notices how dependency tree grammars
rank the lexical entities of the sentence by semantic significance. Thus, if more
detail of an entity is desired, it’s found only one step down the dependency
ladder. This feature is an important reason to why incorporating dependency-
based grammars in the semantic classifier is a sound decision. The semantic
detail can easily be adjusted by including or excluding levels of dependency
sub-trees. If a shallow semantic classifier is to be implemented, we settle for the
closest dependencies from the predicate verb, while if more detail is preferred,
additional dependencies might be included.

2.3 Predicate logic

Predicate logic, or first-order logic, is a formal way to describe the action taking
place in a sentence. The syntactic elements used to make this sort of description
are symbols representing objects and relations. An object is any entity that in
some way is being affected by a relation, and that relation might in turn be
affected by yet another relation. Distinctive relations, i.e relations that has
only one possible context, are sometimes referred to as propositions. These, as
well as other relations, can consist of verbs, nouns, adjectives or prepositions.
The number of objects taken as arguments by the predicate is called the arity
of the relation (Russell and Norvig pp 246, 2003). This number is fixed for
propositions, as that sort of relation requires a predefined number of arguments
in order to be logically coherent. Consider for instance the proposition Father
and the arguments George H.W. Bush and George W. Bush implying that the
former is the father of the latter. In predicate logic terms, this is expressed
Father(George H- W. Bush, George W. Bush). A predicate verb relation that
holds several arguments is the sentence

Chris bought a bike from Stephen for £100

which is modeled as Bought(Chris, a bike, Stephen, £100). In this case, as
opposed to the case of propositions, the arity is non-fixed, but in order to have
a significant semantic meaning, at least the first two arguments are needed.
The first argument of any type of semantic relation is generally referred to as
argument 0 (A0), the second as argument 1 (A1) and so forth.

The aspired objective of the final semantic classifier was defined as to a
certain extent try to model the semantics of a sentence, using the described
predicate logic architecture.

2.4 Machine learning

The adopted method for the model generation was machine learning techniques,
which is a large sub field of artificial intelligence. Machine learning techniques
are not only used in natural language processing, but also in numerous other ap-
plications ranging from search engines, medical diagnosis, computerized object
recognition and robot locomotion. The machine learning used for this project
was an inductive learning method, where data sets were used to detect general

10

patterns and draw grammatical conclusions, based on the semantic information
of the VAT related texts. The final decision of which classifier to use for the
model generation fell on the J48 tree classifier. It presented the best overall
performance with respect to memory requirements, processing speed, size of
output model and the self-evidently important classification score.

11

3 Research and progression

3.1 PropBank

PropBank is a large online database of semantic roles where verbs have been
manually annotated in English. These verbs, called propositions, are predi-
cates which are connected to arguments in an example-based fashion, forming
predicate-argument relations. Each lexical example of a verb may hold vari-
ous semantic interpretations, and these are defined by suffixes .01, .02 and the
like, in order to distinguish them from one another. The most general sense
of the verb is assigned the lowest suffix and the rest of the senses are ranked
accordingly. The arguments of each verb sense are assigned to Arg0, Argl, Arg2,
Arg8 and possibly Argj and Argh where each argument number constitutes a
certain semantic role of the argument that is connected to the verb. Generally,
for instance, Arg0 defines the semantic role of a subject or agent, and Arg! the
object or patient of the current predicate.

3.2 The annual CoNLL competition

The research field of NLP has been refined and improved by shared competitions
like the CoNLL conference, running annually since 1997. Each year one or
several shared tasks, based on recent research, are presented. Participants are
invited to implement their own solutions, which are evaluated and ranked.

In the year of 2008, the conference was held in Manchester, UK (Johansson,
Marquez, Meyers, Nivre & Surdeanu, 2008). The presented task was to imple-
ment semantic role labelers built on a representation of both constituent and
dependency based grammars, as introduced with promising results by Hacioglu
(2004). This was the motivation behind the decision to pursue a similar type
of representation to be used as backbone architecture for the semantic classifier
described in this report.

12

4 Task definition

4.1 Objective

The objective of the thesis was to construct a multilingual model for automatic
semantic extraction from random texts concerning businesses’ Value Added Tax
(VAT) obligations. The requested languages were Danish, Swedish and English
and the preferred output was of predicate logic structure.

When capturing the semantics of a sentence, the crucial phenomena to detect
and classify are the action that the main verb states, as well as the participating
entities, the arguments. These are commonly, but not exclusively, the subject
and object tied to that verb. As mentioned earlier, the main verb is generally
referred to as the predicate of the sentence, so the goal for each sentence is
to pinpoint the predicate-argument structure. Modifying arguments might also
exist, like for instance a negation flipping the meaning of the statement. Other
examples include the modal verbs should and must, which give information
about the importance that the main verb entails. The success rate of detecting
such modifying arguments is almost equally crucial to detecting the overall
predicate-argument structure.

4.2 Possible future application

A future goal, for which this project was requested, is the aspirations to use
the presented methodology as the architecture behind an artificial text scanner.
Such a text scanner could be used to automatically extract semantic information
from VAT legislation documents, lifting a substantial burden off the backs of
accountants currently reading these texts manually. Nielsen, Simonsen and
Larsen (2007) have described a way to build a model of Danish VAT rules using
the Web Ontology Language (OWL) editor Protégé-OWL and description logics.
The idea is that the output of the semantic classifier, the predicate-argument
representations of the sentences, could be ported to description logic expressions
which in turn form an ontology, automatically building up a dynamic database
consisting of up-to-date VAT laws. The VAT law database could subsequently be
used as backbone to a computer program that helps business personnel make the
right decisions concerning VAT when dealing with various types of commercial
transactions.

13

5 Method

5.1 Overall methodology

The project was carried out using a statistical inductive machine-learning method.
Rules and patterns were extracted from a corpus, a text prepared with various
linguistic information. Already existing semantic corpora tend to be too general,
since capturing every semantic element of a sentence calls for extreme elabora-
tion and is usually the work of several linguists over many years. Thus, using
old corpora for this task would produce insufficient results in the specific case
of VAT. Therefore, completely new corpora was built, one for each of the three
languages.

Each word in the texts was processed by the means of POS taggers and
dependency parsers, generating information about base forms (lemmas), word
classes (part-of-speech, POS), role dependencies and grammatical functions.
Also, manual semantic annotation was applied to the chosen semantic elements.
Included for each sentence were the predicates and their arguments. The se-
mantic scope was reduced to addressing the particular nomenclature of VAT leg-
islation. Verbs considered were those regarding the semantic frames buy, sell,
tax, charge, deliver, send, provide, market, pay, account and issue, and their
equivalents in Danish and Swedish. Theme modifying arguments like negation,
manner, time, phrase clauses and the like, were also annotated.

To detect certain linguistic patterns in the texts, features were extracted
from the corpus. These features were then passed on to a data mining program,
which generated the models. The feature set was chosen on the basis of studies
by Johansson and Nugues (2007) and determined for instance whether a word
is a member of a sentence written in active or passive tense (the voice), the
semantic parent or child(ren) of that word, the lemma or the POS of the current
word.

5.2 Choosing VAT texts

Producing an efficient semantic dependency parser unfortunately isn’t some-
thing that can be done solely by automation. It requires quite extensive lin-
guistic preparatory work, in the sense that a corpus has to be built based on
manual annotation. In order to produce a semantic dependency parser capable
of parsing sentences concerning VAT legislation, texts in the specific domain of
VAT first need to be acquired. These texts will work as a platform for the three
corpora, forming a boundary limiting the annotation workload.

The main focus was to obtain texts that to a great extent mimicked the
texts that the parser, once finished, would be able to process. Therefore, it was
crucial that the texts contained a lot of examples of commercial nature, where for
instance somebody would sell or buy something from another for a certain price
and reason. Sentences containing VAT handling guidelines or legal paragraphs
were also favorable, since they represent the main target of the final product.
Hence, tax authorities in Denmark, Sweden and England were contacted, in

14

Table 2: VAT texts chosen as platforms on which to build the corpora of each
language

Danish | Swedish | English |

Moms - fakturering, regnskab mv. | Moms vid utrikeshandel | The VAT guide
Moms ved EU-varehandel

Pa vej mod egen virksomhed

order to obtain a set of suitable texts to start off from. The final decision fell on
three texts for Danish, one for Swedish and one for English. The three Danish
texts were subsequently merged into one single corpus. The final word count of
the texts was approximately 34000 for the Danish text, 28000 for the Swedish
text and 45000 for the English text. Mutual for the selected texts were the
fact that they did not hold the force of law, but were to be regarded merely as
guidelines in the domain of VAT, addressed primarily to small businesses in a
case-by-case fashion. Nevertheless, being guidelines issued by tax authorities in
each respective country, a high degree of trustworthiness can be expected.

5.3 The annotation process

The platform building the foundation of a semantic dependency parser is its se-
mantic annotation. These annotations constitutes the linguistic examples from
which the machine learning algorithms draws a substantial part of its input.
From it, it builds the statistical framework that the model will use to identify
and classify each word in the text.

The annotation for the corpora, as indicated earlier, was carried out man-
ually. For this reason, and for the fact that providing clear statistics takes a
lot of annotation, this was the single event posing the heaviest workload on the
project. Going through each text sentence by sentence, all in all 1590 predicates
and their argument were annotated, distributed to 585 English, 565 Danish and
430 Swedish. A few semantic annotation tools were briefly tested in order to
facilitate the annotation, but they all turned out quite useless. For this reason,
the annotation was conducted entirely by hand.

It is very important to make sure that the statistics derived from the an-
notation data is as coherent as possible, otherwise there is a risk that the final
model will contain contradictions, confusing the semantic dependency parser.
Self-evidently, this will lead to a less capable end product. Therefore when an-
notating, having consistency in mind is a key factor. An annotation chart or
template is useful to minimize the risk of unconsciously changing annotation
rationale in the midst of the process. See section Appendices for the complete
annotation template that was used throughout the course of the annotation
process.

The annotation process was based on the rationale of PropBank, focusing
on predicate verbs as shown in the table. Using XML as mark-up language,
the relevant predicates were identified and assigned suitable labels. Once the

15

predicate had been dealt with, its particular arguments were identified and
marked in a similar manner. Finally, any modifiers relevant to the meaning of
the sentence were annotated.

<arg arg0="provider” id="a0021">We</arg>are committed to
<target type="supply" id="t0011">providing</target>

<arg arg2="’benefactive’ id="a0022">newly registered
businesses</arg>with<arg argl="’goods-services" id="a0023">
the option(s) of their choice</arg>

<arg argM="’timeframe’ id="a0024">within three

months of<target type='"receiving" id="t0012">
receiving</target>

<arg argl="’thing_received-request" id="a0025">

their request(s)</arg></arg>.

As can be noticed in the example, some arguments were annotated in a hierar-
chical structure, so that a general description was followed by a more specific
one (as in goods— services and thing received— request). This procedure was
used in order to provide better tagging accuracy to the subsequent parser. For
consistency, a template was used for these hierarchies as well.

Subsequently, the annotation files were altered using a DTD and a Java
program. The reason for this was that a more convenient structure was desired,
one that would enable more linguistic data to be added to each word without
giving up on readability. Therefore, the format was transformed into a matrix,
were each row corresponded to a new word and each column corresponded to
the different linguistic data, with which the corpus was to be deployed. The
annotation data was put in the right-most columns, were the first column held
the predicates only, the second column held for each sentence the arguments of
the first predicate of that sentence, the third column held the arguments of the
second predicate of that sentence, and so on.

5.4 Tokenization and structuring

The input text was tokenized and organized using a tokenization script written
in Perl. Each word was separated from any punctuation character (colons, com-
mas, full stops, quotes, exclamation marks, question marks etc.) and put on a
new line. The matrix-like organization creates a lucid structure were each lin-
guistic feature later is to be given its own column. This structuring is compliant
to the one used by participants of the CoNLL shared task of 2008 (Johansson
et al., 2008). However, for sake of simplicity, hyphenated words were not split
as in CoNLL-2008.

Tokenization of the input text is very crucial for the outcome of the corpus.
All subsequent stages of processing depend on the tokenization. The linguistic
tools that later will be applied to the corpus need properly separated words and
sentences, otherwise they will produce significant errors. Even though the Perl

16

script being used is capable of normalizing most of the text, some of the errors
are hard to get by. It is for instance important that each sentence ends with
a punctuation character and an empty line. Headlines usually don’t end with
a punctuation and are in addition difficult to cover automatically. Therefore,
these punctuations were applied manually. Other examples include bulleted lists
that were adjusted to natural sentences, and unidentified characters that were
deleted or accordingly exchanged.

5.5 Part-of-speech tagging

POS tagging is used to obtain grammatical information about the words in a
text. The basic objective for POS taggers is to decide the word class of each
word, but the tagging can also be more fine-grained, for instance by determining
the case of the word (i.e genitive or nominative). Furthermore, different POS
taggers use different tag sets, complicating the compatibility between different
linguistic corpus-processing tools. The tag set of the POS tagger depends on
the tag set that was used for the treebank corpus that the tagger was trained
on. Traditionally, the POS seen in Table 3 are determined and tagged.

Table 3: Part-of-speech classes traditionally classified
Verb Noun
Adjective Adverb

Conjunction | Interjection

Preposition Pronoun

5.5.1 Swedish

The Granska POS tagger of KTH, Stockholm, implemented especially for the
Swedish language, was the ideal choice for the Swedish POS tagging. Not only
does it provide good POS tagging results, it also includes lemmatization. The
POS tagging of the Swedish corpus was performed in Unix environment under
Windows, running the Unix terminal emulator Cygwin. The following query
was used to execute the tagger.

> ./tagg -NBIa [input_text] > [output_text]

The flag -NBla states that N; interpret new line to indicate end of sentence or
paragraph, B; print lemma, I; don’t print words’ info and a; tag new words am-
biguously. The tagger comes with numerous other options that can be included
via flags, but none of them were of gain to the POS/lemmatization task. For
the conveyance to the dependency parsing next to be applied, the output format
of the POS tagger was eventually adjusted using a Perl script.

5.5.2 Danish and English

The POS tagging of the Danish and English corpora was performed using the
Stanford NLP Group Part-of-Speech tagger, version 1.5.1. It can be downloaded

17

free of charge from the web page of the Stanford NLP Group and comes with
pre-trained models for English, Arabic, German and Chinese. For English, the
Penn Treebank tag set is used, which is convenient, since the dependency parsing
to follow go by the same tag set.

Unlike the Swedish Granska POS tagger, the Stanford POS tagger is highly
trainable which means that it can handle every language, as long as the proper
training data is provided. Training, however, takes memory, so the authors of
the POS tagger recommend that at least one gigabyte is used for this task.

Since the tagger didn’t include a Danish POS model, the first step was to
find a suitable Danish training corpus. The CoNLL conference held in 2006
distributed, at the time of writing, the training data used by participants of
that year’s shared task. A modified version of the Danish Dependency Treebank
(DDT), originally stemming from the PAROLE corpus, was selected. The data
is considered open source and has been adjusted to the standards of CoNLL,
making it good choice for this project. However, as the POS tagger didn’t
entirely accommodate the format of the DDT, a Perl script was written in order
to discriminate the word and the POS tag from the remaining linguistic data.

The training itself was executed using the following query.

>java -mxlg -classpath postagger-2006-05-21. jar
edu.stanford.nlp.tagger.maxent.Train -prop [properties_filel
-model danish_ddt_trained_bidirectional -file
[training_corpus]

The query states that one gigabyte of memory is being used (-mx1g) and that
the Java program is to be executed in training mode using a properties file and
a training corpus, producing model files with the prefix
danish_ddt_trained_ bidirectional. Via the properties file, also used when tag-
ging, numerous options can be modified. One of the adjustable training options
is the architecture of the generated model, which is by default set to bidirec-
tional.

With both an English and a Danish POS tagging model available, the final
step was the actual tagging of the two corpora. It was done using the following
line.

>java -mxlg -classpath postagger-2006-05-21.jar
edu.stanford.nlp.tagger.maxent.Test -prop
properties.txt -model [model prefix] -file [output_file]

Prior to execution, the tokenization option of the properties file was changed to
false. The text was already tokenized and it was very important not to alter
the alignment of each row. Otherwise, the task of reconnecting the tagged and
parsed corpus with the manual annotation would be immensely and unneces-
sarily complicated.

18

5.6 Lemmatization

Lemmatization is applied to the corpus in order to group morphological variants
of a word together under one single headword. For example, the words am, was,
are, is, were, and been are all morphological variants of the base form be. Other
examples are laughing, laugh, laughs, laughed and the base form laugh or serpent,
serpents with serpent as lemma. The reason lemmatization is generally used
in various NLP techniques is that the linguistic patterns of the sentences more
accurately can be tracked once the lexical complexity has been reduced. The
lemmatization process for this project was conducted using freely distributed
lemmatization tools.

5.6.1 Swedish

The Swedish corpus was lemmatized in association with the POS tagging, using
the Granska POS tagger. For details, see section 5.5.1.

5.6.2 Danish and English

For Danish and English, the downloadable command line CST lemmatizer of
Copenhagen University was used for lemmatization, and the free online demo
version of the lemmatizer was used to create a frequency lexicon. This fre-
quency lexicon was subsequently modified into a look-up lexicon to be used
when lemmatizing the actual corpora.

In addition to Danish and English, the lemmatizer supports Icelandic, Ger-
man and Dutch. However, while the distribution of the lemmatizer is free of
charge, the various word lists that are needed to generate the lemmas are dis-
tributed under license. The prices of these word lists varies depending on who is
the intended user. For example, the Danish word list called STO, with more than
80000 unique words and their morphological forms, costs $§15000 for companies
acquiring the lemmatizer for commercial purposes, and $100 for governmental
institutes acquiring it for sake of research. Given that the project described
in this report was financially unsupported, a workaround strategy had to be
implemented, which incorporated both the command line CST lemmatizer and
the online CST demo version.

The Center of Speech Technology of Copenhagen University provides free
online demo versions of their various NLP tools, which for Danish includes the
STO word list. Since the tools are only demos, the amount of data that can be
processed at any one time is limited. However, a password to unlock the demos
can be acquired free of charge, enabling the user to run much larger texts.

Prior to lemmatization, the online lemmatizer automatically tokenizes the
text, which was highly undesired in this matter. The input text was already
tokenized and if this was tinkered with, the alignment to the semantic annotation
would be unsynchronized, which would require extensive manual work at a later
stage. For this reason, the online lemmatizer could only be used to produce a
lemma frequency lexicon. Since the frequency lexicon was generated from the
exact words of the corpus, it therefore contained every word in the corpus - the

19

perfect substitute for the too expensive word list described earlier. Hence, the
command line version of CST could be used in conjunction with a customized
free look-up lexicon based on the non-free word list.

The frequency lexicon consisted of four columns and a row for each unique
word in the corpus, sorted by quantity. A Perl-script was written to turn the
frequency list into a look-up corpus consisting of a word column and a lemma
column sorted alphabetically. These two files were used with the lemmatizer to
produce a binary dictionary.

The command line query

> cstlemma.exe -D -cFB -N <freq file> -nNFNB -i
<look-up corpus> -o dictionary.txt

executes the lemmatizer in create binary dictionary mode (-D). The look-up
corpus format, which coincides with the subsequent output format of the lem-
matizer when run in lemmatization mode, was set to full form followed by the
base form, the lemma (-cFB), separated by a tab. The structure of the fre-
quency file was regulated by the flag -nNFNB and the dictionary output name
was set by -o dictionary.tat.

As a last preliminary step, an empty inflection pattern file, a flex file, was
created. Inflection rules in linguistics describe the lexical morphology of a lan-
guage. To clarify, consider the word boys. It can be divided into the word stem
boy (the lexeme), which is a noun, and the functional suffix s, forming plural.
Thus, the inflection rule for plural for nouns of English is NOUN-s (in general).
A flex file is very useful when the lemmatizer cannot find a certain word in its
look-up dictionary. In such a case, the lemmatizer would turn to the flex file
in order to make an informed estimation. However, since the binary dictionary
was generated on the basis of a look-up corpus containing every single word of
the corpus being lemmatized, there wasn’t a need for a flex file. The lemma-
tizer requires a flex file by default, but there is no need for it to contain any
information.

Once an empty flex file had been created, the preparatory work was con-
cluded and the actual lemmatization could commence. The query

>cstlemma.exe -L -c$w\t$b1[[$b7]1~1$BI\t$t\n -1
<input file> -I$w\t$t\n -o <output file> -d
<binary dictionary> -f <flex file> -t

executes the lemmatizer in lemmatization mode -L. The format string

-c ($w\t3b1[[$b?]"18B]\t$t\n) states that the generated output format is set to
word ($w), tab (\t), lemma ($b1, [[$b?]71$B] = check binary dictionary first,
if lemma not found, use flex file), tab (\t), POS tag ($t) and new line (\n). -I
tells the lemmatizer that the structure of the input file is word, tab, POS tag
and new line.

20

5.7 Dependency parsing

The MaltParser of Vixjo University (Hall, Nilsson & Nivre, 2006) was chosen
for the dependency parsing of all three languages. The parser is data-driven
and a model can easily be induced by training the parser on a tree bank corpus
such as the SUC corpus. This makes the parser very versatile, since as long as
the user is in possession of a suitable tree bank corpus, any language can be
efficiently parsed using this dependency parser. Malt parser is distributed for
free from the Viaxjo University website.

5.7.1 Swedish

Since the Granska POS-tagger was implemented using the SUC tag set, all
subsequent steps in the processing chain had to follow the same sort of tags.
However, the Swedish model bundled with the distribution of Malt parser was
induced using the Swedish Talbanken corpus. The tag set of this tree bank
differs from the tag set used by the SUC corpus. Hence, the preliminary step
was to re-train the parser, so that the induced model would recognize the input
tags. A training set of the SUC corpus was downloaded from the website of the
2006 CoNLL competition (CoNLL-X).

As was the case with the POS tagging, the dependency parsing was con-
ducted in Unix environment. To initiate the parser in training mode, the fol-
lowing query was entered.

> java -mxlg -jar malt.jar -c [model] -i [training_ corpus]
-m learn

Using this query, the parser will produce a model called model.mco from the
provided training corpus. Note that it is very important that the training corpus
doesn’t contain sentences longer than 300 words. If so, an error due to insuffi-
cient memory will occur. Stunningly, though distributed for the sole purpose of
training, the training set provided by CoNLL-X exhibited such an error.

Once a model using the SUC tag set had been induced, the following step,
of course, was to use the model to perform the dependency parsing. The line

>java -mxlg -jar malt.jar -c [model] -i [input] -o [output]
-m parse

will invoke the parser in parsing mode resulting in an output that can be seen
in Table 5.

21

Table 4: The appearance of the Swedish corpus after the POS tagging and the
dependency parsing had been applied

[Ny W [L [POS [POS [INFO (omitted) | DEP | FUNC |
1 Om om PP PP _ 3 adv
2 du du PN PN _ 1 pr
3 | handlar | handla VB VB _ 0 ROOT
4 med med PP PP _ 3 adv
5 andra annan JJ JJ _ 6 det
6 lénder land NN NN _ 4 pr
7 MAD | MAD . 3 ip

5.7.2 Danish

A model to parse Danish texts is not provided for in the Malt-parser bundle.
However, since a Danish tree bank corpus (the DDT corpus) had already been
acquired for the previous POS tagging task, that same tree bank could be used to
induce a dependency parsing model. The methodology for training and parsing
described earlier was then applied in order to complete the Danish VAT corpus.

5.7.3 English

English is one of the two languages that Malt-parser supports straight away.
The provided model has been trained on the Penn tree bank, which is compliant
with the POS tagger that was previously used. Thus for English, no additional
training had to take place prior to parsing.

5.8 Feature extraction

Having completed the corpora of the three languages, features could now be
derived from the grammatical data. Features are utilized to prepare an ar-
gument /relation format file (.arff) that machine learning algorithms later will
induce models of semantics from. This way, distinctive phenomena occurring
in the VAT texts can be captured, which will guide the parser when classifying
the various semantic objects.

The methodology and the features that were chosen for this task were based
on research by Johansson and Nugues (2007), who implemented two different
semantic analyzers to evaluate how the constituent based grammar approach
compared to the dependency based approach. The analyzers were implemented
in four steps, where the first step was responsible for target identification and the
second step classified the targets as members of a frame category. After that,
the third step handled the identification of arguments of each of the targets,
and the fourth and final step classified each found argument to its most suitable
semantic frame.

Since the feature extraction was conducted by implementing a Java program,
virtually any conceivable feature could be selected. When choosing features to

22

implement, one strive for maximum gain while trying to maintain computational
simplicity, and try to avoid less rational features. Thus, having a look at the
corpora to detect patterns and trying to evaluate, by means of rational thinking,
which features could improve each of the four steps, is a good way to go. This
way, some of the most influential features were implemented, for instance the
argument TargetFrame feature of the argument classification, the targetSentence
feature of the argument identification and the targetBoolean feature of the tar-
get classification. All the mentioned features were implemented to bridge the
gap between the four steps, so that the conclusion of the previous step wasn’t
lost, but used to improve the performance of the next step. Astonishingly, the
targetSentence feature gave a 25% boost to the argument identification.

5.9 Model generation

The machine learning procedure was carried out using Weka, a Java based
freeware from the University of Waikato, New Zeeland. It incorporates a number
of various machine learning algorithms, based on different architectures, like for
instance tree based and rule based decisioning. Weka also includes filters that
can be used to quickly remove, add or in other ways manipulate attributes and
instances of the input data. Supervised filters automatically choose for example
which features of a data set have the most impact on the performance, while
unsupervised filters enables completely manual manipulation, i.e. removing
all instances matching a given regular expression. Thanks to this, the user
can easily conduct a quick personal research to discriminate poorly performing
attributes, and thus enhance the overall performance of the classifier.

First and foremost, the architecture of the classifier had to be determined.
This was done by evaluating what type of classifier gave the best results, while
at the same time remaining as manageable as possible.

Support Vector Machines (SVMs) were one of the two architectures eval-
uated, particularly the heuristic of Sequential Minimal Optimization (SMO).
SMO is a way to train SVMs using, as the data set grows, a linear amount
of memory. Even so, for the data sets used in this project, SMO was gener-
ally found to require more memory than the 1.6 Gb available, forcing Weka
to crash. This was unfortunate because SMO proved to perform better than
all other evaluated classifiers, if the number of attributes and instances was
reduced. Yet another drawback, however, was that the output model of SMO
functions often ended up very large, seldom less than a couple of hundred Mb
in size. The generation times were also outrageous; up to an hour or more,
with no definite guarantee of scoring better than less computationally complex
architectures.

The second architecture that was evaluated was two different types of tree
based architectures; J48 and Id3. Id3 was found completely inept when it
came to classifying the somewhat unbalanced input data. J48 scored better,
but still had difficulties handling unbalanced input data where the outcome
was either true or false, as in the case of target and argument identification.
When the model generation was performed on the complete data set, the ratio

23

of instances with the outcome false, as opposed to those with the outcome
true, were approximately a hundred to one. This led the classifier to classify
all instances as false. For this reason, the target identification data set was
reduced to hold instances that were either a target or a lexical equivalent of any
target. The same procedure was applied to the argument identification. Lexical
equivalents could for instance be the noun (the) purchase which is distinct from
the target verb (to) purchase. Reducing the data set, the target classification
for each of the three languages was satisfactory, but the argument identification
data set needed further reducements, in order to balance the outcome. Hence,
one third to one fifth of the lexical equivalents were kept in the data set for the
final model generation. The decision tree based J48 was selected as classifier of
the final model on the premise of its combination of low generation times, small
model sizes and good overall parsing performances.

Last, a feature evaluation was conducted, which led to the conclusion that
all features except the position, voice and path features were to be kept in the
data sets. This decision was based on the fact that the mentioned features pro-
vided little improvement, only about 1%. At the same time, unlike all other
features, the position, voice and path features were derived from manually anno-
tated semantic data, which would be unavailable to the final classifier up front.
Thus, keeping these features would immensely complicate the model utilization,
requiring features to be extracted on the fly as the semantic dependencies were
discovered.

5.10 End classifier implementation

The four models; the target identification, target classification, argument identi-
fication and argument classification models for each of the three language were
ultimately used in a single end program, the semantic classifier, designed to
demonstrate the capabilities of the models. The program was implemented in
Java, with the three corpora utilized as test input texts. Of course, the semantic
annotation was cut from the corpora prior to demonstration. In order to initiate
and use the models, a Java class called WekaGlue was incorporated. It was orig-
inally implemented by Richard Johansson of Lund University, who granted the
permission to use it for this cause, but was slightly modified to accommodate
for unknown input tokens.

On invoking the semantic classifier, the user was asked to decide which of the
three languages he or she preferred to demonstrate. Subsequently, the relevant
four models were initiated, as well as the relevant arff data sets. The data
sets were used to set the possible attributes of an instance, to which the input
word and its attributes would be mapped. In case one of the attributes of an
input word was unrecognizable, that attribute was altered to “UKN”, enabling
the classifier to keep running regardless of input. The same features used to
generate the models were then extracted from the input corpus and stored in
memory, from which the data was brought up sentence by sentence. Iterating
the sentence, each word was evaluated by the classifier to detect possible target
words. Once the classifier responded true to a certain word, that word were then

24

classified by the target classification model to assign a category label. To benefit
from the result of the previous classifier, each new step was preceded by adding
the outcome of previous step to the attributes of that word, which thus copied
the inter-locking features that were used when generating the models. Next, the
sentence was iterated all over again, this time to look for possible arguments of
the found target. When an argument was detected and inter-locking features
had been added, the final argument classification model assigned the most likely
label of that argument. Targets, arguments and modifiers were stored in a data
structure that allowed quick and comprehensible access to each found instance.
Eventually, the results were written to an output file containing each sentence
and a proposed predicate-argument statement along with contingent modifiers,
to some extent modeling the semantics of the sentence.

25

6 Results

The results of each of the three languages were evaluated based on the per-
formance scores obtained from each of the four classification steps described
earlier. Common for all the test sessions were the fact that they were carried
out using 10-fold cross validation. Running this evaluation mode, the data set
is split into ten equally sized portions. The classifier is subsequently trained on
nine tenths of the data set, leaving the final tenth for testing. The procedure is
repeated ten times until all the ten portions have acted as test set once. The
chosen evaluation method is a fair and efficient way to work out a balanced
performance score based on the complete data set.

The cross validation returns a set of different scores. Most notable is the F1
score, which is comprised of a harmonic mean of the precision and the recall
score, where the best possible score is 1 and the worst is 0. The F1 score, as well
as the precision and the recall scores, are listed for each classifier outcome. Thus,
one can evaluate the score of each class independently. Furthermore, a confusion
matrix gives detailed statistics about the number of instances of each specific
class that was classified as members of what classes, correctly or incorrectly.
This information can be used to draw conclusions about classification difficulties
and how to correct errors in the input data. One might for instance find that
the feature extractor is unable to handle certain linguistic scenarios in the text,
thus generating misleading features.

6.1 Danish
6.1.1 Target identification

Table 5: Danish target identification
’ Summary ‘
Correctly classified instances | 562 | 85.4103%
Incorrectly classified instances | 96 | 14.5897%

’ Accuracy by class ‘
Precision | Recall F1 Class
0 0 0 False
0.854 1 0.921 | True

Confusion matrix

a b «—classified as
96 a — false
0 | 562 b = true

[e=)

The F1 score of class true was 0.92 for the Danish target identification, but
none of the 96 instances of the lexical equivalents of target words were actually
correctly labeled.

26

6.1.2 Target classification

Table 6: Danish target classification
’ Summary ‘
Correctly classified instances | 561 | 99.8221 %
Incorrectly classified instances 1 0.1779 %

’ Confusion matrix ‘

al|l b ¢ d e f g | h «—classified as
810 0 0 0 0 00 a = market.01
0123 0 0 0 0 010 b = sending.01

0] 0 |29 0 0 0 010 ¢ = delivery.01
00 0 | 140 0 0 0 | 0 | d = vatcalculation.01
0|0 0 0 144 0 010 e = sale.01
00 0 0 0 155 | 0 | O f = payment.01
00 0 0 0 0 62 | 0 g = purchase.01

0] 0 0 0 0 1 0 1]0 h = supply.01

The one instance of supply.01 was falsely labeled payment.01. All other in-
stances were correctly classified, thus returning a near perfect overall result of
99.8%.

27

Figure 2: Danish target classification (F1 scores)

supphy 01

o

o4 02 03 04 05 06 O0F 082 09

-

Only one instance of the Danish target classification data set was misclassi-
fied, yielding perfect F1 scores for all target words except supply.01.

28

6.1.3 Argument identification

Table 7: Danish argument identification
’ Summary ‘
Correctly classified instances | 3385 | 82.1004 %
Incorrectly classified instances | 738 | 17.8996 %

’ Accuracy by class ‘
Precision | Recall F1 Class
0.957 0.741 | 0.835 | False
0.699 0.948 | 0.804 | True

Confusion matrix

a b «—classified as
1868 | 654 a = false
84 1517 b = true

Danish argument identification returned a good overall result of 82.1%, and the
F1 scores for both classes were satisfying. The recall of the class true was a
fair bit higher than for the class false, only misclassifying 84 out of 1517 (5%)
compared to 654 out of 1868 (35%).

6.1.4 Argument classification

Table 8: Danish argument classification
’ Summary ‘
Correctly classified instances | 1316 | 82.1986 %
Incorrectly classified instances | 285 | 17.8014 %

The argument labeling of Danish was accurate overall. 82.2% of the total in-
stances was correctly classified.

29

Figure 3: Danish argument classification (F1 scores)

A-MNOAINospply
AAMNDGweightofgoods
Ad|benefadive
Alpayer
Al|money-vat
Al=eller

A0buyer
Allgoods-services
A-AMT)amount

A _ThEfirme
A-MMRmarner
Aldeliverer
Ad|goods

A J|commodity -goods
AFATrate

AL by coc: | (177

Adbuyer I 7 1
AZcommockty |
APLChlace -
Azeler - () 5
Adjmoney - G 7
Admoney-pricepaic -G [
AJcommodity-services - IIEINIG O
AQzencer - IIIIEIEG O f
AZcharger - (57
A-hrSmesns -GG [5
Almoney-pricepaid -GG
Arechient -G [31
A-TEhtimeframe - I [
A1 [money-nyvoice
A-SElsendoc
Admaney
A-POGplaceofooods
A-ELCkEelloc
A Jbuyer
A-RLrecloz
Alpayer
A-ROG|roweofgoods
Al|goods-nvaice
A-FROM|roteofnoney
A-originofgoods|originofgoods
A-FRApUrpose
A1value
A-RSMreason
A -S| commodityvalue

30

The F1 scores of Danish classification showed that more than half of the
instances were well classified. However, 16 different labels were never correctly
classified, the likely explanation being that these labels were seldom seen in the
text, thus drowning amongst more likely labels.

6.2 Swedish
6.2.1 Target identification

Table 9: Swedish target identification
’ Summary ‘

Correctly classified instances | 429 | 98.6207 %
Incorrectly classified instances 6 1.3793 %

’ Accuracy by class ‘

Precision | Recall F1 Class
0 0 0 False
0.986 1 0.993 | True

Confusion matrix

b «—classified as
0 6 a = false
0 | 429 b = true

The same pattern as of the Danish target identification was seen in the Swedish
one. None of the false instances were correctly classified. A probable explana-
tion is the unbalanced data set, as well as too few differences between instances
of false and true.

31

6.2.2 Target classification

Table 10: Swedish target classification

’ Summary ‘
Correctly classified instances | 426 | 99.3007 %
Incorrectly classified instances 3 0.6993 %

’ Confusion matrix

a b c| d e f g h i «classified as
40 0 0] 0 0 0 0 0 0 | a = taxation.01
0 |113 0] O 0 0 0 0 0 b = market.01
0 1 410 0 0 0 0 0 ¢ = debit.01
0 0 0210 0 0 0 0 d = sending.01
0 1 0] 0 [28] 0 0 0 0 e = delivery.01
0 0 0] 0 01630 0 0 f = sale.01

0 0 0] 0 0 0|74 | 0 0 | g = payment.01
0 1 0] 0 0 0 0 | 48 | 0 | h = purchase.01
0 0 0] 0 0 0 0 0 | 35 i = supply.01

The only errors of the target classification of Swedish were one instance each of
debit.01, delivery.01 and purchase.01, which were all misclassified as market.01.

Thus, good F1 scores were obtained.

32

Figure 4: Swedish target classification (F1 scores)

zale

payment

supply 01

sending 01 1
taxation .01 1

]
]
s
)
[N
]
(o)
[]
.
)
in
]
[mp)
]
B
)
[mn)
]
w
=

6.2.3 Argument identification

Table 11: Swedish argument identification
’ Summary ‘
Correctly classified instances | 3534 | 81.5601 %
Incorrectly classified instances | 799 | 18.4399 %

’ Accuracy by class ‘
Precision | Recall F1 Class
0.914 0.825 | 0.867 | False
0.626 0.79 0.699 | True

Confusion matrix

a b «—classified as
2607 | 553 a = false
246 927 b = true

The argument identification of Swedish obtained an F1 score of 0.7 for the class
true. Overall, 81.6% of the total instances were correctly classified.

6.2.4 Argument classification

Table 12: Swedish argument classification
’ Summary ‘
Correctly classified instances | 847 | 72.208 %
Incorrectly classified instances | 326 | 27.792 %

The argument classification of Swedish was a bit worse than that of Danish,
getting the label right in 72.2% of all cases.

34

Figure 5: Swedish argument classification (F1 scores)

A-FL ety | | 1
A - FTE o= — | 1

Allrroney-+ AT - I (%5
A-CLSIc 1 use | (3
Adfrroney-4 AT - I
A ooods- oo < — |, (14
A Jrroney G [
At e — Y (25
A goods-services I (55
A0y er — | Y [
Al er — ————] (.7
A-hNR[ranner — I] (7
Allprovider — | (7
A 0|deli erer — IIEG Y OS5
Auoods [7+
A-PRApurpose - IIEGE N O 57
A2 seler I O
A-FLCIplac e - I [5
Alseler I N [
A2 harger - G (i
A 3corrrocity — | [}
Adlbuyer -~] [<12
Afroney I [i
A-ThFterry I -t
Alzender — G [
Adlgoods-services — I 0.13
A 2a payar
A 3ooods-goods
AJ|good s-iry ice
A Zlonal
A Jgoods
AZlpaer
A-PRTparties
Adcormrodity- servic es
Alc harger
A Zrecipiernt
Al|ooods-iry dice
A 2lcormrodity
Algoods-car
AZlbenefactive

1] 0.1 nz 03 04 05 0B 0¥ 08 08

Two labels, modifiers A-RLY/relay and A-RTE/route, obtained a perfect F1

35

score of 1. 14 labels were never correctly classified.

6.3 English
6.3.1 Target identification

Table 13: English target identification
’ Summary ‘
Correctly classified instances | 1216 | 88.8889 %
Incorrectly classified instances | 152 | 11.1111 %

’ Accuracy by class ‘

Precision | Recall F1 Class
0.919 0.884 | 0.901 | False
0.852 0.896 | 0.874 | True

Confusion matrix

a b «—classified as
691 91 a = false
61 525 b = true

The F1 scores of both classes were very high, differentiating English to Swedish
and Danish, where the false class received an F1 score of 0.

6.3.2 Target classification

Table 14: English target classification
’ Summary ‘

Correctly classified instances | 585 | 99.8294 %
Incorrectly classified instances 1 0.1706 %

Confusion matrix

a b c| d e f g h i j «—classified as
81 0 0] 0 0 0 0 0 0 0 a = issue.01

0 |110 |0 | O 0 0 0 0 0 0 b = receiving.01
0 0 310 0 0 0 0 0 0 ¢ = delivery.01
0 0 01371] 0 0 0 0 0 0 d = sending.01
0 0 0] 0 [65]| 0 0 0 0 0 e = debit.01

0 0 00 0 |8 | 0 0 0 0 f = payment.01
0 0 0] 0 0 0129 0 0 0 g = sale.01

0 1 0] 0 0 0 0]13] 0 0 h = purchase.01
0 0 0] 0 0 0 0 0 | 66 0 i = accounting.01
0 0 0] 0 0 0 0 0 0 | 100 j = supply.01

36

The target classification of English was almost impeccable, only misclassifying
one single instance of purchase.01.

Figure 6: English target classification (F1 scores)

-

supply .01

-y

paytnert.01

clebit.01

-y

-y

acocounting .01

izzue.0l

g

delivery .01

g

zale.01

-

zending.01

—

g

receiving.01

purchase.01

=
&

[}

o1 02 03 04 03 06 O0F 08 09

—_

6.3.3 Argument identification

Table 15: English argument identification
’ Summary ‘
Correctly classified instances | 4175 | 86.2782 %
Incorrectly classified instances | 664 | 13.7218 %

’ Accuracy by class ‘
Precision | Recall F1 Class
0.927 0.874 0.9 False
0.735 0.835 | 0.782 | True

Confusion matrix

a b «—classified as
2983 | 429 a = false
235 1192 b = true

The argument identification of English was better than that of Swedish, and on
par with that of Danish, scoring an F1 of 0.9 for false and 0.78 for true.

6.3.4 Argument classification

Table 16: English argument classification
’ Summary ‘
Correctly classified instances | 1006 | 70.4975 %
Incorrectly classified instances | 421 | 29.5025 %

Argument classification, however, was a little worse than that of Swedish, and
even more worse than that of Danish. However, the number of different labels
of English was also higher. Again, when turning to the individual F1 scores,
one find that distinctive modifiers and common arguments score high.

38

Figure 7: English argument classification (F1 scores)

Ahdarigine goods o riginef go ods |
A ot ot] .55
At circu metance |cire urme ta n |] Fe
A by 1] @e
A e e] (3541
Algoods-senvices | S 0=
A e] .3
A e ney- v at |) .8
At e |] fE2
Al wer | — et
A paye] 0.5
A de e e |] B
L s [
Al |ac co united o vt -] .7
At ate i at e |] 47
At e it ed o |] H37
A0 3 e o unte | S 47
e o d ity | P AT
At purpos e purpos & - 1.7
Ao ney- nvoic e -] 175
A hin gis s ued | T4
Ak and e |] 0.
A0 |provid er | 0
A2 |paye r |]
At thingre ceiv ad | H63
A2dono r |] 3
Ad|go ods] Ae2
A2 b ef gotive |] (55
Afzeler | S 357
A ben ef aothve [S 4.
Atk rma nneer jmanin er |] 331
Al |charger | (145
A2 [recipient |] LA
A2 |charger - O
Abd means means -] 0.7
Ahtplaceplace [T 023
A thin giss ued- inoice
A |buyer
Ahttimef r arme kimef rame
A fthing provided
A0 Eupplier
At reclocfeclos
At route of goods Jroutect goods
A3 ma ney
At reas onfeason
Adthingrece i ed request
At benloc b enloc
A |mo nesy- receipt
At prolocproloc
AOprovide
A|goods-vat
At delloc delloc
Aht amountjamount
HAhtplaceof goods placeof goods
At loclbenlos
A money- invoices
AZreazon
A |maney-wat

o o0l 02 03 04 05 06 0F 08 08 A
39

6.4 Probable explanation for certain parsing errors

When examining the target identification performance of Danish and Swedish,
one finds that unlike the case of the English target identification, none of the
non-target instances were correctly classified. Since the objective of the tar-
get identification models was to part target words from their lexical non-target
equivalents, a likely explanation for this error is that the non-targets of Dan-
ish and Swedish simply are inseparable from the actual targets. Indeed, when
examining the annotated corpora, one notices that all of the lexical equivalents
were verbs. The lexical equivalents of English were generally nouns. This dif-
ference leads to the conclusion that the target identification errors derive from
committed manual errors in the annotation.

6.5 Semantic classifier demonstration results

6.5.1 The good

Figure 8: The good

Sentence:

Fdretagaren Sven i Sverige kdper en programmeringstjinst fér 100000 kr av datakonsulten Irene i

Irland.

Predicate-argument conversion:

kgpgf[purchase.Ol]Csven[AOIbuyer], programmeringstjdnst[Al|goods-services], Irene[aZ|seller], 100000[A3|money])
Modifiers:

sverige[A-PLC|place]

Sentence:

pu kaher en ware i Tyskland.

Predicate-argument conversion:

kaber [purchase. 01] (ou[a0| buyer], warel[al]|goods])
modifiers:

TyskTand[a-PLC|place]

sentence:
Du skal som udgangspunkt ogsd momsregistreres, hwis du szlger tjenesteydelser.
Predicate-argument conversion:
sa1ger[sa1e.01](0u[A0|se11er], tjenesteydelser [Al|goods-services])
modifiers:
som [A-MNR | manner]
hvis [A-TME|time]

SENTEnCE:

In the same way, VAT charged to you on your business purchases is

wour input tax.

Predicate-argument conversion:

charged[debit. 01] (waT [al|money-vat], you[aZ|payer], purchases[A3|commodity])
Modifiers:

way [aM-manner [manner]

Sentence: i
How do I account for WAT on my supplies?

Predicate-argument conversion:
account [accounting. 01]CI[AQ| charger], WAT[Al|accountedfor-vat], supplies[A3|commodity])

Fairly short sentences containing a predicate and quite typical arguments were
generally correctly parsed, including typical modifiers modifying the context of
the sentence.

40

6.5.2 The fair

Figure 9: The fair
Sentence:

Det dr sdrskilt wiktigt att du kan styrka exporten wid himtkop, dvs i
de fall du levererat en wara i Sverige eller i ett annat EG
- Tand ti11 en ndringsidkare som sjidlv far ut wvaran i1l ett Tand
utanfdr EG.
Predicate-argument conversion:
levererat [delivery. 01](du[A0| deliverer], de[al|goods], Tand[A2]|goall)
Modifiers:
sverige[A-PLC|place]

Sentence:
Det innebdr att organisationerna miste betala moms pid inkdp 1 Swerige om warorna levereras
1 swerige.
Predicate-argument conversion:
betala[payment.0l] (moms [Al|money-waT], Tnkop[A3]|commodity])
Modifiers:
sverige[A-PLC|place]

Sentence:
pu skal momsregistreres, sd snart du regner med at szlge for mere end
50000 kr dnden for en l2-mineders periode.
predicate-argument conversion:
sa1ge[sa1e.01](Du[AOIse11er], kr[al|money], for[A3|commodity])
mModifiers:
inden [A-TFM|timeframe]

sentence:
pu skal dog ikke momsregistreres, hvis du kun sa2lger ud af dine egne
private ejendele.
Predicate-argument conversion:
sa1ger[sa1e.01](0u[A0|se11er], ejendelelal|goods], privatel[az|buyer])
Modifiers:
hvis [A-TME|time]
ud[A—ROG|FDutEDF?DDdS]
Tkkela-noal noappTy]

sentence:

If you make taxable supplies of goods or services to a customer for which
wou are not paid, you may be able to reclaim relief from

WaT an the bad debts.

Predicate-argument conversion:

paid[payment. 01] (you[AD|payer], supplies[al|goods], goods[A3]|commodity])

In case the sentence comprised several probable arguments, the precision was a
little bit weaker, but still acceptable.

41

6.5.3 The not so good

Figure 10: The not so good

sentence:

Det innehdr att organisationerna maste hetala moms pa inkdp 7 sverige om varorna leveraras
i sverige.

Predicate-argument conversion:

betala[payment.0l]t, moms[ALl|money-vaT], ink&p[A3|commodity])
Modifiers:

sverige[a-PLC|place]

Predicate-argument conversion:

levereras[delivery.01](¢, moms[Al|money-vaT], inkdp[a3|commodity])
Modifiers:

sverige[A-PLC|place]

SEntence:

Erhvervelsesmoms er betegnelsen for den moms, der skal beregnes og betales af momsregistrerede
virksomheder, der kaber wvarer 1 andre EU-Tande.

Predicate-argument conversion:

beregnes[Vatca1cu1ation.01](virksomheder[AOIpayer], Erhvervelsesmoms [ALl |money-vat], der[A3|commodity])
modifiers:

Eu-Tande [A-PLC | place]

Predicate-argument conversion:

bg;g]es[payment.Olj(virksomheder[AOIpayer], Erhvervelsesmoms [Al|money-vat], der[A3|commodity])
Modifiers:

EU-Tande[a-PLC |pTlace]

Predicate-argument conversion:

kgpgf[purchase.01](, Erhvervelsesmoms [Al|money-vat], wvirksomheder [a2]|seller], der[A3]|commodity])
mModifiers:

EU-Tande[A-PLC|pTlace]

Sentence:
we are committed to providing newly registered businesses with the option ¢ s)

of their choice within three months of receiving their reguest ¢ s).
Predicate-argument conversion:

providing[supply. 0] (we[a0|provider], option[al|goods], businesses[aZ|benefactive])
Modifiers:

months [am-timeframe| timeframe]

Predicate-argument conversion:
receiving[receiving. 01](wela0|recipient], option[allgoods], businesses[ad|benefactive])

Modifiers:
months [am-timeframea| timeframea]

A very difficult semantic case to capture was when the sentence included several
predicates of the same kind but with different arguments. In this case the
arguments generally were assigned the same labels, which was usually incorrect.
Also, some of the AOs went undetected.

42

7 Constraints and proposed improvements

Of course, since the semantic classifier was only a pilot project carried out to
investigate the feasibility of this architecture, there are a number of possible
improvements that could be implemented to future semantic classifiers.

For example, anaphoric referencing is not supported in this version of the
semantic classifier. An anaphoric reference is for instance the word “it”, referring
to an already mentioned entity. The semantic meaning of it has generally been
declared in a previous sentence, and thus, to improve fluency, that information
can be omitted in the current sentence. This, however, means that a classifier
designed to process the text sentence by sentence without the help of anaphoric
referencing, is unable to catch the full semantics of the text. It will probably
be capable of finding it, but that doesn’t yield much information about the real
semantics of that argument for the sentence being processed.

Also, to improve the semantic details that can be caught, a classifier equipped
with a deeper hierarchy would be able to return more useful information. The
current semantic classifier is implemented with a two-step semantic hierarchy,
as in for instance Al1/goods-car, where goods is the more general description
and car is a more specific one. However, since that hierarchy is hard coded
into the model, there is no real hierarchy classification going on. To improve
this, the classification tags can be split up, and each level of detail is classified
independently.

Furthermore, the feature set extracted from the corpora could be further ex-
panded and enhanced, which would most certainly improve information gain. A
feature that could be added is for instance the notion of transitive (i.e kick, sell,
drive) and intransitive verbs (i.e lie, stand, walk). The former could, however
not compelling, hold an object that is the receiver of the described act, whereas
the latter never include an object, thus eliminating the possibility that an Al
is incorrectly added to the predicate-logic clause of the sentence. A project
investigating the gain of each individual feature added to the feature set could
prove substantial to the performance of a subsequent version of the semantic
classifier.

The implementation also enables the possibility to add further semantic de-
tail to each argument. The annotation of the arguments was attached to the
dependency head of each word chain qualifying as an argument, but the algo-
rithm of the semantic classifier currently only takes the head of an argument
word chain into account. While the semantic information obtained from the
head of an argument chain sometimes is sufficient, most noun arguments, for
instance, would be better depicted if their determiners and adjectives were in-
cluded. This could be accomplished by adding the dependency sub-tree of the
head argument to the complete argument that is passed on to the predicate-
argument model of the sentence.

Another possibly substantial improvement could be obtained if the depen-
dency representation was used for yet another task. The current implementation
of the semantic classifier algorithm iterates, once a target word has been found,
the sentence from the first word to the last. This is an approach generally re-

43

ferred to as a local model (Haghighi, Manning & Toutanova, 2005), where the
argument labels are assigned individually, without knowledge of the labels of
other words or the dependencies between them. This produces a lot of errors as
the first detected argument, suitable of constituting an A0, A1, A2 and so on,
is permanently stored in its argument category as long as the sentence is still
being processed. Thus, if an argument is captured too early, there is no way
of rectifying it later on. The solution, however, could be to alter the iteration
algorithm in a similar manner to that of a joint model (Haghighi et al., 2005).
A joint model considers the label dependencies of words, and labels all words
simultaneously. For Haghighi et al., this method reduced the number of errors
of all arguments by 17%, while the number of errors of core arguments (A0, A1,
A2 etc.) were reduced a staggering 37%, compared to the gold-standard parse
trees of PropBank. This could prove to be a huge performance booster if imple-
mented to the semantic classifier described in this report, especially regarding
very long sentences and sentences with several targets.

Since the reattachment of the manual annotation corpus to the POS-tagged,
dependency parsed and lemmatized corpus without the manual annotation was
really time consuming and tedious due to unavoidable alignment problems, the
semantic corpus completion would benefit from a chronological switch. Instead
of first completing the annotation, detach it from the corpus, applying the auto-
matic syntactic/dependency tools to the corpora, and finally reconnect it all, the
alignment problems would have been avoided altogether if the manual annota-
tion was performed and applied directly to the complete syntactic/dependence
corpus.

Also, a final point to clarify is the fact that the annotation conducted in this
project by no means sufficiently can support a large-scale semantic classifier
in the field of VAT. The approximately ten different target types that were
considered for each language are not even close to covering the full scope of
VAT. However, the annotated targets of this project do show the potential of
the overall architecture, which was the goal of this pilot study.

44

8 Conclusion

The objective of the project was to investigate the feasibility of a semantic
classifier based on a joint representation of constituents and dependencies for the
domain of VAT capable of transforming written text of three different languages
into predicate-argument structures. This had never been done before. The
results that were obtained are very promising in that all target predicates are
almost unmistakeably distinguished, as well as some of their arguments and
modifiers. The demonstration shows that for short sentences, the performance
is very good, not seldom capturing the complete semantic statement. However,
as the size of the sentence grows, so does the number of errors. To rectify this,
a proposed modification to the algorithm of the semantic classifier could be
implemented, so that arguments are parsed in order of dependency proximity
from its target, instead of in order of appearance within the sentence. This
would likely boost the performance when several target predicates are detected
in the same sentence. The demonstration, however, also indicates the need of
more complete corpora, enabling the capability of capturing even more semantic
elements, thus modeling the full semantics with greater accuracy.

To sum it up, it is beyond question that the results obtained from this pi-
lot study grant the feasibility of the described methodology. By implementing
some of the proposed improvements and investigate even further enhancements,
a semantic classifier, built around an architecture of machine learning models
induced from a constituent- and dependency-based corpus complete with man-
ually applied semantic annotations, could lead to very useful outcomes.

45

9 References

Andersen, Jesper; Elsborg, Ebbe; Henglein, Fritz; Simonsen, Jakob
Grue and Stefansen, Christian (2003). Compositional Specification of
Commercial Contracts.

Babko-Malaya, Olga (2005). Propbank Annotation Guidelines.

Bar-Hillel, Yehoshua (1960). The present status of automatic translation
of languages. Advances in Computers 1, 91-163.

Chomsky, Noam (1957). Syntactic Structures. Mouton and Co.

Clark, Alexander (2003). Machine Learning Approaches to Shallow
Discourse Parsing: A Literature Review.

Dalianis, Hercules and Jongejan, Bart (2006). Hand-crafted versus
Machine-learned Inflectional Rules: The Euroling-SiteSeeker Stemmer and
CST’s Lemmatiser. In Proceedings of LREC 2006, Genova, May 2006, pp. 663
— 666.

Dinesh, Nikhil; Joshi, Aravind; Lee, Alan and Prasad, Rashmi
(2006). Complezity of Dependencies in Discourse: Are Dependencies in
Discourse More Complex than in Syntaz? In Proceedings of the TLT 2006,
pp- 79-90, 2006.

Engel, Ralf (2006). SPIN: A Semantic Parser for Spoken Dialog Systems.
Gildea, Daniel and Palmer, Martha (2002). The Necessity of Parsing
for Predicate Argument Recognition. In Proceedings of the 40th Annual
Meeting of the Association for Computational Linguistics (ACL),
Philadelphia, July 2002, pp. 239-246.

Giuglea, Ana-Maria and Moschitti, Alessandro (2006). Semantic Role
Labeling via FrameNet, VerbNet and PropBank. In Proceedings of the 21st

International Conference on Computational Linguistics and 44th Annual
Meeting of the ACL, pp. 929-936 2006.

Hacioglu, Kadri (2004). Semantic Role Labeling Using Dependency Trees.

Haghighi, Aria; Manning, Christopher and Toutanova, Kristina
(2005). Joint Learning Improves Semantic Role Labeling.

Hall, Johan; Nilsson, Jens and Nivre, Joakim (2006). MaltParser: A

46

Data-Driven Parser-Generator for Dependency Parsing. In Proceedings of the
fifth international conference on Language Resources and Evaluation
(LREC2006), May 24-26, 2006, Genoa, Italy, pp. 2216-2219

Hutchins, John (1999). Retrospect and prospect in computer-based
translation.

Jackendoff, Ray S. (1994). Patterns in the Mind. BasicBooks, A Member
of the Perseus Books Group.

Johansson, Richard; Marquez, Lluis; Meyers, Adam; Nivre, Joakim
and Surdeanu, Mihai (2008). The CoNLL 2008 Shared Task on Joint
Parsing of Syntactic and Semantic Dependencies.

Johansson, Richard and Nugues, Pierre (2006). A FrameNet-based
Semantic Role Labeler for Swedish. In proceedings of the COLING/ACL 2006,
p 436-443.

Johansson, Richard and Nugues, Pierre (2007). Syntactic
Representations Considered for Frame-semantic Analysis.

Kate, Rohit J.; Wah Wong, Yuk; Ge, Ruifang and Mooney,
Raymond J. (2004). Learning Transformation Rules for Semantic Parsing.

Kingsbury, Paul and Palmer, Martha (2002). From TreeBank to
PropBank. In Third International Conference on Language Resources and
Evaluation, LREC-02, Las Palmas, Canary Islands, Spain, May 28- June 3,
2002.

Kingsbury, Paul and Palmer, Martha (2003). PropBank: the Next Level
of TreeBank.

Larsen, Ken Fris; Nielsen, Morten Ib and Simonsen, Jakob Grue

(2007). Tutorial on Modeling VAT rules using OWL-DL.

Meyers, Adam (2007). Annotation Guidelines for NomBank Noun
Argument Structure for PropBank.

Russell, Stuart J. and Norvig, Peter (2003). Artificial Intelligence - A
Modern Approach (Second Edition). Pearson Educational, Inc.

Saeed, John I. (2003). Semantics. Blackwell Publishing,.

47

Toutanova, Kristina and Wen-tau Yih, Scott (2007). Automatic
Semantic Role Labeling.

48

A Appendices

Figure 11: The annotation template

== o A

- | = = = =
= L i
- -t = =t
|| = = = =

- || =
L = v
=T r

i ' = 2| 2] |&
b0 o i __-: = o
ik
_.r b= =
") —

all= =|= = =

== == g~ = &

49

