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Language Technology Chapter 12: Constituent Parsing

Parsing

Possible parsing strategies are top-down or bottom-up

Prolog uses a top-down exploration and backtracks in case of error
Ambiguity can produce two or more possible parse trees

It is necessary to use probabilistic or symbolic techniques to rank parse trees

—_
Language

Processing with
Perland Prolog

Pierre Nugues Language Processing with Perl and Prolog



Language Technology Chapter 12: Constituent Parsing

Bottom-up Parsing
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Shift and Reduce

The shift and reduce algorithm implements bottom-up parsing.

Two input arguments: the list of words to parse and the parsing goal.

The algorithm gradually reduces words, parts of speech, and phrases until it
reaches the parsing goal.

The algorithm consists of a loop of two steps:

o Shift a word from the phrase or sentence to parse onto a stack;
o Apply a sequence of grammar rules to reduce elements of the stack

until there is no more word in the list and the stack is reduced to the
parsing goal.
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Shift and Reduce in Action

Chapter 12: Constituent Parsing

It. Stack S/R Word list

0 [the, waiter, brought, the, meal]
1 [the] Shift [waiter, brought, the, meall

2 [det] Reduce [waiter, brought, the, meal]

3 [det, waiter] Shift [brought, the, meal]

4 [det, noun] Reduce [brought, the, meall

5 [np] Reduce [brought, the, meall

6 [np, brought] Shift [the, meall

7 [np, v] Reduce [the, meal]

8 [np, v, the] Shift [meall

9 [np, v, detl Reduce [meall]

10 [np, v, det, meal] Shift ]

11  [np, v, det, n] Reduce []

12 [np, v, npl] Reduce []

13 [Ilp, Vp] Reduce [] E,r:\(gelg:znewnh
14 [s] Reduce [] e
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Backtracking May be Inefficient

Example:
The meal of the day

np --> npx. npx --> det, noun.
np --> npx, pp.

PP -=> prep, np.
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The Structure of a Chart

A chart is a data structure that avoids backtracking
It uses classical grammar rules

It is a graph (DAG) where nodes are intervals between words

(0) Bring (1) the (2) meal (3)
(0) The (1) meal (2) of (3) the (4) day (5)
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Parsing with a Chart
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Charts Contain Alternative Parses

We can view rules vp --> v, np and vp --> v, np, pp in the chart
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The Active Chart

The active chart stores constituents being parsed and marks the rules
accordingly.
The rule:

np --> det noun e

is a completely parsed noun phrase: a determiner and a noun.
The arc is said to be inactive
The rules below are said to be active:

np --> det e noun A determiner has been found
np --> e det noun We are seeking a noun phrase
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The Earley Algorithm

Complexity of O(N3)
Three modules: the predictor, the scanner, and the completer.
They use phrase-structure rules as:

start --> e np

np --> det, noun.

np --> det, adj, noun.
np --> np, pp-

pp --> prep, np.
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The Predictor

\ start --> e np
np --> e np pp
np --> e det noun
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The Scanner

det --> the o

\ start --> e np
np --> e np pp
np --> e det noun
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The Completer

np --> det e adj noun

\ start --> e np
np --> e np pp
np --> e det noun

Pierre Nugues
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The Next Steps (1)

np --> det e adj noun

oun

det --> the o

noun --> meal e

\ start --> e np
np --> e np pp
np --> e det noun

Pierre Nugues
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The Next Steps (I1)

np --> np e pp

np --> det noun e

np --> det e adj noun

\ start --> e np
np --> e np pp

np --> e det noun

np --> e det adj noun
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The Prolog Database

Module New chart entries
Position O
start arc(start, [’>.’, npl, 0, 0)
predictor || arc(np, [., d, n]l, O, 0), arc(up, [., d, a, n], O,
0), arc(np, [., np, ppl, 0, 0)
Position 1
scanner arc(d, [the, .1, 0, 1)
completer || arc(np, [d, ., a, nl, 0, 1), arc(np, [d, ., nl, 0, 1)
predictor || []
Position 2
scanner arc(n, [meal, .1, 1, 2)
completer || arc(np, [d, n, .1, 0, 2)
completer || arc(anp, [np, ., ppl, O, 2), arc(start, [np, .]
predictor || arc(pp, [., prep, npl, 2, 2) Lanquge
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The Prolog Database

Position 3

scanner arc(prep, [of, .1, 2, 3)
completer || arc(pp, [prep, ., npl, 2, 3)
predictor || arc(np, [., d, nl, 3, 3), arc(np, [., d, a, nl, 3,
3), arc(np, [., np, ppl, 3, 3)
Position 4
scanner arc(d, [the, .1, 3, 4)
completer || arc(np, [d, ., a, nl, 3, 4), arc(np, [d, ., nl, 3, 4)
predictor || []
Position 5
scanner arc(n, [day, .1, 4, 5)
completer || arc(np, [d, n, .1, 3, 5)
completer || arc(unp, [np, ., ppl, 3, 5), arc(pp, [prep, np, .1, 2,
5) ]
completer || arc(np, [np, pp, .1, 0, 5) ﬁ%ﬁw
completer || arc(np, [mp, ., ppl, 0, 5), arc(start, [np, .] JECEE
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Probabilistic Context-Free Grammars

P(T.S)= ]  P(rule(i)).

rule(i)producing T

where

Count(lhs — rhs;)
P(lh hsi|lhs) = :
(ths = rhsi| hs) Y. Count(lhs — rhs;)
J
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An Example of PCFG
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Rules P || Rules P
s --> np vp 0.8 || det --> the 1.0
s --> vp 0.2 || noun --> waiter 04
np --> det noun 0.3 || noun --> meal 0.3
np --> det adj noun 0.2 || noun --> day 0.3
np --> pronoun 0.3 || verb --> bring 0.4
np --> np pp 0.2 || verb --> slept 0.2
vp --> vV np 0.6 || verb --> brought 0.4
vp --> VvV np pp 0.1 || pronoun --> he

vp --> V pp 0.2 || prep --> of

vp --> v 0.1 || prep --> to

PP --> prep np 1.0 || adj --> big
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Parse Trees of Bring the meal of the day

Parse trees

T1l: vp(verb(bring),
np (np(det (the), noun(meal)),
pp(prep(of), np(det(the), noun(day)))))
T2: vp(verb(bring),
np (np(det (the), noun(meal))),
pp(prep(of), np(det(the), noun(day))))
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Computing the Probabilities

P(T1,Bring the meal of the day) =

P(vp — v,np) x P(v — Bring) x P(np — np, pp) X

P(np — det, noun) x P(det — the) x P(noun — meal)x

P(pp — prep,np) x P(prep — of ) x P(np — det, noun)x

P(det — the) x P(noun — day) =
0.6x04x02x03x1.0x0.3x1.0x0.6x0.3x1.0x0.3=0.00023328,

P(T,,Bring the meal of the day) =

P(vp — v,np,pp) x P(v — Bring) x P(np — det, noun)x
P(det — the) x P(noun — meal) x P(pp — prep,np) x P(prep — of ) X
P(np — det,noun) x P(det — the) x P(noun — day) = ‘
0.1x0.4%x0.3%x1.0x0.3x1.0x0.6x0.3x1.0x0.3=0.0001944J#
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Computing the Probabilities

VP 0.00023328

Verb 0.4 NP 0.000972
NP 0.09 PP 0.054
Detmn 0.3 Prepmo.ﬂg
Detmn 0.3
Bring the meal of tfle d"ay
VP 0.0001944
Verbm.054
Detmn 0.3 Preme.OQ
T~

Det 1.0 Noun 0.3

‘ ‘ Pentigm
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PCF Grammars Ignore Lexical Preferences

P(T1|Bring the meal of the day) P(T1|Bring the meal to the table)
P(T2|Bring the meal of the day) ~—  P(72|Bring the meal to the table)’
P(vp — v, np) x P(np — np, pp)
P(vp — v,np, pp)

PCF grammars do not take into account the lexicon and the attachment
preferences of of and to.
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Parser Evaluation

Constituent parsing

Number of correct constituents generated by the parser
Number of constituents in the manually bracketed corpus’

Recall =

Number of correct constituents generated by the parser

Precision = . .
Total number of constituents generated by the parser

Bracketing Crossing brackets
( ((bring) (the meal)) (of the day)) ( DAGEND

(cive) ) ¢

e
Language
Processing with
Perland Prolog

Pierre Nugues Language Processing with Perl and Prolog



	Language Technology
	Chapter 12: Constituent Parsing


