
Language Technology

Language Processing with Perl and Prolog
Chapter 2: Corpus Processing Tools

Pierre Nugues

Lund University
Pierre.Nugues@cs.lth.se

http://cs.lth.se/pierre_nugues/

Pierre Nugues Language Processing with Perl and Prolog 1 / 39

Pierre.Nugues@cs.lth.se
http://cs.lth.se/pierre_nugues/

Language Technology Chapter 2: Corpus Processing Tools

Corpora

A corpus is a collection of texts (written or spoken) or speech
Corpora are balanced from different sources: news, novels, etc.

English French German
Most frequent words in a collection the de der
of contemporary running texts of le (article) die

to la (article) und
in et in
and les des

Most frequent words in Genesis and et und
the de die
of la der
his à da
he il er

Pierre Nugues Language Processing with Perl and Prolog 2 / 39

Language Technology Chapter 2: Corpus Processing Tools

Characteristics of Current Corpora

Big: The Bank of English (Collins and U Birmingham) has more than 500
million words
Available in many languages
Easy to collect: The web is the largest corpus ever built and within the
reach of a mouse click
Parallel: same text in two languages: English/French (Canadian Hansards),
European parliament (23 languages)
Annotated with part-of-speech or manually parsed (treebanks):

Characteristics/N of/PREP Current/ADJ Corpora/N
(NP (NP Characteristics) (PP of (NP Current Corpora)))

Pierre Nugues Language Processing with Perl and Prolog 3 / 39

Language Technology Chapter 2: Corpus Processing Tools

Lexicography

Writing dictionaries
Dictionaries for language learners should be build on real usage

They’re just trying to score brownie points with politicians
The boss is pleased – that’s another brownie point

Bank of English: brownie point (6 occs) brownie points (76 occs)
Extensive use of corpora to:

Find concordances and cite real examples
Extract collocations and describe frequent pairs of words

Pierre Nugues Language Processing with Perl and Prolog 4 / 39

Language Technology Chapter 2: Corpus Processing Tools

Concordances

A word and its context:

Language Concordances
English s beginning of miracles did Je

n they saw the miracles which
n can do these miracles that t
ain the second miracle that Je
e they saw his miracles which

French le premier des miracles que fi
i dirent: Quel miracle nous mo
om, voyant les miracles qu’il
peut faire ces miracles que tu
s ne voyez des miracles et des

Pierre Nugues Language Processing with Perl and Prolog 5 / 39

Language Technology Chapter 2: Corpus Processing Tools

Collocations

Word preferences: Words that occur together

English French German
You say Strong tea Thé fort Schmales Gesicht

Powerful computer Ordinateur puissant Enge Kleidung
You don’t Strong computer Thé puissant Schmale Kleidung
say Powerful tea Ordinateur fort Enges Gesicht

Pierre Nugues Language Processing with Perl and Prolog 6 / 39

Language Technology Chapter 2: Corpus Processing Tools

Word Preferences

Strong w Powerful w
strong w powerful w w strong w powerful w w
161 0 showing 1 32 than
175 2 support 1 32 figure
106 0 defense 3 31 minority
...

Pierre Nugues Language Processing with Perl and Prolog 7 / 39

Language Technology Chapter 2: Corpus Processing Tools

Corpora as Knowledge Sources

Short term:
Describe usage more accurately
Assess tools: part-of-speech taggers, parsers.
Learn statistical/machine learning models for speech recognition,
taggers, parsers
Derive automatically symbolic rules from annotated corpora

Longer term:
Semantic processing
Texts are the main repository of human knowledge

Pierre Nugues Language Processing with Perl and Prolog 8 / 39

Language Technology Chapter 2: Corpus Processing Tools

Finite-State Automata

A flexible to tool to search and process text
A FSA accepts and generates strings, here ac , abc , abbc , abbbc ,
abbbbbbbbbbbbc , etc.

q0 q1 q2

a

b

c

Pierre Nugues Language Processing with Perl and Prolog 9 / 39

Language Technology Chapter 2: Corpus Processing Tools

FSA

Mathematically defined by
Q a finite number of states;
Σ a finite set of symbols or characters: the input alphabet;
q0 a start state,
F a set of final states F ⊆ Q

δ a transition function Q×Σ→ Q where δ (q, i) returns the state
where the automaton moves when it is in state q and consumes the
input symbol i .

Pierre Nugues Language Processing with Perl and Prolog 10 / 39

Language Technology Chapter 2: Corpus Processing Tools

FSA in Prolog

% The start state % The final states
start(q0). final(q2).

transition(q0, a, q1).
transition(q1, b, q1).
transition(q1, c, q2).

accept(Symbols) :-
start(StartState),
accept(Symbols, StartState).

accept([], State) :-
final(State).

accept([Symbol | Symbols], State) :-
transition(State, Symbol, NextState),
accept(Symbols, NextState).
Pierre Nugues Language Processing with Perl and Prolog 11 / 39

Language Technology Chapter 2: Corpus Processing Tools

Regular Expressions

Regexes are equivalent to FSA and generally easier to use
Constant regular expressions:

Pattern String
regular A section on regular expressions
the The book of the life

The automaton above is described by the regex ab*c
grep ’ab*c’ myFile1 myFile2

Pierre Nugues Language Processing with Perl and Prolog 12 / 39

Language Technology Chapter 2: Corpus Processing Tools

Metacharacters

Chars Descriptions Examples
* Matches any number of occur-

rences of the previous character
– zero or more

ac*e matches strings ae, ace,
acce, accce, etc. as in “The
aerial acceleration alerted the
ace pilot”

? Matches at most one occur-
rence of the previous character
– zero or one

ac?e matches ae and ace as in
“The aerial acceleration alerted
the ace pilot”

+ Matches one or more occur-
rences of the previous character

ac+e matches ace, acce,
accce, etc. as in as in “The
aerial acceleration alerted the
ace pilot”

Pierre Nugues Language Processing with Perl and Prolog 13 / 39

Language Technology Chapter 2: Corpus Processing Tools

Metacharacters

Chars Descriptions Examples
{n} Matches exactly n occurrences

of the previous character
ac{2}e matches acce as in
“The aerial acceleration alerted
the ace pilot”

{n,} Matches n or more occurrences
of the previous character

ac{2,}e matches acce, accce,
etc.

{n,m} Matches from n to m occur-
rences of the previous character

ac{2,4}e matches acce,
accce, and acccce.

Literal values of metacharacters must be quoted using \

Pierre Nugues Language Processing with Perl and Prolog 14 / 39

Language Technology Chapter 2: Corpus Processing Tools

The Dot Metacharacter

The dot . is a metacharacter that matches one occurrence of any character
except a new line
a.e matches the strings ale and ace in:

The aerial acceleration alerted the ace pilot

as well as age, ape, are, ate, awe, axe, or aae, aAe, abe, aBe, a1e, etc.
.* matches any string of characters until we encounter a new line.

Pierre Nugues Language Processing with Perl and Prolog 15 / 39

Language Technology Chapter 2: Corpus Processing Tools

The Longest Match

The previous slide does not tell about the match strategy.
Consider the string aabbc and the regular expression a+b*
By default the match engine is greedy: It matches as early and as many
characters as possible and the result is aabb
Sometimes a problem. Consider the regular expression .* and the
phrase

They match as early and as many
characters as they can.

It is possible to use a lazy strategy with the *? metacharacter instead:
.*? and have the result:

They match as early and as many
characters as they can.

Pierre Nugues Language Processing with Perl and Prolog 16 / 39

Language Technology Chapter 2: Corpus Processing Tools

Character Classes

[...] matches any character contained in the list.
[^...] matches any character not contained in the list.
[abc] means one occurrence of either a, b, or c
[^abc] means one occurrence of any character that is not an a, b, or c,
[ABCDEFGHIJKLMNOPQRSTUVWXYZ] one upper-case unaccented letter
[0123456789] means one digit.
[0123456789]+\.[0123456789]+ matches decimal numbers.
[Cc]omputer [Ss]cience matches Computer Science,
computer Science, Computer science, computer science.

Pierre Nugues Language Processing with Perl and Prolog 17 / 39

Language Technology Chapter 2: Corpus Processing Tools

Predefined Character Classes

Expr. Description Example
\d Any digit. Equivalent to [0-9] A\dC matches A0C, A1C, A2C,

A3C etc.
\D Any nondigit. Equivalent to

[^0-9]
\w Any word character: letter,

digit, or underscore. Equivalent
to [a-zA-Z0-9_]

1\w2 matches 1a2, 1A2, 1b2,
1B2, etc

\W Any nonword character. Equiv-
alent to [^\w]

\s Any white space character:
space, tabulation, new line,
form feed, etc.

\S Any nonwhite space character.
Equivalent to [^\s]

Pierre Nugues Language Processing with Perl and Prolog 18 / 39

Language Technology Chapter 2: Corpus Processing Tools

Nonprintable Symbols or Positions

Char. Description Example
^ Matches the start of a line ^ab*c matches ac, abc, abbc,

etc. when they are located at
the beginning of a new line

$ Matches the end of a line ab?c$ matches ac and abc
when they are located at the
end of a line

\b Matches word boundaries \babc matches abcd but not
dabc
bcd\b matches abcd but not
abcde

\n Matches a new line a\nb matches
a
b

\t Matches a tabulation

egrep ’^[aeiou]*$’ myFilePierre Nugues Language Processing with Perl and Prolog 19 / 39

Language Technology Chapter 2: Corpus Processing Tools

Union and Boolean Operators

Union denoted |: a|b means either a or b.
Expression a|bc matches the strings a and bc and (a|b)c matches ac and
bc,
Order of precedence:

1 Closure and other repetition operator (highest)
2 Concatenation, line and word boundaries
3 Union (lowest)

abc* is the set ab, abc, abcc, abccc, etc.
(abc)* corresponds to abc, abcabc, abcabcabc, etc.

Pierre Nugues Language Processing with Perl and Prolog 20 / 39

Language Technology Chapter 2: Corpus Processing Tools

Perl

Match
while ($line = <>) {

if ($line =~ m/ab+c/) {
print $line;

}
}

Substitute
while ($line = <>) {

if ($line =~ m/ab+c/) {
print "Old: ", $line;
$line =~ s/ab+c/ABC/g;
print "New: ", $line;

}
}

Pierre Nugues Language Processing with Perl and Prolog 21 / 39

Language Technology Chapter 2: Corpus Processing Tools

Perl

Translate
tr/ABC/abc/
$line =~ tr/A-Z/a-z/;
$line =~ tr/AEIOUaeiou//d;
$line =~ tr/AEIOUaeiou/$/cs;

Concatenate
while ($line = <>) {

$text .= $line;
}
print $text;

References
while ($line = <>) {

while ($line =~ m/\$ *([0-9]+)\.?([0-9]*)/g) {
print "Dollars: ", $1, " Cents: ", $2, "\n";

}
}

Pierre Nugues Language Processing with Perl and Prolog 22 / 39

Language Technology Chapter 2: Corpus Processing Tools

Perl

Predefined variables
$line = "Tell me, O muse, of that ingenious hero

who travelled far and wide after he had sacked
the famous town of Troy.";

$line =~ m/,.*,/;
print $&, "\n";
print "Before: ", $‘, "\n";
print "After: ", $’, "\n";

Arrays
@array = (1, 2, 3); #Array containing 1, 2, and 3
print $array[1]; #Prints 2

Pierre Nugues Language Processing with Perl and Prolog 23 / 39

Language Technology Chapter 2: Corpus Processing Tools

Concordances in Perl

Modified from Doug Cooper
($file_name, $string, $width) = @ARGV;
open(FILE, "$file_name")

|| die "Could not open file $file_name.";
while ($line = <FILE>) {

$text .= $line;
}
$string =~ s/ /\\s/g; # spaces match tabs and new lines
$text =~ s/\n/ /g; # new lines are replaced by spaces
while ($text =~ m/(.{0,$width}$string.{0,$width})/g) {
matches the pattern with 0..width to the right and left

print "$1\n"; #$1 contains the match
}

Pierre Nugues Language Processing with Perl and Prolog 24 / 39

Language Technology Chapter 2: Corpus Processing Tools

Approximate String Matching

A set of edit operations that transforms a source string into a target string:
copy, substitution, insertion, deletion, reversal (or transposition).
Edits for acress from Kernighan et al. (1990).

Typo Correction Source Target Position Operation
acress actress – t 2 Deletion
acress cress a – 0 Insertion
acress caress ac ca 0 Transposition
acress access r c 2 Substitution
acress across e o 3 Substitution
acress acres s – 4 Insertion
acress acres s – 5 Insertion

Pierre Nugues Language Processing with Perl and Prolog 25 / 39

Language Technology Chapter 2: Corpus Processing Tools

Minimum Edit Distance

Edit distances measure the similarity between strings.
We compute the minimum edit distance using a matrix where the value at
position (i , j) is defined by the recursive formula:

edit_distance(i , j) = min

 edit_distance(i −1, j) +del_cost
edit_distance(i −1, j−1) + subst_cost
edit_distance(i , j−1) + ins_cost

 .

where edit_distance(i ,0) = i and edit_distance(0, j) = j .

Pierre Nugues Language Processing with Perl and Prolog 26 / 39

Language Technology Chapter 2: Corpus Processing Tools

Edit Operations

i −1, j i , j

i −1, j−1 i , j−1

delete

replace
insert

Usually, del_cost = ins_cost = 1
subst_cost = 2 if source(i) 6= target(j)
subst_cost = 0 if source(i) = target(j).

Pierre Nugues Language Processing with Perl and Prolog 27 / 39

Language Technology Chapter 2: Corpus Processing Tools

Distance between ab and cb

i −1, j i , j

i −1, j−1 i , j−1

delete

replace
insert

Let us align
a b Source
c b Destination

b 2
c 1

Start 0 1 2
Start a b

Pierre Nugues Language Processing with Perl and Prolog 28 / 39

Language Technology Chapter 2: Corpus Processing Tools

Distance between ab and cb

i −1, j i , j

i −1, j−1 i , j−1

delete

replace
insert

Let us align
a b Source
c b Destination

b 2
c 1 2

Start 0 1 2
Start a b

Pierre Nugues Language Processing with Perl and Prolog 29 / 39

Language Technology Chapter 2: Corpus Processing Tools

Distance between ab and cb

i −1, j i , j

i −1, j−1 i , j−1

delete

replace
insert

Let us align
a b Source
c b Destination

b 2 3
c 1 2 3

Start 0 1 2
Start a b

Pierre Nugues Language Processing with Perl and Prolog 30 / 39

Language Technology Chapter 2: Corpus Processing Tools

Distance between ab and cb

i −1, j i , j

i −1, j−1 i , j−1

delete

replace
insert

Let us align
a b Source
c b Destination

b 2 3 2
c 1 2 3

Start 0 1 2
Start a b

Pierre Nugues Language Processing with Perl and Prolog 31 / 39

Language Technology Chapter 2: Corpus Processing Tools

Distance between language and lineage

e 7
g 6
a 5
e 4
n 3
i 2
l 1

Start 0 1 2 3 4 5 6 7 8
Start l a n g u a g e

Pierre Nugues Language Processing with Perl and Prolog 32 / 39

Language Technology Chapter 2: Corpus Processing Tools

Distance between language and lineage

e 7 6 5
g 6 5 4
a 5 4 3
e 4 3 4
n 3 2 3
i 2 1 2 3 4 5 6 7 8
l 1 0 1 2 3 4 5 6 7

Start 0 1 2 3 4 5 6 7 8
Start l a n g u a g e

Pierre Nugues Language Processing with Perl and Prolog 33 / 39

Language Technology Chapter 2: Corpus Processing Tools

Distance between language and lineage

e 7 6 5 6 5 6 7 6 5
g 6 5 4 5 4 5 6 5 6
a 5 4 3 4 5 6 5 6 7
e 4 3 4 3 4 5 6 7 6
n 3 2 3 2 3 4 5 6 7
i 2 1 2 3 4 5 6 7 8
l 1 0 1 2 3 4 5 6 7

Start 0 1 2 3 4 5 6 7 8
Start l a n g u a g e

Pierre Nugues Language Processing with Perl and Prolog 34 / 39

Language Technology Chapter 2: Corpus Processing Tools

Perl Code

($source, $target) = @ARGV;
$length_s = length($source);
$length_t = length($target);
Initialize first row and column
for ($i = 0; $i <= $length_s; $i++) {

$table[$i][0] = $i;
}
for ($j = 0; $j <= $length_t; $j++) {

$table[0][$j] = $j;
}
Get the characters. Start index is 0
@source = split(//, $source);
@target = split(//, $target);

Pierre Nugues Language Processing with Perl and Prolog 35 / 39

Language Technology Chapter 2: Corpus Processing Tools

Perl Code

Fills the table. Start index of rows and columns is 1
for ($i = 1; $i <= $length_s; $i++) {

for ($j = 1; $j <= $length_t; $j++) {
Is it a copy or a substitution?

$cost = ($source[$i-1] eq $target[$j-1]) ? 0 : 2;
Computes the minimum
$min = $table[$i-1][$j-1] + $cost;
if ($min > $table[$i][$j-1] + 1) {

$min = $table[$i][$j-1] + 1;
}
if ($min > $table[$i-1][$j] + 1) {

$min = $table[$i-1][$j] + 1;
}
$table[$i][$j] = $min;

}
}
print "Minimum distance: ", $table[$length_s][$length_t], "\n";Pierre Nugues Language Processing with Perl and Prolog 36 / 39

Language Technology Chapter 2: Corpus Processing Tools

Prolog Code

% edit_operation carries out one edit operation
% between a source string and a target string.
edit_operation([Char | Source], [Char | Target], Source,

Target, ident, 0).
edit_operation([SChar | Source], [TChar | Target], Source,

Target, sub(SChar,TChar), 2) :-
SChar \= TChar.

edit_operation([SChar | Source], Target, Source, Target,
del(SChar), 1).

edit_operation(Source, [TChar | Target], Source, Target,
ins(TChar), 1).

Pierre Nugues Language Processing with Perl and Prolog 37 / 39

Language Technology Chapter 2: Corpus Processing Tools

Prolog Code

% edit_distance(+Source, +Target, -Edits, ?Cost).
edit_distance(Source, Target, Edits, Cost) :-

edit_distance(Source, Target, Edits, 0, Cost).

edit_distance([], [], [], Cost, Cost).
edit_distance(Source, Target, [EditOp | Edits], Cost,

FinalCost) :-
edit_operation(Source, Target, NewSource, NewTarget,

EditOp, CostOp),
Cost1 is Cost + CostOp,
edit_distance(NewSource, NewTarget, Edits, Cost1,

FinalCost).

Pierre Nugues Language Processing with Perl and Prolog 38 / 39

Language Technology Chapter 2: Corpus Processing Tools

Distance between language and lineage

l a n g u a g e l a n g u a g e
Without epsilon symbols

l i n e a g e l i n e a g e
l a n g u a g e l a n g u ε a g e

With epsilon symbols
l i n e ε a g e l i n ε ε e a g e

First alignment Third alignment

Pierre Nugues Language Processing with Perl and Prolog 39 / 39

	Language Technology
	Chapter 2: Corpus Processing Tools

