
Language Technology

Language Processing with Perl and Prolog
Chapter 5: Counting Words

Pierre Nugues

Lund University
Pierre.Nugues@cs.lth.se

http://cs.lth.se/pierre_nugues/

Pierre Nugues Language Processing with Perl and Prolog 1 / 39

Pierre.Nugues@cs.lth.se
http://cs.lth.se/pierre_nugues/

Language Technology Chapter 4: Counting Words

Counting Words and Word Sequences

Words have specific contexts of use.
Pairs of words like strong and tea or powerful and computer are not
random associations.
Psychological linguistics tells us that it is difficult to make a difference
between writer and rider without context
A listener will discard the improbable rider of books and prefer writer of
books
A language model is the statistical estimate of a word sequence.
Originally developed for speech recognition
The language model component enables to predict the next word given a
sequence of previous words: the writer of books, novels, poetry, etc. and
not the writer of hooks, nobles, poultry, . . .

Pierre Nugues Language Processing with Perl and Prolog 2 / 39

Language Technology Chapter 4: Counting Words

Getting the Words from a Text: Tokenization

Arrange a list of characters:

[l, i, s, t, ’ ’, o, f, ’ ’, c, h, a, r, a, c, t, e, r, s]

into words:

[list, of, characters]

Sometimes tricky:
Dates: 28/02/96
Numbers: 9,812.345 (English), 9 812,345 (French and German)
9.812,345 (Old fashioned French)
Abbreviations: km/h, m.p.h.,
Acronyms: S.N.C.F.

Pierre Nugues Language Processing with Perl and Prolog 3 / 39

Language Technology Chapter 4: Counting Words

Tokenizing in Perl

use utf8;
binmode(STDOUT, ":encoding(UTF-8)");
binmode(STDIN, ":encoding(UTF-8)");

$text = <>;
while ($line = <>) {

$text .= $line;
}
$text =~ tr/a-zåàâäæçéèêëîïôöœßùûüÿA-ZÅÀÂÄÆÇÉÈÊËÎÏÔÖŒÙÛÜŸ

’\-,.?!:;/\n/cs;
$text =~ s/([,.?!:;])/\n$1\n/g;
$text =~ s/\n+/\n/g;
print $text;

Pierre Nugues Language Processing with Perl and Prolog 4 / 39

Language Technology Chapter 4: Counting Words

Improving Tokenization

The tokenization algorithm is word-based and defines a content
It does not work on nomenclatures such as Item #N23-SW32A, dates, or
numbers
Instead it is possible to improve it using a boundary-based strategy with
spaces (using for instance \s) and punctuation
But punctuation signs like commas, dots, or dashes can also be parts of
tokens
Possible improvements using microgrammars
At some point, need of a dictionary:
Can’t → can n’t, we’ll → we ’ll
J’aime → j’ aime but aujourd’hui

Pierre Nugues Language Processing with Perl and Prolog 5 / 39

Language Technology Chapter 4: Counting Words

Sentence Segmentation

Grefenstette and Tapanainen (1994) used the Brown corpus and
experimented increasingly complex rules
Most simple rule: a period corresponds to a sentence boundary: 93.20%
correctly segmented
Recognizing numbers:

[0-9]+(\/[0-9]+)+ Fractions, dates
([+\-])?[0-9]+(\.)?[0-9]*% Percent
([0-9]+,?)+(\.[0-9]+|[0-9]+)* Decimal numbers

93.78% correctly segmented

Pierre Nugues Language Processing with Perl and Prolog 6 / 39

Language Technology Chapter 4: Counting Words

Abbreviations

Common patterns (Grefenstette and Tapanainen 1994):
single capitals: A., B., C.,
letters and periods: U.S. i.e. m.p.h.,
capital letter followed by a sequence of consonants: Mr. St. Assn.

Regex Correct Errors Full stop
[A-Za-z]\. 1,327 52 14
[A-Za-z]\.([A-Za-z0-9]\.)+ 570 0 66
[A-Z][bcdfghj-np-tvxz]+\. 1,938 44 26
Totals 3,835 96 106

Correct segmentation increases to 97.66%
With an abbreviation dictionary to 99.07%

Pierre Nugues Language Processing with Perl and Prolog 7 / 39

Language Technology Chapter 4: Counting Words

N-Grams

The types are the distinct words of a text while the tokens are all the words
or symbols.
The phrases from Nineteen Eighty-Four

War is peace
Freedom is slavery
Ignorance is strength

have 9 tokens and 7 types.
Unigrams are single words
Bigrams are sequences of two words
Trigrams are sequences of three words

Pierre Nugues Language Processing with Perl and Prolog 8 / 39

Language Technology Chapter 4: Counting Words

Trigrams

Word Rank More likely alternatives
We 9 The This One Two A Three Please In
need 7 are will the would also do
to 1
resolve 85 have know do. . .
all 9 the this these problems. . .
of 2 the
the 1
important 657 document question first. . .
issues 14 thing point to. . .
within 74 to of and in that. . .
the 1
next 2 company
two 5 page exhibit meeting day
days 5 weeks years pages months

Pierre Nugues Language Processing with Perl and Prolog 9 / 39

Language Technology Chapter 4: Counting Words

Counting Words in Perl: Useful Features

Useful instructions and features: split, sort, and associative arrays (hash
tables, dictionaries):

@words = split(/\n/, $text);

$wordcount{"a"} = 21;
$wordcount{"And"} = 10;
$wordcount{"the"} = 18;

keys %wordcount
sort array

Pierre Nugues Language Processing with Perl and Prolog 10 / 39

Language Technology Chapter 4: Counting Words

Counting Words in Perl

use utf8;
binmode(STDOUT, ":encoding(UTF-8)");
binmode(STDIN, ":encoding(UTF-8)");

$text = <>;
while ($line = <>) {

$text .= $line;
}
$text =~ tr/a-zåàâäæçéèêëîïôöœßùûüÿA-ZÅÀÂÄÆÇÉÈÊËÎÏÔÖŒÙÛÜŸ

’\-,.?!:;/\n/cs;
$text =~ s/([,.?!:;])/\n$1\n/g;
$text =~ s/\n+/\n/g;
@words = split(/\n/, $text);

Pierre Nugues Language Processing with Perl and Prolog 11 / 39

Language Technology Chapter 4: Counting Words

Counting Words in Perl (Cont’d)

for ($i = 0; $i <= $#words; $i++) {
if (!exists($frequency{$words[$i]})) {

$frequency{$words[$i]} = 1;
} else {

$frequency{$words[$i]}++;
}

}
foreach $word (sort keys %frequency){

print "$frequency{$word} $word\n";
}

Pierre Nugues Language Processing with Perl and Prolog 12 / 39

Language Technology Chapter 4: Counting Words

Counting Bigrams in Perl

@words = split(/\n/, $text);
for ($i = 0; $i < $#words; $i++) {

$bigrams[$i] = $words[$i] . " " . $words[$i + 1];
}
for ($i = 0; $i < $#words; $i++) {

if (!exists($frequency_bigrams{$bigrams[$i]})) {
$frequency_bigrams{$bigrams[$i]} = 1;

} else {
$frequency_bigrams{$bigrams[$i]}++;

}
}
foreach $bigram (sort keys %frequency_bigrams){

print "$frequency_bigrams{$bigram} $bigram \n";
}

Pierre Nugues Language Processing with Perl and Prolog 13 / 39

Language Technology Chapter 4: Counting Words

Probabilistic Models of a Word Sequence

P(S) = P(w1, ...,wn),
= P(w1)P(w2|w1)P(w3|w1,w2)...P(wn|w1, ...,wn−1),

=
n

∏
i=1

P(wi |w1, ...,wi−1).

The probability P(It was a bright cold day in April) from Nineteen
Eighty-Four corresponds to
It to begin the sentence, then was knowing that we have It before, then a
knowing that we have It was before, and so on until the end of the
sentence.

P(S) = P(It)×P(was|It)×P(a|It,was)×P(bright|It,was,a)× ...
×P(April |It,was,a,bright, ..., in).

Pierre Nugues Language Processing with Perl and Prolog 14 / 39

Language Technology Chapter 4: Counting Words

Approximations

Bigrams:
P(wi |w1,w2, ...,wi−1)≈ P(wi |wi−1),

Trigrams:
P(wi |w1,w2, ...,wi−1)≈ P(wi |wi−2,wi−1).

Using a trigram language model, P(S) is approximated as:

P(S) ≈ P(It)×P(was|It)×P(a|It,was)×P(bright|was,a)× ...
×P(April |day , in).

Pierre Nugues Language Processing with Perl and Prolog 15 / 39

Language Technology Chapter 4: Counting Words

Maximum Likelihood Estimate

Bigrams:

PMLE (wi |wi−1) =
C (wi−1,wi)

∑
w
C (wi−1,w)

=
C (wi−1,wi)

C (wi−1)
.

Trigrams:

PMLE (wi |wi−2,wi−1) =
C (wi−2,wi−1,wi)

C (wi−2,wi−1)
.

Pierre Nugues Language Processing with Perl and Prolog 16 / 39

Language Technology Chapter 4: Counting Words

Conditional Probabilities

A common mistake in computing the conditional probability P(wi |wi−1) is
to use

C (wi−1,wi)

#bigrams
.

This is not correct. This formula corresponds to P(wi−1,wi).
The correct estimation is

PMLE (wi |wi−1) =
C (wi−1,wi)

∑
w
C (wi−1,w)

=
C (wi−1,wi)

C (wi−1)
.

Proof:

P(w1,w2) = P(w1)P(w2|w1) =
C (w1)

#words
× C (w1,w2)

C (w1)
=

C (w1,w2)

#words

Pierre Nugues Language Processing with Perl and Prolog 17 / 39

Language Technology Chapter 4: Counting Words

Training the Model

The model is trained on a part of the corpus: the training set
It is tested on a different part: the test set
The vocabulary can be derived from the corpus, for instance the 20,000
most frequent words, or from a lexicon
It can be closed or open
A closed vocabulary does not accept any new word
An open vocabulary maps the new words, either in the training or test sets,
to a specific symbol, <UNK>

Pierre Nugues Language Processing with Perl and Prolog 18 / 39

Language Technology Chapter 4: Counting Words

Probability of a Sentence: Unigrams
<s> A good deal of the literature of the past was, indeed, already being
transformed in this way </s>

wi C(wi) #words PMLE (wi)
<s> 7072 –
a 2482 115212 0.023
good 53 115212 0.00049
deal 5 115212 4.62 10−5

of 3310 115212 0.031
the 6248 115212 0.058
literature 7 115212 6.47 10−5

of 3310 115212 0.031
the 6248 115212 0.058
past 99 115212 0.00092
was 2211 115212 0.020
indeed 17 115212 0.00016
already 64 115212 0.00059
being 80 115212 0.00074
transformed 1 115212 9.25 10−6

in 1759 115212 0.016
this 264 115212 0.0024
way 122 115212 0.0011
</s> 7072 115212 0.065

Pierre Nugues Language Processing with Perl and Prolog 19 / 39

Language Technology Chapter 4: Counting Words

Probability of a Sentence: Bigrams
<s> A good deal of the literature of the past was, indeed, already being
transformed in this way </s>

wi−1,wi C(wi−1,wi) C(wi−1) PMLE (wi |wi−1)
<s> a 133 7072 0.019
a good 14 2482 0.006
good deal 0 53 0.0
deal of 1 5 0.2
of the 742 3310 0.224
the literature 1 6248 0.0002
literature of 3 7 0.429
of the 742 3310 0.224
the past 70 6248 0.011
past was 4 99 0.040
was indeed 0 2211 0.0
indeed already 0 17 0.0
already being 0 64 0.0
being transformed 0 80 0.0
transformed in 0 1 0.0
in this 14 1759 0.008
this way 3 264 0.011
way </s> 18 122 0.148

Pierre Nugues Language Processing with Perl and Prolog 20 / 39

Language Technology Chapter 4: Counting Words

Sparse Data

Given a vocabulary of 20,000 types, the potential number of bigrams is
20,0002 = 400,000,000
With trigrams 20,0003 = 8,000,000,000,000
Methods:

Laplace: add one to all counts
Linear interpolation:

PDelInterpolation(wn|wn−2,wn−1) = λ1PMLE (wn|wn−2wn−1)+
λ2PMLE (wn|wn−1)+λ3PMLE (wn),

Good-Turing: The discount factor is variable and depends on the
number of times a n-gram has occurred in the corpus.
Back-off

Pierre Nugues Language Processing with Perl and Prolog 21 / 39

Language Technology Chapter 4: Counting Words

Laplace’s Rule

PLaplace(wi+1|wi) =
C (wi ,wi+1)+1
∑
w
(C (wi ,w)+1)

=
C (wi ,wi+1)+1
C (wi)+Card(V)

,

wi ,wi+1 C(wi ,wi+1)+1 C(wi)+Card(V) PLap(wi+1|wi)

<s> a 133 + 1 7072 + 8635 0.0085
a good 14 + 1 2482 + 8635 0.0013
good deal 0 + 1 53 + 8635 0.00012
deal of 1 + 1 5 + 8635 0.00023
of the 742 + 1 3310 + 8635 0.062
the literature 1 + 1 6248 + 8635 0.00013
literature of 3 + 1 7 + 8635 0.00046
of the 742 + 1 3310 + 8635 0.062
the past 70 + 1 6248 + 8635 0.0048
past was 4 + 1 99 + 8635 0.00057
was indeed 0 + 1 2211 + 8635 0.000092
indeed already 0 + 1 17 + 8635 0.00012
already being 0 + 1 64 + 8635 0.00011
being transformed 0 + 1 80 + 8635 0.00011
transformed in 0 + 1 1 + 8635 0.00012
in this 14 + 1 1759 + 8635 0.0014
this way 3 + 1 264 + 8635 0.00045
way </s> 18 + 1 122 + 8635 0.0022

Pierre Nugues Language Processing with Perl and Prolog 22 / 39

Language Technology Chapter 4: Counting Words

Good–Turing

Laplace’s rule shifts an enormous mass of probability to very unlikely
bigrams. Good–Turing’s estimation is more effective
Let’s denote Nc the number of n-grams that occurred exactly c times in
the corpus.
N0 is the number of unseen n-grams, N1 the number of n-grams seen
once,N2 the number of n-grams seen twice The frequency of n-grams
occurring c times is re-estimated as:

c∗= (c+1)
E (Nc+1)

E (Nc)
,

Unseen n-grams: c∗= N1

N0
and N-grams seen once: c∗= 2N2

N1
.

Pierre Nugues Language Processing with Perl and Prolog 23 / 39

Language Technology Chapter 4: Counting Words

Good-Turing for Nineteen eighty-four

Nineteen eighty-four contains 37,365 unique bigrams and 5,820 bigram
seen twice.
Its vocabulary of 8,635 words generates 863522 = 74,563,225 bigrams
whose 74,513,701 are unseen.

Unseen bigrams:
37,365

74,513,701
= 0.0005. Unique bigrams:

2× 5820
37,365

= 0.31.

Freq. of occ. Nc c∗ Freq. of occ. Nc c∗
0 74,513,701 0.0005 5 719 3.91
1 37,365 0.31 6 468 4.94
2 5,820 1.09 7 330 6.06
3 2,111 2.02 8 250 6.44
4 1,067 3.37 9 179 8.93

Pierre Nugues Language Processing with Perl and Prolog 24 / 39

Language Technology Chapter 4: Counting Words

Backoff

If there is no bigram, then use unigrams:

PBackoff(wi |wi−1) =

{
P(wi |wi−1), if C (wi−1,wi) 6= 0,
αP(wi), otherwise.

PBackoff(wi |wi−1) =


PMLE(wi |wi−1) =

C (wi−1,wi)

C (wi−1)
, if C (wi−1,wi) 6= 0,

PMLE(wi) =
C (wi)

#words
, otherwise.

Pierre Nugues Language Processing with Perl and Prolog 25 / 39

Language Technology Chapter 4: Counting Words

Backoff: Example

wi−1,wi C(wi−1,wi) C(wi) PBackoff (wi |wi−1)
<s> 7072 —
<s> a 133 2482 0.019
a good 14 53 0.006
good deal 0 backoff 5 4.62 10−5
deal of 1 3310 0.2
of the 742 6248 0.224
the literature 1 7 0.00016
literature of 3 3310 0.429
of the 742 6248 0.224
the past 70 99 0.011
past was 4 2211 0.040
was indeed 0 backoff 17 0.00016
indeed already 0 backoff 64 0.00059
already being 0 backoff 80 0.00074
being transformed 0 backoff 1 9.25 10−6
transformed in 0 backoff 1759 0.016
in this 14 264 0.008
this way 3 122 0.011
way </s> 18 7072 0.148

The figures we obtain are not probabilities. We can use the Good-Turing
technique to discount the bigrams and then scale the unigram probabilities.
This is the Katz backoff.

Pierre Nugues Language Processing with Perl and Prolog 26 / 39

Language Technology Chapter 4: Counting Words

Quality of a Language Model

Per word probability of a word sequence: H(L) =− 1
n log2P(w1, ...,wn).

Entropy rate: Hrate =− 1
n ∑

w1,...,wn∈L
p(w1, ...,wn) log2 p(w1, ...,wn),

Cross entropy:

H(p,m) =−1
n ∑

w1,...,wn∈L

p(w1, ...,wn) log2m(w1, ...,wn).

We have:

H(p,m) = lim
n→∞
− 1

n ∑
w1,...,wn∈L

p(w1, ...,wn) log2m(w1, ...,wn),

= lim
n→∞
− 1

n log2m(w1, ...,wn).

We compute the cross entropy on the complete word sequence of a test set,
governed by p, using a bigram or trigram model, m, from a training set.
Perplexity:

PP(p,m) = 2H(p,m).

Pierre Nugues Language Processing with Perl and Prolog 27 / 39

Language Technology Chapter 4: Counting Words

Other Statistical Formulas

Mutual information (The strength of an association):

I (wi ,wj) = log2
P(wi ,wj)

P(wi)P(wj)
≈ log2

NC (wi ,wj)

C (wi)C (wj)
.

T-score (The confidence of an association):

t(wi ,wj) =
mean(P(wi ,wj))−mean(P(wi))mean(P(wj))√

σ2(P(wi ,wj))+σ2(P(wi)P(wj))
,

≈
C (wi ,wj)− 1

NC (wi)C (wj)√
C (wi ,wj)

.

Pierre Nugues Language Processing with Perl and Prolog 28 / 39

Language Technology Chapter 4: Counting Words

T-Scores with Word set

Word Frequency Bigram set + word t-score
up 134,882 5512 67.980
a 1,228,514 7296 35.839
to 1,375,856 7688 33.592
off 52,036 888 23.780
out 12,3831 1252 23.320

Source: Bank of English

Pierre Nugues Language Processing with Perl and Prolog 29 / 39

Language Technology Chapter 4: Counting Words

Mutual Information with Word surgery

Word Frequency Bigram word + surgery Mutual info
arthroscopic 3 3 11.822
pioneeing 3 3 11.822
reconstructive 14 11 11.474
refractive 6 4 11.237
rhinoplasty 5 3 11.085

Source: Bank of English

Pierre Nugues Language Processing with Perl and Prolog 30 / 39

Language Technology Chapter 4: Counting Words

Mutual Information and T-Scores in Perl

. . .

@words = split(/\n/, $text);
for ($i = 0; $i < $#words; $i++) {

$bigrams[$i] = $words[$i] . " " . $words[$i + 1];
}
for ($i = 0; $i <= $#words; $i++) {

$frequency{$words[$i]}++;
}
for ($i = 0; $i < $#words; $i++) {

$frequency_bigrams{$bigrams[$i]}++;
}

Pierre Nugues Language Processing with Perl and Prolog 31 / 39

Language Technology Chapter 4: Counting Words

Mutual Information in Perl

for ($i = 0; $i < $#words; $i++) {
$mutual_info{$bigrams[$i]} = log(($#words + 1) *

$frequency_bigrams{$bigrams[$i]}/
($frequency{$words[$i]} * $frequency{$words[$i + 1]}))/
log(2);

}

foreach $bigram (keys %mutual_info){
@bigram_array = split(/ /, $bigram);
print $mutual_info{$bigram}, " ", $bigram, "\t",

$frequency_bigrams{$bigram}, "\t",
$frequency{$bigram_array[0]}, "\t",
$frequency{$bigram_array[1]}, "\n";

}

Pierre Nugues Language Processing with Perl and Prolog 32 / 39

Language Technology Chapter 4: Counting Words

T-Scores in Perl

for ($i = 0; $i < $#words; $i++) {
$t_scores{$bigrams[$i]} = ($frequency_bigrams{$bigrams[$i]}

- $frequency{$words[$i]} *
$frequency{$words[$i + 1]}/($#words + 1))/
sqrt($frequency_bigrams{$bigrams[$i]});

}

foreach $bigram (keys %t_scores){
@bigram_array = split(/ /, $bigram);
print $t_scores{$bigram}, " ", $bigram, "\t",

$frequency_bigrams{$bigram}, "\t",
$frequency{$bigram_array[0]}, "\t",
$frequency{$bigram_array[1]}, "\n";

}

Pierre Nugues Language Processing with Perl and Prolog 33 / 39

Language Technology Chapter 4: Counting Words

Information Retrieval: The Vector Space Model

The vector space model is a technique to compute the similarity of two
documents or to match a document and a query.
The vector space model represents a document in word space:

Documents
\Words

w1 w2 w3 . . . wm

D1 C (w1,D1) C (w2,D1) C (w3,D1) ... C (wm,D1)
D2 C (w1,D2) C (w2,D2) C (w3,D2) ... C (wm,D2)
...
Dn C (w1,D1n) C (w2,Dn) C (w3,Dn) ... C (wm,Dn)

We compute the similarity of two documents through their dot product.

Pierre Nugues Language Processing with Perl and Prolog 34 / 39

Language Technology Chapter 4: Counting Words

The Vector Space Model: Example

A collection of two documents D1 and D2 are:

D1: Chrysler plans new investments in Latin America.
D2: Chrysler plans major investments in Mexico.

The vectors representing the two documents:
D. america chrysler in investments latin major mexico new plans
1 1 1 1 1 1 0 0 1 1
2 0 1 1 1 0 1 1 0 1

The vector space model represents documents as bags of words (BOW)
that do not take the word order into account.
The dot product is ~D1 · ~D2= 0+1+1+1+0+0+0+0+1= 4
Their cosine is ~D1· ~D2

|| ~D1||.|| ~D2||
= 4√

7.
√
6
= 0.62

Pierre Nugues Language Processing with Perl and Prolog 35 / 39

Language Technology Chapter 4: Counting Words

Giving a Weight

Word clouds give visual weights to words

!

Image: Courtesy of Jonas Wisbrant
Pierre Nugues Language Processing with Perl and Prolog 36 / 39

Language Technology Chapter 4: Counting Words

TF × IDF

The frequency alone might be misleading
Document coordinates are in fact tf × idf : Term frequency by inverted
document frequency.
Term frequency tfi ,j : frequency of term j in document i

Inverted document frequency: idfj = log(
N

nj
)

Pierre Nugues Language Processing with Perl and Prolog 37 / 39

Language Technology Chapter 4: Counting Words

Document Similarity

Documents are vectors where coordinates could be the count of each word:
~d = (C (w1),C (w2),C (w3), ...,C (wn))
The similarity between two documents or a query and a document is given
by their cosine:

cos(~q,~d) =

n

∑
i=1

qidi√
n

∑
i=1

q2i

√
n

∑
i=1

d2
i

.

Application: Lucene, Wikipedia

Pierre Nugues Language Processing with Perl and Prolog 38 / 39

Language Technology Chapter 4: Counting Words

Inverted Index (Source Apple)

http://developer.apple.com/library/mac/documentation/
UserExperience/Conceptual/SearchKitConcepts/index.html

Pierre Nugues Language Processing with Perl and Prolog 39 / 39

http://developer.apple.com/library/mac/documentation/UserExperience/Conceptual/SearchKitConcepts/index.html
http://developer.apple.com/library/mac/documentation/UserExperience/Conceptual/SearchKitConcepts/index.html

	Language Technology
	Chapter 4: Counting Words

