Language Processing with Perl and Prolog
Chapter 12: Constituent Parsing

Pierre Nugues

Lund University
Pierre.Nugues@cs.lth.se
http://cs.lth.se/pierre_nugues/

Language
Processing with
Perland Prolog

Pierre Nugues Language Processing with Perl and Prolog

Pierre.Nugues@cs.lth.se
http://cs.lth.se/pierre_nugues/

Language Technology Chapter 12: Constituent Parsing

Parsing

Possible parsing strategies are top-down or bottom-up

Prolog uses a top-down exploration and backtracks in case of error
Ambiguity can produce two or more possible parse trees

It is necessary to use probabilistic or symbolic techniques to rank parse trees

—_
Language

Processing with
Perland Prolog

Pierre Nugues Language Processing with Perl and Prolog

Language Technology Chapter 12: Constituent Parsing

Bottom-up Parsing

/\

NP VP

Det Noun Verb NP

Detj\\ Noun
Start The ‘“Pwaiter “brought the meaI

_—
Language

Processing with
Perland Prolog

Pierre Nugues Language Processing with Perl and Prolog

Language Technology Chapter 12: Constituent Parsing

Shift and Reduce

The shift and reduce algorithm implements bottom-up parsing.

Two input arguments: the list of words to parse and the parsing goal.

The algorithm gradually reduces words, parts of speech, and phrases until it
reaches the parsing goal.

The algorithm consists of a loop of two steps:

o Shift a word from the phrase or sentence to parse onto a stack;
o Apply a sequence of grammar rules to reduce elements of the stack

until there is no more word in the list and the stack is reduced to the
parsing goal.

—_
Language

Processing with
Perland Prolog

Pierre Nugues Language Processing with Perl and Prolog

Language Technology

Shift and Reduce in Action

Chapter 12: Constituent Parsing

It. Stack S/R Word list

0 [the, waiter, brought, the, meal]
1 [the] Shift [waiter, brought, the, meall

2 [det] Reduce [waiter, brought, the, meal]

3 [det, waiter] Shift [brought, the, meal]

4 [det, noun] Reduce [brought, the, meall

5 [np] Reduce [brought, the, meall

6 [np, brought] Shift [the, meall

7 [np, v] Reduce [the, meal]

8 [np, v, the] Shift [meall

9 [np, v, detl Reduce [meall]

10 [np, v, det, meal] Shift]

11 [np, v, det, n] Reduce []

12 [np, v, npl] Reduce []

13 [Ilp, Vp] Reduce [] E,r:\(gelg:znewnh
14 [s] Reduce [] e

Pierre Nugues

Language Processing with Perl and Prolog

Language Technology Chapter 12: Constituent Parsing

Backtracking May be Inefficient

Example:
The meal of the day

np --> npx. npx --> det, noun.
np --> npx, pp.

PP -=> prep, np.

—_
Language

Processing with
Perland Prolog

Pierre Nugues Language Processing with Perl and Prolog

Language Technology Chapter 12: Constituent Parsing

The Structure of a Chart

A chart is a data structure that avoids backtracking
It uses classical grammar rules

It is a graph (DAG) where nodes are intervals between words

(0) Bring (1) the (2) meal (3)
(0) The (1) meal (2) of (3) the (4) day (5)

—_
Language

Processing with
Perland Prolog

Pierre Nugues

Language Processing with Perl and Prolog

Pierre Nugues

Language Technology Chapter 12: Constituent Parsing

Parsing with a Chart

Language Processing with Perl and Prolog

_
Language
Processing with
Perland Prolog

Language Technology Chapter 12: Constituent Parsing

Charts Contain Alternative Parses

We can view rules vp --> v, np and vp --> v, np, pp in the chart

S

Language
Processing with
Perland Prolog

Pierre Nugues Language Processing with Perl and Prolog

Language Technology Chapter 12: Constituent Parsing

The Active Chart

The active chart stores constituents being parsed and marks the rules
accordingly.
The rule:

np --> det noun e

is a completely parsed noun phrase: a determiner and a noun.
The arc is said to be inactive
The rules below are said to be active:

np --> det e noun A determiner has been found
np --> e det noun We are seeking a noun phrase

—_
Language

Processing with
Perland Prolog

Pierre Nugues Language Processing with Perl and Prolog

Language Technology Chapter 12: Constituent Parsing

The Earley Algorithm

Complexity of O(N3)
Three modules: the predictor, the scanner, and the completer.
They use phrase-structure rules as:

start --> e np

np --> det, noun.

np --> det, adj, noun.
np --> np, pp-

pp --> prep, np.

-
Language

Processing with
Perl and Prolog

Pierre Nugues Language Processing with Perl and Prolog

Language Technology Chapter 12: Constituent Parsing

The Predictor

\ start --> e np
np --> e np pp
np --> e det noun

Pierre Nugues

np --> e det adj noun

Language Processing with Perl and Prolog

The @ meal@ of @ the @ day @

—_
Language

Processing with
Perland Prolog

Language Technology Chapter 12: Constituent Parsing

The Scanner

det --> the o

\ start --> e np
np --> e np pp
np --> e det noun

Pierre Nugues

meal@ of @ the @ day @

np --> e det adj noun

Language Processing with Perl and Prolog

—_
Language

Processing with
Perland Prolog

Language Technology Chapter 12: Constituent Parsing

The Completer

np --> det e adj noun

\ start --> e np
np --> e np pp
np --> e det noun

Pierre Nugues

mea/@ of @ the @ day @

np --> e det adj noun

Language Processing with Perl and Prolog

—_
Language

Processing with
Perland Prolog

Language Technology Chapter 12: Constituent Parsing

The Next Steps (1)

np --> det e adj noun

oun

det --> the o

noun --> meal e

\ start --> e np
np --> e np pp
np --> e det noun

Pierre Nugues

mea/@ of @ the @ day @

np --> e det adj noun

Language Processing with Perl and Prolog

—_
Language

Processing with
Perland Prolog

Language Technology Chapter 12: Constituent Parsing

The Next Steps (I1)

np --> np e pp

np --> det noun e

np --> det e adj noun

\ start --> e np
np --> e np pp

np --> e det noun

np --> e det adj noun

—_
Language

Processing with
Perland Prolog

Pierre Nugues Language Processing with Perl and Prolog

Language Technology Chapter 12: Constituent Parsing

The Prolog Database

Module New chart entries
Position O
start arc(start, [’>.’, npl, 0, 0)
predictor || arc(np, [., d, n]l, O, 0), arc(up, [., d, a, n], O,
0), arc(np, [., np, ppl, 0, 0)
Position 1
scanner arc(d, [the, .1, 0, 1)
completer || arc(np, [d, ., a, nl, 0, 1), arc(np, [d, ., nl, 0, 1)
predictor || []
Position 2
scanner arc(n, [meal, .1, 1, 2)
completer || arc(np, [d, n, .1, 0, 2)
completer || arc(anp, [np, ., ppl, O, 2), arc(start, [np, .]
predictor || arc(pp, [., prep, npl, 2, 2) Lanquge

Processing with

Pierre Nugues

Perland Prolog

Language Processing with Perl and Prolog

Language Technology Chapter 12: Constituent Parsing

The Prolog Database

Position 3

scanner arc(prep, [of, .1, 2, 3)
completer || arc(pp, [prep, ., npl, 2, 3)
predictor || arc(np, [., d, nl, 3, 3), arc(np, [., d, a, nl, 3,
3), arc(np, [., np, ppl, 3, 3)
Position 4
scanner arc(d, [the, .1, 3, 4)
completer || arc(np, [d, ., a, nl, 3, 4), arc(np, [d, ., nl, 3, 4)
predictor || []
Position 5
scanner arc(n, [day, .1, 4, 5)
completer || arc(np, [d, n, .1, 3, 5)
completer || arc(unp, [np, ., ppl, 3, 5), arc(pp, [prep, np, .1, 2,
5)]
completer || arc(np, [np, pp, .1, 0, 5) ﬁ%ﬁw
completer || arc(np, [mp, ., ppl, 0, 5), arc(start, [np, .] JECEE

Pierre Nugues

Language Processing with Perl and Prolog

Language Technology Chapter 12: Constituent Parsing

Probabilistic Context-Free Grammars

P(T.S)=] P(rule(i)).

rule(i)producing T

where

Count(lhs — rhs;)
P(lh hsi|lhs) = :
(ths = rhsi| hs) Y. Count(lhs — rhs;)
J

Language
Processing with
Perland Prolog

Pierre Nugues Language Processing with Perl and Prolog

Language Technology

An Example of PCFG

Chapter 12: Constituent Parsing

Rules P || Rules P
s --> np vp 0.8 || det --> the 1.0
s --> vp 0.2 || noun --> waiter 04
np --> det noun 0.3 || noun --> meal 0.3
np --> det adj noun 0.2 || noun --> day 0.3
np --> pronoun 0.3 || verb --> bring 0.4
np --> np pp 0.2 || verb --> slept 0.2
vp --> vV np 0.6 || verb --> brought 0.4
vp --> VvV np pp 0.1 || pronoun --> he

vp --> V pp 0.2 || prep --> of

vp --> v 0.1 || prep --> to

PP --> prep np 1.0 || adj --> big

Pierre Nugues

Language Processing with Perl and Prolog

Language
Processing with
Perland Prolog

Language Technology Chapter 12: Constituent Parsing

Parse Trees of Bring the meal of the day

Parse trees

T1l: vp(verb(bring),
np (np(det (the), noun(meal)),
pp(prep(of), np(det(the), noun(day)))))
T2: vp(verb(bring),
np (np(det (the), noun(meal))),
pp(prep(of), np(det(the), noun(day))))

Language
Processing with
Perland Prolog

Pierre Nugues Language Processing with Perl and Prolog

Language Technology Chapter 12: Constituent Parsing

Computing the Probabilities

P(T1,Bring the meal of the day) =

P(vp — v,np) x P(v — Bring) x P(np — np, pp) X

P(np — det, noun) x P(det — the) x P(noun — meal)x

P(pp — prep,np) x P(prep — of) x P(np — det, noun)x

P(det — the) x P(noun — day) =
0.6x04x02x03x1.0x0.3x1.0x0.6x0.3x1.0x0.3=0.00023328,

P(T,,Bring the meal of the day) =

P(vp — v,np,pp) x P(v — Bring) x P(np — det, noun)x
P(det — the) x P(noun — meal) x P(pp — prep,np) x P(prep — of) X
P(np — det,noun) x P(det — the) x P(noun — day) = ‘
0.1x0.4%x0.3%x1.0x0.3x1.0x0.6x0.3x1.0x0.3=0.0001944J#

Pierre Nugues Language Processing with Perl and Prolog

Language Technology Chapter 12: Constituent Parsing

Computing the Probabilities

VP 0.00023328

Verb 0.4 NP 0.000972
NP 0.09 PP 0.054
Detmn 0.3 Prepmo.ﬂg
Detmn 0.3
Bring the meal of tfle d"ay
VP 0.0001944
Verbm.054
Detmn 0.3 Preme.OQ
T~

Det 1.0 Noun 0.3

‘ ‘ Pentigm

Language
Bring the meal of the day e

Pierre Nugues Language Processing with Perl and Prolog

Language Technology Chapter 12: Constituent Parsing

PCF Grammars Ignore Lexical Preferences

P(T1|Bring the meal of the day) P(T1|Bring the meal to the table)
P(T2|Bring the meal of the day) ~— P(72|Bring the meal to the table)’
P(vp — v, np) x P(np — np, pp)
P(vp — v,np, pp)

PCF grammars do not take into account the lexicon and the attachment
preferences of of and to.

Language

Processing with
Perl and Prolog

Pierre Nugues Language Processing with Perl and Prolog

Language Technology Chapter 12: Constituent Parsing

Parser Evaluation

Constituent parsing

Number of correct constituents generated by the parser
Number of constituents in the manually bracketed corpus’

Recall =

Number of correct constituents generated by the parser

Precision = . .
Total number of constituents generated by the parser

Bracketing Crossing brackets
(((bring) (the meal)) (of the day)) (DAGEND

(cive)) ¢

e
Language
Processing with
Perland Prolog

Pierre Nugues Language Processing with Perl and Prolog

	Language Technology
	Chapter 12: Constituent Parsing

