

Master’s thesis

Using material from Internet as a

Corpus

2009-09-23

Lund University
Faculty of Engineering, LTH

Department of Computer Science

Author: Christian Larsson
Supervisor: Pierre Nugues

In cooperation with Oribi AB

 Page 2

Abstract

The purpose of this master’s thesis was to create a large corpus of the Swedish language
by using the Internet as a source. There are only small corpora available today, and to
bring language research forward, it is important to have a big Swedish corpus.

Using material from the Internet as a corpus requires working through a number of steps
such as to

• Download large amount of web pages from the Internet
• Extract the text from the web pages
• Identify Swedish text, and remove all text that isn’t Swedish.
• Divide the text into sentences

Conclusion: This thesis resulted in two corpora, one from letting a crawler download
web pages, and one from parsing the Wikipedia XML dump. The Wikipedia dump is of
high quality and contains 2 686 698 sentences, corresponding to 44 395 946 words. The
corpus that were created by crawling resulted in a corpus with 8 342 918 sentences,
corresponding to 119 500 499 words. The crawled corpus is considered to be of a lower
quality since it may contain some entries with foreign text, and some sentences may not
be real sentences. It was also created unigram, bigram, and trigram statistics where we
looked at frequency statistics over occurrences of word sequences in the both corpora.

Sammanfattning

Syftet med detta examensarbete är att skapa en stor korpus över det svenska språket, med
Internet som källa. Detta är nödvändigt eftersom det idag bara finns små korpusar
tillgängliga, och för att kunna föra språkforskningen framåt är det viktigt att ha tillgång
till en stor korpus.

Att bygga upp en korpus med Internet som källa innebär att arbete i flera olika steg, så
som att

• Ladda hem stora mängder hemsidor från Internet
• Utvinna text från hemsidorna
• Känna igen svensk text och ta bort all text som inte är skriven på svenska
• Dela upp texten i meningar

Slutsats: Detta examensarbete resulterade i två korpusar, en från att låta en webbspindel
ladda hem webbsidor, samt en från att parsa Wikipedias XML-dump. Wikipedia-dumpen
anses vara av hög kvalité och innehåller 2 686 698 meningar, motsvarande 44 395 946
ord. Korpusen som erhölls från att webbspindeln resulterade i en korpus med 8 342 918
meningar, motsvarande 119 500 499 ord. Korpusen som erhölls från att crawla Internet
anses vara av lägre kvalité eftersom den kan innehålla några poster med utländsk text,
samt att det förekommer att de uppmärkta meningarna inte egentligen är meningar.
Det togs även fram unigram-, bigram- och trigramstatistik för de båda korpusarna där vi
tittade på frekvensen för ordsekvenser i de båda korpusarna.

 Page 3

 Contents

1 Introduction... 4

1.1 Previous Work .. 4
1.2 Strategy ... 5

2 Crawling The Web.. 6
2.1 Configuring the Crawler ... 6

2.1.1 Setting Up a Starting Point ... 6
2.1.2 Which Pages to Fetch.. 6

2.2 Running the Crawler ... 7
2.3 Crawling With Politeness ... 8
2.4 Merging the Segments .. 8

3 Extracting the Data ... 10
3.1 Wikipedia.. 10

3.1.1 The Wikipedia Markup Language .. 11
3.2 The Crawled Data ... 12
3.3 Sentence Boundary Detection... 13
3.4 Rules for Validating Sentences ... 13

4 Language Identification .. 16
5 Publishing the Result .. 17

5.1 Format ... 17
5.1.1 The Wikipedia Corpus .. 17
5.1.2 The Crawled Corpus ... 18

6 N-gram Statistics... 19
6.1 Wikipedia.. 19
6.2 Crawled Corpus .. 22

7 Future Work and Improvements ... 25
8 The Result ... 26
9 Afterwords .. 26
10 References... 27
Appendix A Domain-URLFilter Used by Nutch .. 28
Appendix B Shellscript for Running Nutch.. 29
Appendix C Python Script to Parse Wikipedia XML ... 30
Appendix D Java Code for Building the Wikipedia Corpus 38
Appendix E Java Code for Building the Crawled Corpus.. 40
Appendix F Example of a corpus entry from Wikipedia... 47
Appendix G Lua Script to Create 3-gram Statistics ... 48

 Page 4

1 Introduction

A corpus is a large collection of samples of a language. Corpora are tools to study how a
language is used in written or spoken language. A corpus may be designed in different
ways depending on what purpose the corpus expects to serve, i.e. a corpus may contain
various information about origin, context etc.

The purpose of this master’s thesis was to create a corpus for the Swedish language by
using Internet as a source. The goal was to create a high quality corpus containing
sentences gathered from public web pages. We wanted to create a corpus of a respectable
size compared to existing corpuses, which means about 100 million words.

This thesis was done in cooperation with Oribi AB (see ref [1]), who develops assistive
software for people with reading and writing difficulties such as dyslexia. Oribis software
aims to help people spell and write grammatically correctly as they write on different
platforms. The software that Oribi develops needs large quantities of text in form of a
corpus to do statistical analysis on to improve its performance and Oribis intentions is to
use the result from this thesis for this.

The simplest ways to detect erroneous writing is by using a dictionary and compare every
word to this. Using that approach won’t give any correction for faulty grammar and
neither can it know which word the author mean for similar words, such as the Swedish
words släckt (light off) and släkt (family). Because of the above reasons Oribi needs a
corpus to be able to make better analysis.

Oribi requested a corpus where each line consists of a sentence. By examining such a
corpus, it is possible to look at the environment in which a word occurs and from that
decide if the spelling is correct. To make the analysis even better, it is often created n-
gram statistics as well where the frequencies of all word sequences in the corpus can be
studied.

1.1 Previous Work

Google has created a large n-gram corpus which is an inspiration for this project. The
Google n-gram corpus is an English corpus which was created by using Internet as a
source. Google has successfully created a corpus with 1,024,908,267,229 words from
public Web pages.

This thesis will try to create something similar to the Google corpus for the Swedish
language. For obvious reasons there is no way that this thesis can compete with a multi-
billion dollar company as Google and create such a big corpus.

This thesis aims to create a corpus with about 100 million words, which is bigger than all
the currently available Swedish corpora. Currently the biggest Swedish corpus is Parole,
which contains about 20 million words. There is also a high quality corpus with about 1
million words, SUC (Stockholm Umeå Corpus), see ref[2]. The SUC corpus is smaller
than Parole, but it contains more information, each word has been tagged, i.e. annotated
with part-of-speech, inflectional form and lemma. For the English language there are

 Page 5

among others the British National Corpus, which contains about 100 million words, and
the Google corpus which has been discussed above.

1.2 Strategy

It was decided to create two corpora, one by using Wikipedia as a source, and one where
we set up a crawler to crawl and download a wide range of pages.

Wikipedia is considered to be a high quality source of text due to the fact that it’s
continuously being checked and corrected by users, compared to the web where everyone
can write anything and the correctness can not be guaranteed. The Wikipedia corpus
contains information about how the language is used in a correct way, while the web
corpus gives information about how the language is being used in less formal situations.
It is desirable to keep these two corpora separated because of the above reasons.

No crawl is necessary to get the content of Wikipedia since Wikipedia continuously
creates dumps of its content in both HTML and XML format.

 Page 6

2 Crawling The Web

In order to use the web as a corpus, it was necessary to use a web crawler to download
large amounts of web pages. A web crawler is a computer program that traverses the web
in a methodical and automated way. Web crawlers are commonly used to gather and
index web pages for search engines. They may also be used for different purposes such as
harvesting e-mails or gathering other information.

For this project we used Nutch, which is an open source search engine within the Lucene
project. The Nutch crawler offers many features and is highly configurable via plug-ins.
For more reading about the Lucene project and Nutch, see ref [3].

2.1 Configuring the Crawler

2.1.1 Setting Up a Starting Point

The crawler requires at least one starting URL, which will work as the starting point for
the crawler. From this point the crawler will browse to the entered site and parse the page
for links. These links will be added to a database, and for the next fetch round the
procedure will be repeated for all the pages that have been added to the database. The
ideal condition for crawling the web would be if one starting address would lead the
crawler around the whole web. This would imply that the web would be a connected
graph, which it in fact isn’t. To get a good crawl, it is important to have many starting
addresses.

In this project the DMOZ open directory URL-list was used, containing 4 559 780 urls.
DMOZ is claimed to be the largest, most comprehensive human-edited directory of the
Web, see ref [4]. The list can be downloaded from:

 http://rdf.dmoz.org/rdf/content.rdf.u8.gz

The occurrences of potential Swedish domains in the list were counted and it was found
that the list contains 33 396 .se domains, and 4 265 .nu domains.

2.1.2 Which Pages to Fetch

For this project we were only interested in building a corpus over the Swedish language,
and most of the pages on the Internet are not written in Swedish. A crawl without any
restrictions might result in a crawl where only a few percent of the fetched pages would
be useful. It was decided to use an approach where we try to aim the crawl at .se and .nu
domains to get as much Swedish content as possible, and leave the rest. As mentioned
earlier Nutch is open-source, and have many optional plug-ins, which can be used.
To filter which pages to fetch the domain-urlfilter was used. The domain-urlfilter is a
plug-in which allows the user to define what domains to crawl.

 Page 7

The domain-urlfilter has been attached as Appendix A.

2.2 Running the Crawler

The Nutch crawler can be run in two modes: Intranet crawling and Whole-web crawling.
The Intranet crawling is automated, while the whole-web crawling offers much greater
control. A failed Intranet crawl can not easily be resumed if crashed, but as every step is
controlled in the whole-web crawl, it is easy to resume a session that has crashed.

For this project a large crawl was proposed, and it was vital to have a fail-safe crawl.
Therefore the whole-web crawl method was used.

The different steps in getting the crawler running are described below.

1. Create a database and inject the starting urls
Command: bin/nutch inject crawl/crawldb dmoz

2. Generate a fetchlist of urls to be fetched in the next round
Command: /bin/nutch generate crawl/crawldb crawl/segments -
topN

3. Start the crawl
Command: bin/nutch fetch $segment –threads

4. Update the database with the new urls
Command: bin/nutch updatedb crawl/crawldb $segments

5. Go to step 2 for as many rounds as needed.

In step 2 the -topN option says how many urls to fetch in the specific segment. In step 3
the –threads option says how many simultaneous threads the crawler should be allowed
to use while crawling.

In order to make the crawl automated a shell script was used. The shell-script that was
used in this project was created with help of a tutorial provided by the Nutch community,
see ref [5].
See Appendix B for the specific shell script used in this project.

 Page 8

2.3 Crawling With Politeness

During the preliminary test rounds, it was noticed that the crawler took long time at the
end of each segment. This occurred because a segment may contain many URLs from the
same domain, and the crawler has politeness setting, which doesn’t allow it to fetch more
than one page from the same domain at the same time. This problem could be solved by
allowing the crawler to fetch 10 pages at a time from each domain. This solves the
problem, but users at the Nutch discussion forum suggested that it’s a bad idea and mean
that it may end up with webmasters thinking that they are under attack and thus blocking
the crawler. For this reason the number of allowed fetching threads per page should be
kept at a low number, such as 1 or 2. The other way to solve this problem was by keeping
the segments at a smaller size. If the crawler is told to fetch all pages in the database in
each segment, it is obvious that many pages will be from the same domain, but if the
segments are smaller, Nutch tries to divide the urls between the segments to avoid
hammering of specific sites.

2.4 Merging the Segments

Our crawl resulted in 76 segments, which made it desirable to merge these into one
segment for practical reasons.

Nutch offers a feature for merging segments into one big segment. However, this option
has great performance disadvantages. While testing to merge the segments in this project
it was noticed that the temporary folder used by Nutch grew out of control. While testing
to merge some of the first segments the temp file grew to 70GB without any signs of stop
growing.

This is a known problem with Nutch, and it has been widely discussed in the Nutch
discussion forum and mail-list, see ref[6]. Users have reported that merging 8 segments
with 250K urls each, made the temp directory grow to above 904GB. Therefore the built
in merging utility was not used for this project.

As stated above, the Nutch merging feature was judged unsuitable for this why a manual
merge was made instead.

To get the data from the segments, Nutch offers a dump feature, which gives the data in
plain text. The command for this is:
bin/nutch readseg -dump crawl/segments/... output -nofetch –nogenerate

 Page 9

To do this for all segments the following command was used:

for A in `find -type d –mindepth 1 -maxdepth 1`; do ../bin/nutch

readseg -dump $A "$A-new" –nofetch –nogenerate; done

To merge the dumps the following command was used:

for A in `find -type d -mindepth 1 -maxdepth 1`; dot cat "$A/dump" >>

total; done

 Page 10

3 Extracting the Data

The code for extracting the data has been attached as Appendix:
Appendix D for Wikipedia
Appendix E for the crawled data

3.1 Wikipedia

Different options were considered for extracting the content from Wikipedia. One option
was to download Wikipedia in HTML-format, and then parse the pages by using a
HTML-parser. Another option was to download the Wikipedia XML-dump and parse the
XML-document.

The benefits of using the HTML-dump is that the HTML-documents are well formed and
all tags are known HTML-tags, which make it possible to use an already developed
HTML-parser.

The XML-dump is also well formed with respect to the XML-tags and could also easily
be parsed by using an XML-parser. The main problem is that the wiki-text in the XML
document uses MediaWikis own markup language, which is not widely used, and
therefore may be harder to parse.

It was found that there are tools available for parsing the Wikipedia XML-dump to plain
text, since the primary goal of this thesis was to create a corpus, it was decided to use
these tools and not try to create our own.

The parser that was chosen for this project was a Python script developed by Medialab,
see ref [7]. The Python script was modified to fit the needs of this project, and the code
used can be found in Appendix C.

The script parses the Wikipedia XML dump and extracts plain text. Originally the script
stripped all the head markings and left only the text. The script was modified to keep
information about all headings and at what level they were at. This was done because we
wanted to create a corpus with as much information as possible. By keeping the headings,
one can look at them, look at the text that is connected to a specific heading and draw
conclusions from that.

 Page 11

3.1.1 The Wikipedia Markup Language

Wikipedia is an open source project which has developed its own markup language. This
markup language is developed by the Wikipedia community and does not follow any
other standards. The markup language is complex, and one can expect to encounter
numerous pitfalls while trying to write such a parser.

Some examples of the Markup Language can be seen below:

[[Öresund]]

The brackets indicate that the text should be considered as an internal link as well. This
line creates a link to the Wikipedia article about “Öresund”.

 [[Danmark|dansk]]

This is basically the same tag, but one also has the option to make the text in the article
say one thing, and the link goes somewhere else. In this example the text says “dansk”,
and the link points to the wikiarticle about “Danmark”.

A more complex example of how the markup language can be used is shown below.

{{Stapeldiagram
|titel=Befolkningsutvecklingen i Abbekås
|titelfärg=#DDD
|bredd=400px
|diagrambredd=300px
|vänster1=År
|höger1=Invånare
|staplar=
{{Pixelstapel|1990|#0099FF|63|4}}
{{Pixelstapel|1995|#0099FF|68|3}}
{{Pixelstapel|2000|#0099FF|67|4}}
{{Pixelstapel|2005|#0099FF|70|8}}
|beskrivning=Källa:
[http://www.ssd.scb.se/databaser/makro/Visavar.asp?yp=tansss&xu=C
9233001&huvudtabell=FolkmangdTatort&deltabell=1&deltabellnamn=Fol
km%E4ngden+per+t%E4tort%2E+Vart+femte+%E5r&omradekod=BE&omradetex
t=Befolkning&preskat=O&innehall=Folkmangd&starttid=1990&stopptid=
2005&Prodid=BE0101&fromSok=Sok&Fromwhere=S&lang=1&langdb=1 SCB –
Folkmängden per tätort. Vart femte år 1990-2005].
}}

 Page 12

This code results in the following diagram picture.

Figure 3.1: Example of a diagram created by the Wikipedia Markup Language

For a complete definition of the Wikipedia Markup Language see ref [8].

3.2 The Crawled Data

The Nutch crawler downloads and stores all html pages in one file per segment. The
dump contains the source code of the webpage, and some additional metadata. Nutch has
the option to parse the text on each page and include this in the dump, which we used.

The Nutch parser did a good job extracting the text. As an alternative, it was tried to
manually parse the text by using the HTMLEditorKit in Java, but it did not give a better
result than the one Nutch provided.

For the Wikipedia corpus, it was chosen to save the headings as they occur in the text,
and it was discussed if something similar could be done in the crawled corpus. The text
that was parsed from Nutch does not contain the headings, but the headings can be parsed
from the HTML content separately. However, the situation is much more complex with
the crawled data than in the Wikipedia material.

When browsing through the parsed text from the crawled data it was found that Nutch
parses all text on a webpage, which means that text from tables, lists etc must be
recognized and ignored. In this process it is unavoidable that some quality text gets
thrown away as well. Trying to connect the different headings with specific text after this
process is complicated, or even impossible. It is also rare that web pages actually contain
big chunks of text divided by headings. As the headings were parsed and reviewed, it was
found that they often contain rather useless information. Examples of frequently used
headings would be: “Welcome”, “Information”, “Contact us” etc. Because of these
reasons it was chosen to parse the headings, but present them after the sentences in the
crawled corpus. Since Nutch only extract the text we had to use a HTML parser and parse
the headings separately. This is done by using the HTMLEditorKit in java, and the code
for doing this can be found in Appendix E (see class TagStripper).

 Page 13

3.3 Sentence Boundary Detection

The goal was to design a corpus containing one sentence per line. To do this an automatic
way to divide a long text into sentences must be designed. The most obvious way to look
for where a sentence starts or ends is by looking for the “.” sign. This criteria isn’t
enough since the “.” sign is ambiguous with respect to sentence boundary. There are
several examples where the “.” sign does not indicate the start of a new sentence, as in
abbreviations such as U.S, or e.g. The later example is tricky since it ends with a dot and
is followed by a whitespace, which is easily confused with the start of a new sentence.
For more reading about sentence boundary detection see ref[9] and ref [10].

Java supports segmentation of text into sentences by using the class
java.text.BreakIterator. The BreakIterator takes a local as an argument, which means that
you specify which language the text is written in, and use that information to segment the
text into sentences. Java code of how a text can be segmented into sentences is shown
below.

Locale currentLocale = new Locale ("sv","SE");

BreakIterator sentenceIterator =

BreakIterator.getSentenceInstance(currentLocale);

sentenceIterator.setText(text);

int boundary2 = sentenceIterator.first();

int boundary1 = 0;

while (boundary2 != BreakIterator.DONE) {

System.out.println(text.substring(boundary1,boundary2));

 boundary1 = boundary2;

boundary2 = sentenceIterator.next();

}

This way of detecting sentence boundaries works well. It handles abbreviations and other
ambiguities with a good success rate.

3.4 Rules for Validating Sentences

Wikipedia is a high quality source of text, and all text that was extracted from Wikipedia
is assumed to be well formed and of interest to include in the corpus.

When dealing with the text from the crawled data this is not the case. Text that has been
parsed from a website can be ill formed, it may e.g. just be scattered words. A filter was
designed to remove junk and only pass through relevant sentences. The filter was
developed through empirical tests where a rule was added, and the outcome was
observed.

Different sets of rules were tried, some more aggressive than others. It was discovered
that if the filter was made aggressive enough, it was possible to get a corpus with high
quality. The set back of using a strict filter is that many sentences are erroneously thrown
away. The goal with this corpus is to study how language is used in “real life”, this means

 Page 14

that the filter can’t be too aggressive. It was also argued that it is better to pass through
too much information in the first version of the corpus so that anyone who wants to use it
can customize it for their own interests.

The following rules were implemented:

1. A sentence can not be empty
2. A sentence is not allowed to have two consecutive spaces
3. A sentence must contain at least one space
4. A sentence is not allowed to have a hanging dot with spaces on both

sides (“ . “)
5. A sentence may not contain “.se”, “.com”, “.nu”, “.org”, “.net” or

“www”
6. Only the following characters are allowed in a sentence

a. Letters
b. Digits
c. .
d. ,
e. ?
f. !
g. &
h. Space mark
i. (
j.)
k. –
l. “
m. :
n. ;
o. /
p. \
q. “

These rules were created by empirical testing. Some of the rules are self-explaining,
while others may seem illogical. Rule number 2 says that a sentence can’t contain two
consecutive spaces. It would actually be desired to have sentences in the corpus where
people faulty have inserted two spaces after each other, but because of the nature of the
parsed text this was also a great indicator of junk text. Examples of sentences that have
been thrown away because of this rule are:

 <S> Registrera ? </S>

<S> - Tipsa en vän, klicka här Spara som favorit
NYHET! </S>
<S> Homepage: http://www.thangorodrim.net/ Older Versions:
3.0.5 (843k), 3.0.4 (774k), 3.0.3 (773k), 3.0.0 (793k) </S>

Rule number 4 which says that a sentence can not contain a hanging dot results in a filter
for the following type of sentences:

<S> THE STORY OF WHAT HAPPENED IN KARLSTAD IS HEREand some
mugshots from Malmoe..!!! </S>
<S> Har også redigert litt på siden til Isak sin familie . 27.5:
Bloggen er oppdatert! </S>

 Page 15

The hanging dot also produced some problems with sentence boundary detection in terms
of that a hanging dot is sometimes wrongly used by the author to indicate the end of a
sentence, but not always.

Other rules that could be implemented if a cleaner corpus is desired is to remove all
sentences that contain “:” , “;” or consecutive dots such as “..”. These rules were not
implemented in the corpus because it was argued that these signs are frequently used in
writing and should therefore be in the corpus. However, those signs are also sometimes
an indicator of junk text.

We wanted the text in the corpus to follow the rules that were admitted with respect to
the Swedish spelling reform 1906, see ref [11].
To achieve this, text was disregarded if it contained any of the following substrings:

hv, äro, gingo, gåfvor, gåfva, hafva, fingo, voro, blevo, bedrevo, däröfver, ifver, blefvo,
blifva, lofva, blifver, lefver, afrätta, kufva, afskära, afrätta, afsky.

If any of these words occurred on a page it was thrown away. The filter doesn’t contain
all possible keywords, but if one word is found the surrounding text should probably be
disregarded as well.

The first rule checks for the specific occurrence of “ hv”, a space mark followed by hv.
This rule both helps where the language identification has failed and lets Danish and
Norwegian text through and it finds many words that were changed in the spelling reform
such as: hvad, hvadan, hval, hvalf etc.

 Page 16

4 Language Identification

Since the purpose of this project was to create a Swedish corpus, it was crucial to find a
way to identify which language a given text is written in. The Wikipedia corpus was
assumed to be written in Swedish, but for the crawled data there was a considerable mix
of different languages.

The language identification was done by using the Java package
org.knallgrau.utils.textcat.TextCategorizer, see ref [12]. This package can categorize text
and identify which language a given text is written in. The text categorizer works better
the more text that is presented to it at a time. A short text have lower success rate than
larger quantities of text. Languages that are similar such as Danish, Norwegian and
Swedish, can be mixed up by the categorizer if not enough text is provided.

A web page may contain text in more than one language, tough it doesn't occur
frequently. In an attempt to handle this, it was tried to divide the text into sentences and
then categorize each sentence. As stated above, the categorizer doesn't work well with
short sentences, which led to many faulty identifications. To solve this, it was tried to set
different thresholds that had to be fulfilled to let a text pass through, such as if 70% of the
sentences are recognized as Swedish, the others are let through as well.

This way of handling the text works well, but the categorizing of text was found to be
slow. It would take about 3+ weeks to parse all crawled data if every sentence was to be
categorized.

To improve the performance of the program, the way of categorizing the text was
changed. It was tried to put all sentences from each webpage together into a long text and
then categorize everything at once. This was successful, there were no noticeable
performance difference with respect to what text was outputted as Swedish, but the
performance gain in time was great. Compared to 3+ weeks, it now only took 4 days to
parse through the data.

 Page 17

5 Publishing the Result

This thesis resulted in two corpora that were aimed to be available for anyone to use and
improve as long as its origin is presented. This makes it important to publish the result in
a standardized way which is easy to understand and to parse. It was chosen to use XML
syntax since it’s a common way to publish this type of data.

5.1 Format

5.1.1 The Wikipedia Corpus

The following information was considered important to the Wikipedia corpus:

• An id number that increase with every article
• An URL to the current article (because of the dynamics of Wikipedia the text on

the web may not always be the same as the text in the corpus)
• The title of the article
• The sentences
• The headings

This resulted in a corpus with the following format.

<doc id=”#” url = “http://sv.wikipedia.org/wiki/...”>
<Title>Example of a Title</Title>
<S> This is a sentence </S>

…..
<H1>Heading on level 1</H1>
<S> This is another sentence </S>

…..
<H2>Heading on level 2</H2>
<S> This is a third sentence </S>

…..
</doc>

An example of what the corpus entry for the first article in the Wikipedia corpus look like
has been attached as Appendix F.

 Page 18

5.1.2 The Crawled Corpus

The crawled corpus has a similar format as the one used for the Wikipedia corpus. In the
crawled corpus, there is no Title tag, and the headings are not mixed with the text. The
crawled corpus has the following format:

<doc id=”#” url = “http://...”>
<S>This is a sentence</S>
<S>This is another sentence</S>
<S>This is a third sentence</S>

…..
<H1>Heading on level 1</H1>
<H1>Heading on level 1</H1>
<H2>Heading on level 2</H2>

…..
</doc>

 Page 19

6 N-gram Statistics

It was desirable to get statistics, which shows the frequency of the words and sequences
of words in a corpus to be able to draw conclusions of the fact that some words are more
probable to follow each other than others. This type of statistics is called n-gram
statistics. The unigram statistics is a frequency table of the tokens in the corpus, the
bigram statistics is a frequency table of every 2-token sequence in the corpus, trigram,
fourgram etc is the same for every 3-token and 4-token sequence.

The n-gram statistics presented below was created with a threshold of 10 occurrences,
which means that no sequence that occurs less than 10 times was included in the n-gram
statistics. When creating the n-gram statistics all headings were stripped out of the two
corpora and only sentences were taken in consideration.

The statistics that are presented in this section can be compared to the n-gram statistics
Google has published on the web, see ref [13].

The Lua script used to create the 3-gram statistics has been attached as Appendix G.

 The counts are as follows:

6.1 Wikipedia

Key figures of this corpus:

Number of tokens: 52 468 401
Number of sentences: 2 686 698
Number of unigrams: 188 346
Number of bigrams: 426 609
Number of trigrams: 757 226

The 20 most frequent tokens in the unigram statistics:

Rank Word Frequency Rank Word Frequency
1 <S> 2686698 11 på 530644

2 </S> 2686698 12 till 528045

3 . 2627810 13 med 517729

4 och 1494132 14 den 445973

5 i 1421304 15 för 442561

6 av 852581 16 var 332645

7 en 827240 17 ett 311400

8 som 812248 18 har 280306

9 är 688215 19 det 277774

10 att 608211 20 de 276176
Table 6.1: The 20 most frequent tokens in the unigram statistics in the Wikipedia corpus

 Page 20

The 20 most frequent 2-token sequences in the bigram statistics:

Rank Sequence Frequency Rank Sequence Frequency
1 . </S> 2627806 11 <S> En 50700

2 är en 162315 12 <S> Under 43979

3 <S> Han 121713 13 bland annat 41123

4 <S> I 116756 14 av de 36864

5 <S> Den 109900 15 <S> Efter 36792

6 för att 101055 16 i en 35805

7 <S> Det 90205 17 en av 34615

8 <S> De 59782 18 <S> På 32012

9 är ett 52097 19 av en 31788

10 var en 51552 20 i den 30773
Table 6.2: The 20 most frequent 2-token sequences in the bigram statistics in the Wikipedia corpus

The 20 most frequent 3-token sequences in the trigram statistics:

Rank Sequence Frequency Rank Sequence Frequency
1 <S> Han var 20233 11 <S> Det var 7996

2 <S> Det finns 14739 12 Stockholm . </S> 7893

3 <S> Det är 14539 13 <S> För att 7608

4 på grund av 13924 14 <S> Efter att 7605

5 en av de 12005 15 var en svensk 7498

6 en del av 10856 16 <S> Den är 7397

7 <S> Han har 10695 17 USA . </S> 7363

8 Sverige . </S> 10430 18 i Sverige . 7170

9 <S> Han är 9702 19 är en svensk 7094

10 kommun . </S> 8035 20 invånare . </S> 6867
Table 6.3: The 20 most frequent 3-token sequences in the trigram statistics in the Wikipedia corpus

The following is an example of word sequences in the 3-gram corpus which contains the
word “universitet”:

Rank Sequence Frequency
1 universitet . </S> 2498

2 vid Uppsala universitet 1166

3 vid universitetet i 1153

4 vid Lunds universitet 804

5 Uppsala universitet . 460

6 vid Stockholms universitet 451

7 Lunds universitet . 367

8 vid Göteborgs universitet 288

9 universitetet . </S> 278

10 vid Helsingfors universitet 256
Table 6.4: Example of trigrams containing the word universitet in the Wikipedia corpus

 Page 21

Below are two histograms which show N-gram statistics for the Wikipedia corpus. The x-
axis represents the count of how many times a sequence occurs in the n-gram statistics,
and the y-axis represents how many sequences there are for that specific count.

Figure 6.1: Diagram showing the relation between number of occurrences and frequency

Figure 6.2: Diagram showing the relation between number of occurrences and frequency

 Page 22

6.2 Crawled Corpus

Key figures of this corpus:

Number of tokens: 145 679 852
Number of sentences: 8 342 918
Number of unigrams: 368 691
Number of bigrams: 1 104 584
Number of trigrams: 1 212 839

The 20 most frequent tokens in the unigram statistics:

Rank Word Frequency Rank Word Frequency
1 <S> 8342918 11 för 1463478

2 </S> 8342918 12 med 1381048

3 . 6909467 13 av 1334560

4 och 3611218 14 till 1262162

5 i 2537131 15 det 1216796

6 att 2377097 16 har 930594

7 på 1825557 17 om 826339

8 är 1760129 18 du 745092

9 som 1757020 19 den 730948

10 en 1606788 20 ett 718228
Table 6.5: The 20 most frequent tokens in the unigram statistics in the crawled corpus

The 20 most frequent 2-token sequences in the bigram statistics:

Rank Sequence Frequency Rank Sequence Frequency
1 . </S> 6907133 11 är det 124987

2 ! </S> 649963 12 <S> En 122091

3 ? </S> 613774 13 <S> Men 120390

4 <S> Det 378521 14 <S> Den 120192

5 för att 337540 15 det är 118146

6 <S> Vi 231952 16 att det 112313

7 <S> I 167549 17 <S> Läs 108563

8 <S> Jag 164310 18 <S> För 98519

9 är en 127282 19 <S> De 98213

10 Det är 125448 20 <S> Om 97853
Table 6.6: The 20 most frequent tokens in the bigram statistics in the crawled corpus

 Page 23

The 20 most frequent 3-token sequences in the trigram statistics:

Rank Sequence Frequency Rank Sequence Frequency
1 <S> Det är 110862 11 .. . </S> 27517

2 <S> Läs mer 62488 12 <S> Jag har 27100

3 <S> Vi har 41270 13 <S> Det var 27040

4 här . </S> 36437 14 att det är 26574

5 år . </S> 35679 15 oss . </S> 21509

6 <S> För att 34909 16 2 . </S> 20953

7 <S> Det finns 34540 17 Sverige . </S> 20460

8 <S> Om du 33711 18 för att få 20254

9 <S> Du kan 33114 19 på . </S> 19624

10 det . </S> 28923 20 här ! </S> 19610
Table 6.7: The 20 most frequent tokens in the trigram statistics in the crawled corpus

The following is an example of word sequences in the 3-gram corpus which contains the
word “universitet”:

Rank Sequence Frequency
1 universitet . </S> 3209

2 vid Umeå universitet 835

3 vid Uppsala universitet 743

4 universitet och högskolor 730

5 universitetet . </S> 640

6 vid Stockholms universitet 587

7 vid Lunds universitet 523

8 Uppsala universitet . 500

9 Umeå universitet . 455

10 Stockholms universitet . 403
Table 6.8: Example of trigrams containing the word universitet in the crawled corpus

 Page 24

Below are two histograms which show N-gram statistics for the crawled corpus. The x-
axis represents the count of how many times a sequence occurs in the n-gram statistics,
and the y-axis represents how many sequences there are for that specific count.

Figure 6.3: Diagram showing the relation between number of occurrences and frequency

Figure 6.4: Diagram showing the relation between number of occurrences and frequency

 Page 25

7 Future Work and Improvements

For the Wikipedia corpus, it is possible to repeat the steps from this project to create
corpora in other language that Wikipedia has been released in. There are no real
difficulties in doing this, and the procedures described here are possible to repeat. Some
languages may be special cases if they contain character sets that are not handled by the
Python script, and the sentence boundary detection may not work properly for all
languages.

For the crawled corpus there is always the option to try to create an even bigger corpus.
More crawled data obviously means a bigger corpus. The major concern for an attempt to
create a bigger corpus by crawling the whole web is that a lot of data will be downloaded,
but only a small part of it will be Swedish. By looking at the dmoz url file one can
conclude that only a couple of percents of the domains were Swedish. If this is assumed
to be true for the web in general the text categorizing of such a crawl would not be
realistic, since it would take about 50 times longer (200 days) to reach the same amount
that was reached in this project.

The text in the crawled corpus has been categorized as Swedish, and even if the
categorizer does a good job it was unavoidable that some foreign text passed through.

The filter that was designed to remove junk from the crawled text removed a lot of text
that should not be in the corpus. The filter was designed in such a way that we wanted to
let through as much real text as possible, and this came with the price that some text that
shouldn’t be in the corpus also slipped through, for example result lists from sport events
and other types of listed content that may occur on websites.

 Page 26

8 The Result

The initial goal was to create a corpus with ~100 million words. The result was two
corpora, one based on material from Wikipedia and one from crawling the Internet.

The Wikipedia corpus contains 2 686 698 sentences, corresponding to 44 395 946 words.
From the crawled data, a corpus was created containing 8 342 918 sentences,
corresponding to 119 500 499 words.

The project has successfully managed to gather corpora of such size and quality that it
will be useful to the development of writing aids, but also many other applications within
language technology.

9 Afterwords

The subject for this master’s thesis was proposed by the company Oribi. I would like to
thank all the personnel at Oribi for this opportunity, and especially Anders Holtsberg and
Caroline Willners for giving directions and many valuable comments through out my
work. I would also like to thank my supervisor from LTH, Pierre Nugues who has helped
a lot to make this thesis a success.

 Page 27

10 References

[1] Oribi, the company this Masters thesis was created in cooperation with.

http://www.oribi.se

[2] The Stockholm Umeå Corpus SUC: Ejerhed, Källgren

 http://www.ling.su.se/staff/sofia/suc/suc.html

[3] The Lucene project

http://lucene.apache.org/

[4] The Open Directory Project DMOZ

http://www.dmoz.org/

[5] Nutch 0.9 Crawl Script Tutorial.

http://wiki.apache.org/nutch/Nutch_0.9_Crawl_Script_Tutorial

[6] Nutch forum describing problems with segment merging.

http://www.nabble.com/Merge-taking-forever-td23861788.html

[7] Medialab, developer of parsing tool for Wikipedia.

 http://medialab.di.unipi.it/wiki/Wikipedia_Extractor

[8] Definition of the MediaWiki Markup Language.

 http://www.mediawiki.org/wiki/Markup_spec

[9] “Sentence Boundary Detection Using a MaxEnt Classifier”, 2005 Neha Agarwal,

Kelley Herndon Ford, and Max Shneider, Department of Computer Science

Stanford University, Stanford CA

 http://nlp.stanford.edu/courses/cs224n/2005/agarwal_herndon_shneider_final.pdf

[10] “Experiments on Sentence Boundery Detection”, Mark Stevenson and Robert

Gaizauskas, Department of Computer Science, University of Sheffield

 http://www.aclweb.org/anthology/A/A00/A00-1012.pdf

[11] Description of the Swedish spelling reform from 1906.

http://sv.wikipedia.org/wiki/Stavningsreformen

[12] Java Text Categorizing Library.

http://textcat.sourceforge.net/

[13] Information about the Google n-gram corpus.

http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-

you.html

 Page 28

Appendix A Domain-URLFilter Used by Nutch

Licensed to the Apache Software Foundation (ASF) under one or more
contributor license agreements. See the NOTICE file distributed with
this work for additional information regarding copyright ownership.
The ASF licenses this file to You under the Apache License, Version
2.0
(the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied.
See the License for the specific language governing permissions and
limitations under the License.

config file for urlfilter-domsin plugin

se
nu

 Page 29

Appendix B Shellscript for Running Nutch

NUTCH_HOME=./
CATALINA_HOME=/var/lib/tomcat5.5

Parse arguments
if ["$1" == "safe"]
then
 safe=yes
fi

if [-z "$NUTCH_HOME"]
then
 NUTCH_HOME=.
 echo runbot: $0 could not find environment variable NUTCH_HOME
 echo runbot: NUTCH_HOME=$NUTCH_HOME has been set by the script
else
 echo runbot: $0 found environment variable NUTCH_HOME=$NUTCH_HOME
fi

if [-z "$CATALINA_HOME"]
then
 CATALINA_HOME=/opt/apache-tomcat-6.0.10
 echo runbot: $0 could not find environment variable NUTCH_HOME
 echo runbot: CATALINA_HOME=$CATALINA_HOME has been set by the script
else
 echo runbot: $0 found environment variable CATALINA_HOME=$CATALINA_HOME
fi

if [-n "$topN"]
then
 topN="--topN $rank"
else
 topN=""
fi

steps=10
echo "----- Inject (Step 1 of $steps) -----"
$NUTCH_HOME/bin/nutch inject crawl/crawldb dmoz
echo "----- Generate, Fetch, Parse, Update (Step 2 of $steps) -----"
for((i=0; i < $depth; i++))
do
 echo "--- Beginning crawl at depth `expr $i + 1` of $depth ---"
 $NUTCH_HOME/bin/nutch generate crawl/crawldb crawl/segments –topN 50 000
 if [$? -ne 0]
 then
 echo "runbot: Stopping at depth $depth. No more URLs to fetch."
 break
 fi
 segment=`ls -d crawl/segments/* | tail -1`

 $NUTCH_HOME/bin/nutch fetch $segment -threads $threads
 if [$? -ne 0]
 then
 echo "runbot: fetch $segment at depth $depth failed. Deleting it."
 rm -rf $segment
 continue
 fi

 echo "--- Parsing Segment $segment ---"
 $NUTCH_HOME/bin/nutch parse $segment

 $NUTCH_HOME/bin/nutch updatedb crawl/crawldb $segment
done

 Page 30

Appendix C Python Script to Parse Wikipedia XML

#!/usr/bin/python
-*- coding: utf-8 -*-

===
Version: 1.0 (Mar 12, 2009)
Author: Antonio Fuschetto (fuschett@di.unipi.it), University of Pisa
===

===
This file is part of Tanl.

Tanl is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License, version 3,
as published by the Free Software Foundation.

Tanl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
===

"""Wikipedia Extractor:
Extracts and cleans text from Wikipedia database dump and stores output in a
number of files of similar size in a given directory. Each file contains
several documents in Tanl document format.

Usage:
 WikiExtractor.py [options]

Options:
 -c, --compress : compress output files using bzip2 algorithm
 -b ..., --bytes=... : put specified bytes per output file (500K by default)
 -o ..., --output=... : place output files in specified directory (current
 directory by default)
 --help : display this help and exit
 --usage : display script usage
"""

import sys
import getopt
import pickle
import urllib
import re
import bz2
import os.path

SUPPORT CLASSES ###

class WikiDocument:
 def __init__(self):
 self.id = None
 self.url = None
 self.text = None

 def __str__(self):
 return '<doc id="%d" url="%s">\n%s\n</doc>\n' % (self.id, self.url, self.text)

#--

class WikiExtractor:
 __garbage_tags = ('ref', 'gallery', 'timeline', 'noinclude', 'pre', 'table', 'tr', 'td',
 'ul', 'li', 'ol', 'dl', 'dt', 'dd', 'menu', 'dir')
 __wrapper_tags = ('nowiki', 'cite', 'source', 'hiero', 'div', 'font', 'span', 'strong',
 'strike', 'blockquote', 'tt', 'var', 'sup', 'sub', 'big', 'small',
 'center', 'h1', 'h2', 'h3', 'em', 'b', 'i', 'u', 'a', 's', 'p')
 __single_tags = ('references', 'ref', 'img', 'br', 'hr', 'li', 'dt', 'dd')
 __placeholder_tags = {'math':'Formula', 'code':'Codice'}

 __project_namespaces = ('wikipedia', 'mediawiki', 'wikiquote', 'wikibooks', 'wikisource',

 Page 31

 'wiktionary', 'wikispecies', 'wikinews', 'wikiversita',
'commons')
 __garbage_namespaces = ('immagine', 'image', 'categoria', 'category')

 __char_entities = {' ' :u'\u00A0', '¡' :u'\u00A1', '¢' :u'\u00A2',
 '£' :u'\u00A3', '¤':u'\u00A4', '¥' :u'\u00A5',
 '¦' :u'\u00A6', '§' :u'\u00A7', '¨' :u'\u00A8',
 '©' :u'\u00A9', 'ª' :u'\u00AA', '«' :u'\u00AB',
 '¬' :u'\u00AC', '­' :u'\u00AD', '®' :u'\u00AE',
 '¯' :u'\u00AF', '°' :u'\u00B0', '±' :u'\u00B1',
 '²' :u'\u00B2', '³' :u'\u00B3', '´' :u'\u00B4',
 'µ' :u'\u00B5', '¶' :u'\u00B6', '·' :u'\u00B7',
 '¸' :u'\u00B8', '¹' :u'\u00B9', 'º' :u'\u00BA',
 '»' :u'\u00BB', '¼':u'\u00BC', '½' :u'\u00BD',
 '¾' :u'\u00BE', '¿':u'\u00BF', 'À' :u'\u00C0',
 'Á' :u'\u00C1', 'Â' :u'\u00C2', 'Ã' :u'\u00C3',
 'Ä' :u'\u00C4', 'Å' :u'\u00C5', 'Æ' :u'\u00C6',
 'Ç' :u'\u00C7', 'È':u'\u00C8', 'É' :u'\u00C9',
 'Ê' :u'\u00CA', 'Ë' :u'\u00CB', 'Ì' :u'\u00CC',
 'Í' :u'\u00CD', 'Î' :u'\u00CE', 'Ï' :u'\u00CF',
 'Ð' :u'\u00D0', 'Ñ':u'\u00D1', 'Ò' :u'\u00D2',
 'Ó' :u'\u00D3', 'Ô' :u'\u00D4', 'Õ' :u'\u00D5',
 'Ö' :u'\u00D6', '×' :u'\u00D7', 'Ø' :u'\u00D8',
 'Ù' :u'\u00D9', 'Ú':u'\u00DA', 'Û' :u'\u00DB',
 'Ü' :u'\u00DC', 'Ý':u'\u00DD', 'Þ' :u'\u00DE',
 'ß' :u'\u00DF', 'à':u'\u00E0', 'á' :u'\u00E1',
 'â' :u'\u00E2', 'ã':u'\u00E3', 'ä' :u'\u00E4',
 'å' :u'\u00E5', 'æ' :u'\u00E6', 'ç' :u'\u00E7',
 'è' :u'\u00E8', 'é':u'\u00E9', 'ê' :u'\u00EA',
 'ë' :u'\u00EB', 'ì':u'\u00EC', 'í' :u'\u00ED',
 'î' :u'\u00EE', 'ï' :u'\u00EF', 'ð' :u'\u00F0',
 'ñ' :u'\u00F1', 'ò':u'\u00F2', 'ó' :u'\u00F3',
 'ô' :u'\u00F4', 'õ':u'\u00F5', 'ö' :u'\u00F6',
 '÷' :u'\u00F7', 'ø':u'\u00F8', 'ù' :u'\u00F9',
 'ú' :u'\u00FA', 'û' :u'\u00FB', 'ü' :u'\u00FC',
 'ý' :u'\u00FD', 'þ' :u'\u00FE', 'ÿ' :u'\u00FF',
 'ƒ' :u'\u0192', 'Α' :u'\u0391', 'Β' :u'\u0392',
 'Γ' :u'\u0393', 'Δ' :u'\u0394', 'Ε' :u'\u0395',
 'Ζ' :u'\u0396', 'Η' :u'\u0397', 'Θ' :u'\u0398',
 'Ι' :u'\u0399', 'Κ' :u'\u039A', 'Λ' :u'\u039B',
 'Μ' :u'\u039C', 'Ν' :u'\u039D', 'Ξ' :u'\u039E',
 'Ο':u'\u039F', 'Π' :u'\u03A0', 'Ρ' :u'\u03A1',
 'Σ' :u'\u03A3', 'Τ' :u'\u03A4', 'Υ' :u'\u03A5',
 'Φ' :u'\u03A6', 'Χ' :u'\u03A7', 'Ψ' :u'\u03A8',
 'Ω' :u'\u03A9', 'α' :u'\u03B1', 'β' :u'\u03B2',
 'γ' :u'\u03B3', 'δ' :u'\u03B4', 'ε' :u'\u03B5',
 'ζ' :u'\u03B6', 'η' :u'\u03B7', 'θ' :u'\u03B8',
 'ι' :u'\u03B9', 'κ' :u'\u03BA', 'λ' :u'\u03BB',
 'μ' :u'\u03BC', 'ν' :u'\u03BD', 'ξ' :u'\u03BE',
 'ο':u'\u03BF', 'π' :u'\u03C0', 'ρ' :u'\u03C1',
 'ς' :u'\u03C2', 'σ' :u'\u03C3', 'τ' :u'\u03C4',
 'υ':u'\u03C5', 'φ' :u'\u03C6', 'χ' :u'\u03C7',
 'ψ' :u'\u03C8', 'ω' :u'\u03C9', 'ϑ':u'\u03D1',
 'ϒ' :u'\u03D2', 'ϖ' :u'\u03D6', '•' :u'\u2022',
 '…' :u'\u2026', '′' :u'\u2032', '″' :u'\u2033',
 '‾' :u'\u203E', '⁄' :u'\u2044', '℘' :u'\u2118',
 'ℑ' :u'\u2111', 'ℜ' :u'\u211C', '™' :u'\u2122',
 'ℵ':u'\u2135', '←' :u'\u2190', '↑' :u'\u2191',
 '→' :u'\u2192', '↓' :u'\u2193', '↔' :u'\u2194',
 '↵' :u'\u21B5', '⇐' :u'\u21D0', '⇑' :u'\u21D1',
 '⇒' :u'\u21D2', '⇓' :u'\u21D3', '⇔' :u'\u21D4',
 '∀' :u'\u2200', '∂' :u'\u2202', '∃' :u'\u2203',
 '∅' :u'\u2205', '∇' :u'\u2207', '∈' :u'\u2208',
 '∉' :u'\u2209', '∋' :u'\u220B', '∏' :u'\u220F',
 '∑' :u'\u2211', '−' :u'\u2212', '∗' :u'\u2217',
 '√' :u'\u221A', '∝' :u'\u221D', '∞' :u'\u221E',
 '∠' :u'\u2220', '∧' :u'\u2227', '∨' :u'\u2228',
 '∩' :u'\u2229', '∪' :u'\u222A', '∫' :u'\u222B',
 '∴' :u'\u2234', '∼' :u'\u223C', '≅' :u'\u2245',
 '≈' :u'\u2248', '≠' :u'\u2260', '≡' :u'\u2261',
 '≤' :u'\u2264', '≥' :u'\u2265', '⊂' :u'\u2282',
 '⊃' :u'\u2283', '⊄' :u'\u2284', '⊆' :u'\u2286',
 '⊇' :u'\u2287', '⊕' :u'\u2295', '⊗' :u'\u2297',
 '⊥' :u'\u22A5', '⋅' :u'\u22C5', '⌈' :u'\u2308',
 '⌉' :u'\u2309', '⌊':u'\u230A', '⌋' :u'\u230B',
 '⟨' :u'\u2329', '⟩' :u'\u232A', '◊' :u'\u25CA',
 '♠' :u'\u2660', '♣' :u'\u2663', '♥' :u'\u2665',

 Page 32

 '♦' :u'\u2666', '"' :u'\u0022', '<' :u'\u003C',
 '>' :u'\u003E', 'Œ' :u'\u0152', 'œ' :u'\u0153',
 'Š' :u'\u0160', 'š':u'\u0161', 'Ÿ' :u'\u0178',
 'ˆ' :u'\u02C6', '˜' :u'\u02DC', ' ' :u'\u2002',
 ' ' :u'\u2003', ' ':u'\u2009', '‌' :u'\u200C',
 '‍' :u'\u200D', '‎' :u'\u200E', '‏' :u'\u200F',
 '–' :u'\u2013', '—' :u'\u2014', '‘' :u'\u2018',
 '’' :u'\u2019', '‚' :u'\u201A', '“' :u'\u201C',
 '”' :u'\u201D', '„' :u'\u201E', '†' :u'\u2020',
 '‡' :u'\u2021', '‰':u'\u2030', '‹' :u'\u2039',
 '›' :u'\u203A', '€' :u'\u20AC'}

 def __init__(self):
 # Riconosce i commenti HTML
 self.__comment_pattern = re.compile(r'<!--.*?-->', re.DOTALL)

 # Riconosce i tag HTML spazzatura
 self.__garbage_tag_patterns = list()
 for tag in self.__class__.__garbage_tags:
 pattern = re.compile(r'<\s*%s(\s*| [^/]+?)>.*?<\s*/\s*%s\s*>' % (tag, tag),
re.DOTALL | re.IGNORECASE)
 self.__garbage_tag_patterns.append(pattern)

 # Riconosce i tag HTML contenitori
 self.__wrapper_tag_patterns = list()
 for tag in self.__class__.__wrapper_tags:
 left_pattern = re.compile(r'<\s*%s(\s*| [^/]+?)>' % tag, re.DOTALL |
re.IGNORECASE)
 right_pattern = re.compile(r'<\s*/\s*%s\s*>' % tag, re.DOTALL | re.IGNORECASE)
 self.__wrapper_tag_patterns.append((left_pattern, right_pattern))

 # Riconosce i tag HTML singoli
 self.__single_tag_patterns = list()
 for tag in self.__class__.__single_tags:
 good_pattern = re.compile(r'<\s*%s(\s*| .+?)/\s*>' % tag, re.DOTALL |
re.IGNORECASE)
 bad_pattern = re.compile(r'<\s*(/|\\)?\s*%s(\s*| [^/]+?)\\?\s*>' % tag, re.DOTALL
| re.IGNORECASE)
 self.__single_tag_patterns.append((good_pattern, bad_pattern))

 # Riconosce i tag HTML segnaposto
 self.__placeholder_tag_patterns = list()
 for tag in self.__class__.__placeholder_tags.iterkeys():
 pattern = re.compile(r'<\s*%s(\s*| [^/]+?)>.*?<\s*/\s*%s\s*>' % (tag, tag),
re.DOTALL | re.IGNORECASE)
 self.__placeholder_tag_patterns.append((pattern,
self.__class__.__placeholder_tags[tag]))

 # Riconosce le tabelle e i template
 self.__table_pattern = re.compile(r'\{[^{]*?\}', re.DOTALL)

 # Riconosce i wikilink
 good_wikilink_pattern = re.compile(r'\[\[[^[]*?\]\]', re.DOTALL)
 bad_left_wikilink_pattern = re.compile(r'\[[^[]*?\]\]', re.DOTALL)
 bad_right_wikilink_pattern = re.compile(r'\[\[[^[]*?\]', re.DOTALL)
 self.__wikilink_pattern = (good_wikilink_pattern, bad_left_wikilink_pattern,
bad_right_wikilink_pattern)

 # Riconosce i link HTTP
 self.__http_link_pattern = re.compile(r'\[http.*?\]', re.DOTALL | re.IGNORECASE)

 # Riconosce gli apostrofi che precedono grassetto e corsivo
 apostrophe_bold_pattern = re.compile(r"\w'('''.*?''')", re.DOTALL)
 apostrophe_italic_pattern = re.compile(r"\w'(''.*?'')", re.DOTALL)
 self.__apostrophe_pattern = (apostrophe_bold_pattern, apostrophe_italic_pattern)

 # Riconosce le entita' numeriche
 self.__numeric_entity_pattern = re.compile(r'&#\d+?;')

 # Riconosce gli spazi multipli
 self.__multi_space_pattern = re.compile(r' {2,}')

 # Riconosce i punti multipli
 self.__multi_dot_pattern = re.compile(r'\.{4,}')

 def extract(self, wiki_document):
 wiki_document = self.__clean(wiki_document)

 Page 33

 if not wiki_document: return None

 wiki_document = self.__compact(wiki_document)
 return wiki_document

 def __clean(self, wiki_document):
 # Rende maggiormente riconoscibili i tag
 wiki_document.text = wiki_document.text.replace('<', '<').replace('>', '>')
 wiki_document.text = wiki_document.text.replace('<<', u'Â«').replace('>>', u'Â»')

 # Elimina i commenti HTML
 wiki_document.text = self.__comment_pattern.sub('', wiki_document.text)

 # Elimina i tag HTML spazzatura
 for pattern in self.__garbage_tag_patterns:
 wiki_document.text = pattern.sub('', wiki_document.text)

 # Elimina i tag HTML contenitori
 for left_pattern, right_pattern in self.__wrapper_tag_patterns:
 wiki_document.text = left_pattern.sub('', wiki_document.text)
 wiki_document.text = right_pattern.sub('', wiki_document.text)

 # Elimina i tag HTML singoli
 for good_pattern, bad_pattern in self.__single_tag_patterns:
 wiki_document.text = good_pattern.sub('', wiki_document.text)
 wiki_document.text = bad_pattern.sub('', wiki_document.text)

 # Elimina i tag HTML segnaposto
 for pattern, placeholder in self.__placeholder_tag_patterns:
 index = 1
 for match in pattern.finditer(wiki_document.text):
 wiki_document.text = wiki_document.text.replace(match.group(), '[%s %d]' %
(placeholder, index))
 index += 1

 # Elimina le tabelle e i template
 wiki_document.text = wiki_document.text.replace('{{end box}}', '}')
 wiki_document.text = wiki_document.text.replace('{{', '{').replace('}}', '}')
 wiki_document.text = wiki_document.text.replace('{|', '{').replace('|}', '}')
 wiki_document.text = self.__table_pattern.sub('', wiki_document.text)
 wiki_document.text = self.__table_pattern.sub('', wiki_document.text)
 wiki_document.text = self.__table_pattern.sub('', wiki_document.text)

 # Gestisce i wikilink (ben formattati)
 good_wikilink_pattern = self.__wikilink_pattern[0]
 for match in good_wikilink_pattern.finditer(wiki_document.text):
 wikilink = match.group()
 wiki_document.text = wiki_document.text.replace(wikilink,
self.__handle_wikilink(wikilink[2:-2]))
 for match in good_wikilink_pattern.finditer(wiki_document.text):
 wikilink = match.group()
 wiki_document.text = wiki_document.text.replace(wikilink,
self.__handle_wikilink(wikilink[2:-2]))

 # Gestisce i wikilink (mal formattatia)
 bad_left_wikilink_pattern = self.__wikilink_pattern[1]
 for match in bad_left_wikilink_pattern.finditer(wiki_document.text):
 wikilink = match.group()
 wiki_document.text = wiki_document.text.replace(wikilink,
self.__handle_wikilink(wikilink[1:-2]))
 bad_right_wikilink_pattern = self.__wikilink_pattern[2]
 for match in bad_right_wikilink_pattern.finditer(wiki_document.text):
 wikilink = match.group()
 wiki_document.text = wiki_document.text.replace(wikilink,
self.__handle_wikilink(wikilink[2:-1]))
 wiki_document.text = wiki_document.text.replace('[[', '').replace(']]', '')

 # Elimina i link HTTP
 wiki_document.text = self.__http_link_pattern.sub('',
wiki_document.text).replace('[]', '')

 # Gestisce i grassetti e i corsivi
 apostrophe_bold_pattern = self.__apostrophe_pattern[0]
 for match in apostrophe_bold_pattern.finditer(wiki_document.text):
 bold_text = match.group(1)
 wiki_document.text = wiki_document.text.replace(bold_text, bold_text[3:-3])
 apostrophe_italic_pattern = self.__apostrophe_pattern[1]

 Page 34

 for match in apostrophe_italic_pattern.finditer(wiki_document.text):
 italic_text = match.group(1)
 wiki_document.text = wiki_document.text.replace(italic_text, '"%s"' %
italic_text[2:-2])
 wiki_document.text = wiki_document.text.replace("'''", '').replace("''", '"')

 # Gestisce i caratteri speciali
 wiki_document.text = wiki_document.text.replace('&', '&').replace('""',
'"')
 for entity in self.__class__.__char_entities.iterkeys():
 wiki_document.text = wiki_document.text.replace(entity,
self.__class__.__char_entities[entity])

 # Gestisce i caratteri speciali
 for match in self.__numeric_entity_pattern.finditer(wiki_document.text):
 entity = match.group()
 wiki_document.text = wiki_document.text.replace(entity,
self.__handle_unicode(entity))

 # Gestisce alcune imperfezioni del testo
 wiki_document.text = wiki_document.text.replace('\t', ' ')
 wiki_document.text = self.__multi_space_pattern.sub(' ', wiki_document.text)
 wiki_document.text = self.__multi_dot_pattern.sub('...', wiki_document.text)
 wiki_document.text = wiki_document.text.replace(' ,', ',').replace(' .', '.')
 wiki_document.text = wiki_document.text.replace(' :', ':').replace(' ;', ';')
 wiki_document.text = wiki_document.text.replace(',,', ',').replace(',.', '.')
 wiki_document.text = wiki_document.text.replace('(', '(').replace(')', ')')
 wiki_document.text = wiki_document.text.replace('[', '[').replace(']', ']')
 wiki_document.text = wiki_document.text.replace(u'Â« ', u'Â«').replace(u' Â»', u'Â»')

 return wiki_document

 def __compact(self, wiki_document):
 page = list()
 paragraph = list()

 for line in wiki_document.text.split('\n'):
 line = line.strip()
 if not line: continue

 # Gestisce il titolo della pagina
 if line.startswith('++'):
 title = line[2:-2]
 if title and title[-1] not in '!?':
 title = '%s.' % title
 page = [title]
 # Gestisce i titoli dei paragrafi
 # elif line.startswith('=='):
 # if len(paragraph) > 1:
 # page.extend(paragraph)
 # title = line[2:-2]
 # if title and title[-1] not in '!?':
 # title = '%s.' % title
 # paragraph = [title]
 # Elimina gli elenchi puntati e numerati
 # test
 elif line[0] in '*#:;':
 continue
 # Elimina i resti delle tabelle
 elif line[0] in '{|' or line[-1] in '}':
 continue
 # Elimina le righe non significative
 elif (line[0] == '(' and line[-1] == ')') or line.strip('.-') == '':
 continue
 # Elimina le righe con un basso numero di token
 elif len(line.split()) < 6:
 continue
 # Gestisce il testo della pagina
 elif len(paragraph) == 0:
 page.append(line)
 # Gestisce il testo dei paragrafi
 else:
 paragraph.append(line)

 if len(paragraph) > 1:
 page.extend(paragraph)
 elif len(page) == 1: return None

 Page 35

 wiki_document.text = '\n'.join(page)
 return wiki_document

 def __handle_wikilink(self, wikilink):
 tokens = wikilink.split(':')
 while not tokens[0]:
 if len(tokens) < 2: return ''
 tokens = tokens[1:]

 if len(tokens) == 1 or tokens[0].strip().lower() in
self.__class__.__project_namespaces:
 tokens = tokens[-1].split('|')
 while not tokens[-1]:
 if len(tokens) < 2: return ''
 tokens = tokens[:-1]
 return tokens[-1].split('#')[-1].split('/')[-1].strip()

 if tokens[0].strip().lower() in self.__class__.__garbage_namespaces: return ''

 tokens = tokens[-1].split('|')
 while not tokens[-1]:
 if len(tokens) < 2: return ''
 tokens = tokens[:-1]
 if len(tokens) == 1: return ''
 return tokens[-1].split('#')[-1].split('/')[-1].strip()

 def __handle_unicode(self, entity):
 numeric_code = int(entity[2:-1])
 if numeric_code >= 0x10000: return ''
 return unichr(numeric_code)

#--

class OutputSplitter:
 def __init__(self, compress, max_file_size, path_name):
 self.__dir_index = 0
 self.__file_index = -1
 self.__cur_file_size = 0
 self.__compress = compress
 self.__max_file_size = max_file_size
 self.__path_name = path_name
 self.__out_file = self.__open_next_file()

 def write(self, text):
 text_len = len(text)
 if self.__cur_file_size + text_len / 2 > self.__max_file_size:
 self.__close_cur_file()
 self.__out_file = self.__open_next_file()
 self.__cur_file_size = 0
 self.__out_file.write(text)
 self.__cur_file_size += text_len

 def close(self):
 self.__close_cur_file()

 def __open_next_file(self):
 self.__file_index += 1
 if self.__file_index == 100:
 self.__dir_index += 1
 self.__file_index = 0
 dir_name = self.__get_dir_name()
 if not os.path.isdir(dir_name):
 os.makedirs(dir_name)
 file_name = os.path.join(dir_name, self.__get_file_name())
 if not self.__compress:
 return open(file_name, 'w')
 else:
 return bz2.BZ2File('%s.bz2' % file_name, 'w')

 def __close_cur_file(self):
 self.__out_file.close()

 def __get_dir_name(self):
 char1 = self.__dir_index % 26
 char2 = self.__dir_index / 26 % 26
 return os.path.join(self.__path_name, '%c%c' % (65 + char2, 65 + char1))

 Page 36

 def __get_file_name(self):
 return 'wiki%02d' % self.__file_index

CORE ##

def process_data(input_file, wiki_extractor, output_splitter):
 page = []
 for line in input_file:
 line = line.decode('utf-8').strip()
 if line == '<page>':
 page = []
 elif line == '</page>':
 process_page(page, wiki_extractor, output_splitter)
 else:
 page.append(line)

#--

def process_page(page, wiki_extractor, output_splitter):
 wiki_document = extract_document(page)
 if not wiki_document: return

 wiki_document = wiki_extractor.extract(wiki_document)
 if not wiki_document: return

 output_splitter.write(wiki_document.__str__().encode('utf-8'))

#--

def extract_document(page):
 wiki_document = WikiDocument()
 for line in page:
 if not line: continue

 # Identificatore della pagina (nodo XML)
 if not wiki_document.id and line.startswith('<id>') and line.endswith('</id>'):
 wiki_document.id = int(line[4:-5])
 continue
 # Titolo della pagina (nodo XML)
 elif not wiki_document.url and line.startswith('<title>') and
line.endswith('</title>'):
 title = line[7:-8].replace('&', '&')
 if ':' in title: return None
 quoted_title = urllib.quote(title.replace(' ', '_').encode('utf-8'))
 wiki_document.url = 'http://sv.wikipedia.org/wiki/%s' % quoted_title
 wiki_document.text = '++%s++' % title
 continue
 # Inizio del testo della pagina (nodo XML)
 elif line.startswith('<text'):
 if line.endswith('</text>'): return None
 line = line[27:]
 if not line: continue
 # Fine del testo della pagina (nodo XML)
 elif line.endswith('</text>'):
 line = line[:-7]
 if not line: continue
 # Informazione superflua (nodo XML)
 elif line[0] == '<':
 continue
 # Titolo di paragafo (testo della pagina)
 # elif line[0] == '=':
 # line = '==%s==' % line.strip('= ')

 wiki_document.text += '\n%s' % line

 return wiki_document

USER INTERFACE ##

def show_help():
 print >> sys.stdout, __doc__,

def show_usage(output_file, script_name):
 print >> output_file, 'Usage: %s [options]' % script_name

def show_suggestion(output_file, script_name):

 Page 37

 print >> output_file, 'Try \'%s --help\' for more information.' % script_name

def show_size_error(script_name, file_size):
 print >> sys.stderr, '%s: %s: Insufficient or invalid number of bytes' % (script_name,
file_size)

def show_file_error(script_name, file_name):
 print >> sys.stderr, '%s: %s: No such file or directory' % (script_name, file_name)

def main():
 script_name = os.path.basename(sys.argv[0])

 try:
 long_opts = ['help', 'usage', 'compress', 'bytes=', 'output=']
 opts, args = getopt.gnu_getopt(sys.argv[1:], 'cb:o:', long_opts)
 except getopt.GetoptError:
 show_usage(sys.stderr, script_name)
 show_suggestion(sys.stderr, script_name)
 sys.exit(1)

 compress = False
 file_size = 500 * 1024
 output_dir_name = '.'

 for opt, arg in opts:
 if opt == '--help':
 show_help()
 sys.exit()
 elif opt == '--usage':
 show_usage(sys.stdout, script_name)
 sys.exit()
 elif opt in ('-c', '--compress'):
 compress = True
 elif opt in ('-b', '--bytes'):
 try:
 if arg[-1] in 'kK':
 file_size = int(arg[:-1]) * 1024
 elif arg[-1] in 'mM':
 file_size = int(arg[:-1]) * 1024 * 1024
 else:
 file_size = int(arg)
 if file_size < 200 * 1024: raise ValueError()
 except ValueError:
 show_size_error(script_name, arg)
 sys.exit(2)
 elif opt in ('-o', '--output'):
 if os.path.isdir(arg):
 output_dir_name = arg
 else:
 show_file_error(script_name, arg)
 sys.exit(3)

 if len(args) > 0:
 show_usage(sys.stderr, script_name)
 show_suggestion(sys.stderr, script_name)
 sys.exit(4)

 wiki_extractor = WikiExtractor()
 output_splitter = OutputSplitter(compress, file_size, output_dir_name)
 process_data(sys.stdin, wiki_extractor, output_splitter)

 output_splitter.close()

if __name__ == '__main__':
 main()

 Page 38

Appendix D Java Code for Building the Wikipedia Corpus

import java.io.*;
import java.text.*;
import java.util.*;
public class main {
 public static void main(String[] args){
 FileInputStream fstream;
 InputStreamReader input;
 BufferedReader br;
 FileWriter fstreamout;
 Locale currentLocale = new Locale ("sv","SE");

BreakIterator sentenceIterator =
BreakIterator.getSentenceInstance(currentLocale);

 String text = "";
 try {

fstream = new
FileInputStream("E:\\exjobb\\wikiextractor\\extracted1\\AA\\wiki00");

 input = new InputStreamReader(fstream, "UTF-8");
 br = new BufferedReader(input);
 fstreamout = new FileWriter("e:\\exjobb\\wikiout.txt");
 BufferedWriter out = new BufferedWriter(fstreamout);
 String line = "";
 while ((line = br.readLine()) != null){
 if(line.contains("<doc id=")){
 markBoundaries(text, sentenceIterator,out);
 out.write(line + "\n");
 String title = br.readLine();

out.write("<Title>" + title.substring(0, title.length()-1)
+ "</Title>" + "\n");

 text = "";
 }else if(line.contains("======")){
 markBoundaries(text, sentenceIterator,out);

line = line.replaceAll("======(.*?)======",
"<H5>$1</H5>");

 out.write(line+ "\n");
 text = "";
 }else if(line.contains("=====")){
 markBoundaries(text, sentenceIterator,out);

line = line.replaceAll("=====(.*?)=====", "<H4>$1</H4>");
 out.write(line+ "\n");
 text = "";
 }else if(line.contains("====")){
 markBoundaries(text, sentenceIterator,out);

line = line.replaceAll("====(.*?)====", "<H3>$1</H3>");
 out.write(line + "\n");
 text = "";
 }else if(line.contains("===")){
 markBoundaries(text, sentenceIterator,out);

line = line.replaceAll("===(.*?)===", "<H2>$1</H2>");
 out.write(line+ "\n");
 text = "";
 }else if(line.contains("==")){
 markBoundaries(text, sentenceIterator,out);

line = line.replaceAll("==(.*?)==", "<H1>$1</H1>");
 out.write(line + "\n");
 text = "";
 }else if(line.contains("</doc>")){
 markBoundaries(text, sentenceIterator,out);
 out.write(line + "\n");
 text = "";
 }else{
 text += line+ "\n";
 }
 }
 out.close();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
static void markBoundaries(String target, BreakIterator iterator,BufferedWriter out) {
 iterator.setText(target);
 int boundary2 = iterator.first();
 int boundary1 = 0;

 Page 39

 while (boundary2 != BreakIterator.DONE) {
 try {

if(!(target.substring(boundary1,boundary2) == "\n") &&
boundary1!=boundary2){

String sentence = target.substring(boundary1,boundary2);
 if(sentence.endsWith("\n")){

sentence = sentence.substring(0,
sentence.length()-1);

 }
 out.write("<S> "+sentence+" </S>" + "\n");
 }
 } catch (IOException e) {
 e.printStackTrace();
 }
 boundary1 = boundary2;
 boundary2 = iterator.next();
 }

 }
}

 Page 40

Appendix E Java Code for Building the Crawled Corpus

Class main:

import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintStream;
import java.io.StringReader;
import java.text.BreakIterator;
import java.util.ArrayList;
import java.util.Locale;
import javax.swing.text.html.HTMLEditorKit;
import org.knallgrau.utils.textcat.TextCategorizer;
public class main {
 public static String currentEncoding = "iso-8859-1";
 public static void main(String[] args){
 ParserGetter kit = new ParserGetter();
 HTMLEditorKit.Parser parser = kit.getParser();
 HTMLEditorKit.ParserCallback callback = null;
 PrintStream swe = null;
 PrintStream junk = null;
 int count = 0;
 int id = 0;
 ArrayList<String> oldWords = new ArrayList<String>();
 oldWords.add(" hv");
 oldWords.add(" åro ");
 oldWords.add(" gingo ");
 oldWords.add(" gåfvor ");
 oldWords.add(" gåfva ");
 oldWords.add(" hafva ");
 oldWords.add(" fingo ");
 oldWords.add(" voro ");
 oldWords.add(" blevo ");
 oldWords.add(" bedrevo ");
 oldWords.add(" däröfver ");
 oldWords.add(" ifver ");
 oldWords.add(" blefvo ");
 oldWords.add(" blifva ");
 oldWords.add(" lofva ");
 oldWords.add(" blifver ");
 oldWords.add(" lefver ");
 oldWords.add(" afrätta ");
 oldWords.add(" kufva ");
 oldWords.add(" afskära ");
 oldWords.add(" afrätta ");
 oldWords.add(" afsky ");
 try {
 FileOutputStream fopsswe = new
FileOutputStream("c:\\outputSWE.txt");
 FileOutputStream fopjunk = new FileOutputStream("c:\\junk.txt");
 swe = new PrintStream(fopsswe, true,"iso-8859-1");
 junk = new PrintStream(fopjunk,true,"iso-8859-1");
 } catch (Exception e1) {
 e1.printStackTrace();
 }
 try{
 FileInputStream freader = new FileInputStream("c:\\dumptotal");
 InputStreamReader instrR = new InputStreamReader(freader,"iso-8859-
1");
 BufferedReader bfr = new BufferedReader(instrR);
 String[] result = new String[3];
 while(result != null){
 swe.flush();
 junk.flush();
 result[0]="";
 result[1]="";
 result[2]="";
 result = getContent(bfr,freader);
 StringReader sr = new StringReader(result[1]);
 if(!result[2].equals("")){

 Page 41

 int a = writeSentence(result[2],swe,junk, result[0],
oldWords,id);
 count +=a;
 if(a>0){
 id++;
 try{
 callback = new TagStripper(swe);
 parser.parse(sr,callback,true);
 }catch(StackOverflowError e){
 System.out.println("Could not parse
page");
 }
 swe.println("</doc>");
 }else{
 try{
 callback = new TagStripper(junk);
 parser.parse(sr,callback,true);
 }catch(StackOverflowError e){
 System.out.println("Could not parse
page");
 }
 junk.println("</doc>");
 }
 }
 }
 }catch(Exception e){
 System.err.println(e);
 }
 System.out.println("Number Of Sentences: " +count);
 }
 private static String[] getContent(BufferedReader reader, FileInputStream
freader){
 String temp="";
 String result[]= new String[3];
 result[0]="";
 result[1]="";
 result[2]="";
 if(!currentEncoding.equals("iso-8859-1")){
 currentEncoding = "iso-8859-1";
 }
 try {
 temp = reader.readLine();
 } catch (IOException e1) {
 e1.printStackTrace();
 }
 while(true){
 try {
 if(temp == null){
 return null;
 }
 if(temp.contains("Recno::")){
 return result;
 }
 if(temp.contains("ParseText::")){
 result[2] = reader.readLine();
 }
 if(temp.contains("metadata:")&&temp.contains("charset=")){
 String encoding =
temp.replaceAll(".*charset=(\\S*).*", "$1");
 encoding = encoding.toLowerCase();
 if(!currentEncoding.equals(encoding)){
 currentEncoding = encoding;
 }
 }
 if(temp.contains("URL::")){
 result[0]= temp;
 }else{
 result[1] = result[1] + "\n" + temp;
 }
 temp = reader.readLine();
 if(currentEncoding.equals("utf-8")){
 byte[] buf = temp.getBytes();
 temp = new String(buf, "UTF-8");

 }

 } catch (Exception e) {

 Page 42

 e.printStackTrace();
 }
 }
 }
 static int writeSentence(String text, PrintStream out,PrintStream junk, String
url, ArrayList<String> oldWords, int id) {
 double nbrOfSentences=0;
 int count=0;
 String result = "";
 TextCategorizer textCat = new TextCategorizer();
 String sentence = "";
 ArrayList<String> sentences = new ArrayList<String>();
 try{
 Locale currentLocale = new Locale ("sv","SE");
 BreakIterator sentenceIterator =
BreakIterator.getSentenceInstance(currentLocale);
 sentenceIterator.setText(text);
 int boundary2 = sentenceIterator.first();
 int boundary1 = 0;
 boolean sentenceOk = false;
 while (boundary2 != BreakIterator.DONE) {
 if(text.substring(boundary1,boundary2) == "\n" ||
boundary1==boundary2){
 }else{
 sentence = text.substring(boundary1,boundary2);
 while(sentence.startsWith(" ")||
sentence.startsWith(" ")){
 sentence = sentence.substring(1);
 }
 while(sentence.endsWith(" ")||
sentence.endsWith(" ")){
 sentence = sentence.substring(0,
sentence.length()-1);
 }
 while(sentence.endsWith("\n")||
sentence.endsWith("\r")){
 sentence = sentence.substring(0,
sentence.length()-1);
 }
 sentenceOk = sentenceIsOk(sentence, oldWords);

 if(sentenceOk){
 nbrOfSentences++;
 sentences.add(sentence);
 result += sentence + " ";
 }else{
 junk.println("<S> "+sentence+" </S>");
 }
 }
 boundary1 = boundary2;
 boundary2 = sentenceIterator.next();
 }
 }catch(Exception e){
 System.out.println(" SENTENCE CAST EXCEPTION "+ sentence);
 }
 if((textCat.categorize(result).equals("swedish") &&
wordsOk(result,oldWords))){
 url = url.replace("URL:: ","");
 out.println("<doc id =\"" + id +"\" url = \"" + url + "\">");
 for(int i=0;i<sentences.size();i++){
 String s = sentences.get(i);
 if(s.charAt(s.length()-1)=='.' && (!s.endsWith(" .") ||
!s.endsWith(" ."))){
 s = s.substring(0, s.length()-1);
 s = s + " .";
 }
 if(s.charAt(s.length()-1)=='!' && (!s.endsWith(" !") ||
!s.endsWith(" !"))){
 s = s.substring(0, s.length()-1);
 s = s + " !";
 }
 if(s.charAt(s.length()-1)=='?' && (!s.endsWith(" ?") ||
!s.endsWith(" ?"))){
 s = s.substring(0, s.length()-1);
 s = s + " ?";
 }
 out.println("<S> "+s+" </S>");

 Page 43

 count++;
 }
 return count;

 }else{
 url = url.replace("URL:: ","");
 junk.println("<doc " + "\" url = \"" + url + "\">");
 for(int i=0;i<sentences.size();i++){
 junk.println("<S>"+sentences.get(i)+"</S>");
 }
 junk.println("</doc>");
 }
 return 0;
 }
 private static boolean sentenceIsOk(String sentence, ArrayList<String> oldWords) {

 if(sentence.length() == 0){
 return false;
 }
 if(sentence.contains(" ")|| sentence.contains(" ")){
 System.out.println("2 spaces " + sentence);
 return false;
 }
 if(!sentence.contains(" ")|| !sentence.contains(" ")){
 System.out.println("Only 1 word " + sentence);
 return false;
 }
 if(sentence.contains(" . ")){
 System.out.println("Hanging dot " + sentence);
 return false;
 }
 if(sentence.contains(" . ")){
 System.out.println("Hanging dot " + sentence);
 return false;
 }
 if(sentence.contains(".se") || sentence.contains(".com") ||
sentence.contains(".nu")|| sentence.contains(".org")|| sentence.contains(".net")||
sentence.contains("www.")){
 return false;
 }
 if(sentence.contains("--")){
 System.out.println("contains -- " + sentence);
 return false;
 }
 for(int i = 0; i<sentence.length(); i++){
 if(!Character.isLetterOrDigit(sentence.charAt(i)) &&
!(sentence.charAt(i)=='.') && !(sentence.charAt(i)== ',')&& !(sentence.charAt(i)== '?')
&& !(sentence.charAt(i)== '!') && !(sentence.charAt(i) == '&') && !(sentence.charAt(i) ==
' ') && !(sentence.charAt(i) == ' ') && !(sentence.charAt(i) == '(') &&
!(sentence.charAt(i) == ')') && !(sentence.charAt(i) == '-') &&
!(sentence.charAt(i)=='"')&& !(sentence.charAt(i)==':')&& !(sentence.charAt(i)==';')&&
!(sentence.charAt(i)=='/')&& !(sentence.charAt(i)=='\'')){
 return false;
 }
 }
 return true;
 }
 private static boolean wordsOk(String result, ArrayList<String> oldWords){
 for(int i = 0; i<oldWords.size(); i++){
 if(result.contains(oldWords.get(i))){
 return false;
 }
 }
 return true;
 }

}

 Page 44

Class ParserGetter

import javax.swing.text.html.*;
public class ParserGetter extends HTMLEditorKit {

 public HTMLEditorKit.Parser getParser() {
 return super.getParser();
 }
}

Class TagStripper

import java.io.FileOutputStream;
import java.io.IOException;
import java.io.PrintStream;
import java.io.UnsupportedEncodingException;
import java.io.Writer;
import org.knallgrau.utils.textcat.TextCategorizer;

import javax.swing.text.BadLocationException;
import javax.swing.text.MutableAttributeSet;
import javax.swing.text.html.*;
import javax.swing.text.html.HTML.Tag;

public class TagStripper extends HTMLEditorKit.ParserCallback {
 private boolean inBody = false;
 private boolean inP = false;
 private boolean H1 = false;
 private boolean H2 = false;
 private boolean H3 = false;
 private boolean H4 = false;
 private boolean H5 = false;
 private boolean H6 = false;
 private boolean LI = false;
 private String output = "";
 private String taggedOutput = "";
 private TextCategorizer textCat = new TextCategorizer();

 private PrintStream out;

 public TagStripper(PrintStream out) {

 this.out=out;

 }

 @Override
 public void handleStartTag(Tag tag, MutableAttributeSet a,int position) {

 if(tag == HTML.Tag.BODY){
 inBody = true;
 }
 if(tag == HTML.Tag.H1){
 H1 = true;
 }
 if(tag == HTML.Tag.H2){
 H2 = true;
 }
 if(tag == HTML.Tag.H3){
 H3 = true;
 }
 if(tag == HTML.Tag.H4){
 H4 = true;
 }
 if(tag == HTML.Tag.H5){
 H5 = true;
 }
 if(tag == HTML.Tag.H6){
 H6 = true;
 }
 }

 public void handleEndTag(Tag tag,int position){

 Page 45

 if(tag == HTML.Tag.BODY){
 inBody = false;
 }
 if(tag == HTML.Tag.H1){
 H1 = false;
 }
 if(tag == HTML.Tag.H2){
 H2 = false;
 }
 if(tag == HTML.Tag.H3){
 H3 = false;
 }
 if(tag == HTML.Tag.H4){
 H4 = false;
 }
 if(tag == HTML.Tag.H5){
 H5 = false;
 }
 if(tag == HTML.Tag.H6){
 H6 = false;
 }
 if (tag == HTML.Tag.HTML)
 try {
 this.flush();
 } catch (BadLocationException e) {
 System.out.println("test");
 e.printStackTrace();
 }
 }
 @Override
 public void flush() throws BadLocationException {
 if(output.equals("")||output.equals("\n")||output.equals("\n "))
 return;
 byte[] buf = taggedOutput.getBytes();
 out.println(taggedOutput);
 output = "";
 taggedOutput="";
 super.flush();
 }

 @Override
 public void handleText(char[] text, int position) {

 if(text.equals(" "))
 return;
 if(H1){
 String heading = String.valueOf(text);
 while(heading.startsWith(" ")|| heading.startsWith(" ")){
 heading = heading.substring(1);
 }
 while(heading.endsWith(" ")|| heading.endsWith(" ")){
 heading = heading.substring(0, heading.length()-1);
 }
 if(headingIsOk(heading)){
 taggedOutput =taggedOutput + "\n" +"<H1>"+heading+"</H1>";
 output = output + "\n" + heading;
 }
 }
 if(H2){
 String heading = String.valueOf(text);
 while(heading.startsWith(" ")|| heading.startsWith(" ")){
 heading = heading.substring(1);
 }
 while(heading.endsWith(" ")|| heading.endsWith(" ")){
 heading = heading.substring(0, heading.length()-1);
 }
 if(headingIsOk(heading)){
 taggedOutput =taggedOutput + "\n" +"<H2>"+heading+"</H2>";
 output = output + "\n" + heading;
 }
 }
 if(H3){
 String heading = String.valueOf(text);
 while(heading.startsWith(" ")|| heading.startsWith(" ")){
 heading = heading.substring(1);
 }
 while(heading.endsWith(" ")|| heading.endsWith(" ")){

 Page 46

 heading = heading.substring(0, heading.length()-1);
 }
 if(headingIsOk(heading)){
 taggedOutput =taggedOutput + "\n" +"<H3>"+heading+"</H3>";
 output = output + "\n" + heading;
 }
 }
 if(H4){
 String heading = String.valueOf(text);
 while(heading.startsWith(" ")|| heading.startsWith(" ")){
 heading = heading.substring(1);
 }
 while(heading.endsWith(" ")|| heading.endsWith(" ")){
 heading = heading.substring(0, heading.length()-1);
 }
 if(headingIsOk(heading)){
 taggedOutput =taggedOutput + "\n" +"<H4>"+heading+"</H4>";
 output = output + "\n" + heading;
 }
 }
 if(H5){
 String heading = String.valueOf(text);
 while(heading.startsWith(" ")|| heading.startsWith(" ")){
 heading = heading.substring(1);
 }
 while(heading.endsWith(" ")|| heading.endsWith(" ")){
 heading = heading.substring(0, heading.length()-1);
 }
 if(headingIsOk(heading)){
 taggedOutput =taggedOutput + "\n" +"<H5>"+heading+"</H5>";
 output = output + "\n" + heading;
 }
 }
 if(H6){
 String heading = String.valueOf(text);
 while(heading.startsWith(" ")|| heading.startsWith(" ")){
 heading = heading.substring(1);
 }
 while(heading.endsWith(" ")|| heading.endsWith(" ")){
 heading = heading.substring(0, heading.length()-1);
 }
 if(headingIsOk(heading)){
 taggedOutput =taggedOutput + "\n" +"<H6>"+heading+"</H6>";
 output = output + "\n" + heading;
 }
 }
 }

 private boolean headingIsOk(String heading) {
 if(heading.length() == 0){
 return false;
 }
 for(int i = 0; i<heading.length(); i++){
 if(!Character.isLetterOrDigit(heading.charAt(i)) &&
!(heading.charAt(i)=='.') && !(heading.charAt(i)== ',')&& !(heading.charAt(i)== '?') &&
!(heading.charAt(i)== '!') && !(heading.charAt(i) == '&') && !(heading.charAt(i) == ' ')
&& !(heading.charAt(i) == ' ') && !(heading.charAt(i) == '(') && !(heading.charAt(i) ==
')') && !(heading.charAt(i) == '-')){
 return false;
 }
 }
 return true;
 }
}

 Page 47

Appendix F Example of a corpus entry from Wikipedia

<doc id="1" url="http://sv.wikipedia.org/wiki/Amager">
<Title>Amager</Title>
<S>Amager är en dansk ö i Öresund med 160 000 invånare.</S>
<S>Delar av Köpenhamn ligger på ön, och övriga delar upptas av Tårnby kommun och Dragør
kommun.</S>
<S>Amager är delvis en konstgjord ö, delvis en naturlig sådan. </S>
<S>Ön är mycket låg och vissa delar ligger under havsytan, framförallt Vestamager. </S>
<S>Ön började uppodlas i större skala under 1500-talets första hälft då kung Kristian II
bjöd in nederländska bönder till att odla upp ön för kronans räkning. </S>
<S>Flertalet slog sig ned i fiskeläget Dragör där många än idag har nederländska namn som
Neels och Tønnes.</S>
<S>Den stora utvecklingsfasen började på 1800-talet då flertalet fabriker, bostadsområden
och militär verksamhet utvecklade sig på ön. </S>
<S>Ön, som är förbunden med övriga Köpenhamn genom flera broar, järnväg och Metro, har
alltid varit ett arbetarklassfäste med undantag för Dragör och vissa andra områden. </S>
<S>Ön har aldrig ansetts vara riktigt "fin" i många köpenhamnsbors ögon, men
inställningen håller på att ändras i takt med stigande huspriser.</S>
<S>Under 1900-talet började militären att utveckla stora övningsområden på ön vilket
resulterade i Vestamager som idag innefattar ett stort naturområde ett par kilometer från
Köpenhamns centrum. </S>
<S>Under senare delen av 1900-talet har flygplatsen Kastrup som ligger på ön expanderat
kraftigt och i samband med byggandet av Öresundsförbindelsen började även ett stort
område byggas som kallas för Örestad. </S>
<S>Ön återfick i samband med bron även en järnvägsförbindelse vilket tidigare inte
funnits sedan 1960-talet. </S>
<S>En motorväg byggdes samtidigt som går rakt igenom flera tidigare bostadsområden. </S>
<S>Köpenhamns metro håller på att byggas ut till Kastrup och flera andra stora
byggprojekt är på gång. </S>
<S>Många "amagerkanare" [ama'rkänare] ser dock denna utveckling med stor skepsis eftersom
de menar att denna gentrifiering håller på att förstöra deras ö med nyrika och
"trendsättare" som flyttar in där arbetarklassen och fabrikerna tidigare huserade.</S>
<S>Amager är den tätast befolkade ön i Danmark. </S>
<S>Den näst mest tätbefolkade är Thurø.</S>
</doc>

 Page 48

Appendix G Lua Script to Create 3-gram Statistics

#!/usr/bin/env lua

lines = 0
file = io.open("ngram", "w")

-- Count must give the value 0 for non existing key
count = {}
mt = {}
mt.__index = function() return 0 end
setmetatable(count, mt)

-- Count
for line in io.lines() do
 lines = lines+1
 word1 = ""
 word2 = ""
 word3 = ""
 word4 = ""
 word5 = ""
 for word in string.gfind(line, "[^%s]+") do
 word1 = word2
 word2 = word3

word3 = word
 if #word1 > 0 then
 trigram = word1 .. " " .. word2 .. “ “ .. word3
 count[trigram] = count[trigram] + 1
 end
 end
end
-- print
for k, c in pairs(count) do
 if(c >= 10) then
 file:write(k .. "\t" .. c .. "\n")
 end
end

