
A Prototype Robot Speech Interface with Multimodal Feedback

Mathias Haage+, Susanne Schötz×, Pierre Nugues+

+Dept. of Computer Science, Lund Institute of Technology,

SE-221 00 Lund, Sweden;

E-mail: Mathias.Haage@cs.lth.se, Pierre.Nugues@cs.lth.se

×Dept. of Linguistics, Lund University,

SE-221 00 Lund, Sweden;

E-mail: Susanne.Schotz@ling.lu.se

Abstract
Speech recognition is available on ordinary personal

computers and is starting to appear in standard soft-
ware applications. A known problem with speech in-
terfaces is their integration into current graphical user
interfaces. This paper reports on a prototype developed
for studying integration of speech into graphical inter-
faces aimed towards programming of industrial robot
arms. The aim of the prototype is to develop a speech
system for designing robot trajectories that would fit
well with current CAD paradigms.

1 Introduction
Industrial robot programming interfaces provide a
challenging experimental context for researching in-
tegration issues on speech and graphical interfaces.
Most programming issues are inherently abstract and
therefore difficult to visualize and discuss, but robot
programming revolves around the task of making a
robot move in a desired manner. It is easy to visualize
and discuss task accomplishments in terms of robot
movements. At the same time robot programming is
quite complex, requiring large feature-rich user inter-
faces to design a program, implying a high learning
threshold and specialist competence. This is the kind
of interface that would probably benefit the most from
a multimodal approach.
This paper reports on a prototype speech user inter-

face developed for studying multimodal user interfaces
in the context of industrial robot programming [5].
The prototype is restricted to manipulator-oriented
robot programming. It tries to enhance a dialogue,
or a design tool, in a larger programming tool. This
approach has several advantages:

• The speech vocabulary can be quite limited be-

cause the interface is concerned with a specific
task.

• A complete system decoupled from existing pro-
gramming tools may be developed to allow precise
experiment control.

• It is feasible to integrate the system into an exist-
ing tool in order to test it in a live environment.

The aim of the prototype is to develop a speech system
for designing robot trajectories that would fit well with
current CAD paradigms. The prototype could later be
integrated into CAD software as a plug-in.
Further motivation lies in the fact that current

available speech interfaces seem to be capable of han-
dling small vocabularies efficiently, with performance
gradually decreasing as the size of the vocabulary in-
creases. This makes it interesting to examine the
impact of small domain-specific speech interfaces on
larger user interface designs, perhaps having several
different domains and collecting them in user inter-
face dialogues.
The purpose of the prototype is to provide an ex-

perimental platform for investigating the usefulness of
speech in robot programming tools. The high learning
threshold and complexity of available programming
tools makes it important to find means to increase
usability. Speech offers a promising approach.
The paper is organized as follows: speech, multi-

modal interfaces, and robot programming tools are
briefly recapitulated. Then, the prototype is described
giving the design rationale, the system architecture,
the different system parts, and a description of an ex-
ample dialogue design. The paper concludes with a
discussion of ongoing experiments and future enhance-
ments to the prototype.

0-7803-7545-9/02/$17.00 ©2002 IEEE 247

 Proceedings of the 2002 IEEE
Int. Workshop on Robot and Human Interactive Communication

Berlin, Germany, Sept. 25-27, 2002

Figure 1: SAPI 5.1 speech interface application front
end with a list of available command words.

2 Speech, multimodal interfaces and
robot programming tools

2.1 Speech recognition and synthesis
Speech software has two goals: trying to recognize
words and sentences from voice or trying to synthesize
voice from words and sentences. Most user interfaces
involving speech need to both recognize spoken ut-
terances and synthesize voice. Recognized words can
be used directly for command & control, data entry,
or document preparation. They can also serve as the
input to natural language processing and dialogue sys-
tems. Voice synthesis provides feedback to the user.
An example is the Swedish Automobile Registry ser-
vice providing a telephone speech interface with recog-
nition and synthesis allowing a user to query about a
car owner knowing the car registration plate number.
A problem with speech interfaces is erroneous inter-

pretations that must be dealt with [8]. One approach
to deal with it is to use other modalities for fallback
or early fault detection.

2.2 Multimodal user interfaces
A multimodal user interface makes use of several
modalities in the same user interface. For instance,
it is common to provide auditory feedback on oper-
ations in graphical user interfaces by playing small
sounds marking important stages, such as the finish
of a lenghty compilation in the Microsoft Visual C++
application. Rosenfeld gives an overview in [7].
Different modalities should complement each other

in order to enhance the usability of the inter-
face. Many graphical interfaces, including robot pro-

Figure 2: The SAPI 5.1 sample TTS application mod-
ified for use by the prototype system.

gramming interfaces, are of the direct-manipulation
type. Speech should therefore complement direct-
manipulation interfaces [2]. Grasso [4] lists comple-
mentary strengths and weaknesses related to direct-
manipulation and speech interfaces:

• Direct manipulation requires user interaction. It
relies on direct engagement and simple actions.

• The graphical language used in direct manipula-
tion interfaces demands consistent look and feel
and no reference ambiguity to be usable. This
makes it best suited for simple actions using vis-
ible and limited references.

• Speech interface is a passive form of communica-
tion. The medium allows for describing and ex-
ecuting complex actions using invisible and mul-
tiple references. It does not require use of eyes
and hands making it suitable for hand-eye free
operations.

Put in other words: speech might be used to avoid sit-
uations where you know exactly what you want to do
but do not have a clue as where to find it in the graph-
ical user interface. It may also help to avoid situations
when you are able to describe an operation but do not
know how it is expressed in the user interface.
2.3 Industrial robot programming inter-

faces
Essentially all robot programming boils down to the
question of how to place a known point on the robot at
a wanted position and orientation in space at a certain
point in time.

 248

For industrial robot arms, the known point is often
referred to as the tool center point (TCP), which is
the point where tools are attached to the robot. For
instance, a robot arm might hold an arc-welding tool
to join work pieces together through welding. Most
robot programming tasks deal with the specification
of paths for such trajectories [3].
Below is discussed how modeling of trajectories is

performed in three different tool categories for pro-
gramming industrial robots.

Teach pendant

A single robot operated by a person on the factory
floor is normally programmed using a handheld ter-
minal. The terminal is a quite versatile device. For
instance, the ABB handheld terminal offers full pro-
grammability of the robot. The terminal has a joystick
for manual control of the robot. Function buttons or
pull-down menus in the terminal window give access
to other features. Program editing is performed in
a syntax-based editor using the same interface as for
manual operation, i.e. all instructions and attributes
are selected in menus. Special application support can
be defined in a way uniform to the standard interface.
Trajectories are designed by either jogging the

robot to desired positions and record them or by pro-
gramming the robot in a programming language. For
ABB robots the programming language used is called
RAPID [1].

Off-line programming and simulation tools

In engineering environments, programming is typically
performed using an off-line programming tool. An ex-
ample is the Envision off-line programming and simu-
lation tool available from Delmia. These tools usually
contain: An integrated development environment. A
simulation environment for running robot programs.
A virtual world for visualizing running simulations and
being used as a direct manipulation interface for spec-
ifying trajectories.
Trajectories are designed by programming them in

a domain-specific language or by directly specifying
points along the trajectory. The simulation environ-
ment provides extensive error checking capabilities.

CAD and task level programming tools

Task level programming tools typically auto-generate
robot programs given CAD data and a specific task,
for instance to weld ship sections. The software works
by importing CAD data and automatically calculate

IDE Visualization Programming
Teach pendant Real env. Jogging & lang.
Off-line tool Virtual env. Lang. & sim.
Task-level tool Virtual env. CAD data

Table 1: Visualization and programming in different
categories of robot programming tools.

Figure 3: Virtual ABB IRB 2000 industrial robot
arm with 6 degrees of freedom (developed in coopera-
tion with Tomas Olsson, Dept. of Automatic Control,
Lund University, email: tomas.olsson@control.lth.se).

necessary weld trajectories, assign weld tasks to robots
and generate programs for these robots. These tools
are typically used for programming large-scale manu-
facturing systems.

3 Prototype
Two observations can be made concerning the user in-
terfaces in the above programming environments: The
typical task performed by all IDEs (Integrated Devel-
opment Environment) is to model task specific robot
trajectories, which is done with more or less automa-
tion, depending on tool category. The user interface
consists of a visualization and a programming part,
see Table 1.
The prototype presented here is a user interface

where speech has been chosen to be the primary in-
teraction modality but is used in the presence of sev-
eral feedback modalities. Available feedback modali-
ties are text, speech synthesis and 3D graphics.

 249

Figure 4: XEmacs is used as trajectory editor and
database.

The prototype system utilizes the speech recogni-
tion available in the Microsoft Speech API 5.1 software
development kit. The SAPI can work in two modes:
command mode recognizing limited vocabularies and
dictation mode recognizing a large set of words and us-
ing statistical word phrase corrections. The prototype
uses the command mode. It is thus able to recognize
isolated words or short phrases [6].

The system architecture uses several applications
(see Figures 1, 2, 3, 4): The Automated Speech Recog-
nition application, which uses SAPI 5.1 to recognize
a limited domain of spoken user commands. Visual
feedback is provided in the Voice Panel window with
available voice commands. The Action Logic applica-
tion, which controls the user interface system data-
flow and is the heart of the prototype. The Text-
To-Speech application synthesizing user voice feed-
back. The XEmacs application acting as a database of
RAPID commands and also allowing keyboard editing
of RAPID programs. The 3D Robot application pro-
viding a visualization of the robot equipment.

A decision was made to not use any existing CAD
programming system in the prototype. The reasons
were twofold: extending an existing system would
limit the interaction into what the system allowed,
making it difficult to easily adjust parameters like the
appearance of the 3D world and the behavior of the
editor. The second reason is that by not including a
commercial programming system it is possible to re-
lease this prototype into the open source community
as a complete system.

Figure 5: Prototype system dataflow.

3.1 System architecture
The prototype system architecture follows a tradi-
tional client-server approach. The action logic applica-
tion acts as a server with all other applications acting
as clients. Interprocess communication is performed
using Microsoft Win32 named pipes and sockets.
The system dataflow is centered around the speech

applications since it is the primary modality of the
system. Basically information flows from the speech
TTS to speech synthesis application through the ac-
tion logic application. The action logic application
then interacts with the other applications (XEmacs,
3D robot) in order to update the state and different
views supported in the interface (Figure 5).
3.2 Prototype applications
Action Logic

The action logic application is the heart of the system.
All information goes through this application. The
logic controlling the interface is hidden here.
The basic work flow of the application is:

1. Receive spoken commands from the speech recog-
nition application.

2. Interpret the commands and act accordingly:
Send Lisp editing commands to the XEmacs edi-
tor that is storing the trajectory as a sequence of
RAPID MoveL (Move Linear) commands. Read
trajectory stored in XEmacs and send it to the 3D

 250

application for execution and visualization. Send
feedback to be spoken to the speech synthesis ap-
plication.

Microsoft SAPI 5.1 speech recognition and syn-
thesis

The speech recognition and synthesis applications are
based on the Microsoft Speech API version 5.1. Each
application is built by utilizing an example application
delivered together with the SDK and modifying it for
our purposes. The example applications used for the
prototype are CoffeeS0 and TTSApp.
The modifications necessary were quite small. They

included: Adding communication capabilities to the
applications so that they could send and receive in-
formation from the action logic application. This was
done by adding a new communication thread to the
application. Modifying the application window mes-
sage handler to issue and receive speech messages from
the new communication code. Changing the user in-
terface to show our domain-specific vocabulary. And
finally tune the speech recognition application to our
vocabulary. This was done by rewriting the default
XML grammar read into the speech recognition appli-
cation upon initialization.

XEmacs RAPID trajectory editing and
database

XEmacs is utilized as a combined database, editing
and text visualization tool. The trajectory being
edited is stored in an XEmacs buffer in the form of
a sequence of RAPID MoveL commands:

MoveL ToPoint := [940,0,1465,0.707,0,0.707,0],
Speed := v50, Zone := z50, Tool := gripper1

MoveL ToPoint := [980,80,1495,0.707,0,0.707,0],
Speed := v50, Zone := z50, Tool := gripper1

The trajectory code is visualized in text form in the
XEmacs buffer window. It may be edited using normal
XEmacs commands. Thus the interface, even if devel-
oped with speech in focus, allows alternate interaction
forms.
The interaction between XEmacs and the action

logic application is done using LISP, see Table 2.
The action logic application phrases database in-
sertion/removal/modification commands of trajectory
parts as buffer editing commands. These are executed
as batch jobs on the XEmacs editor using the gnuserv
and gnuclient package.

Spoken command Emacs LISP
Add point (kill-new ”MoveL...”), (yank)
Remove point (kill-entire-line)
Move forward (forward-line 1)
Move backward (forward-line -1)

Table 2: Sample LISP editing command sent to the
Emacs RAPID database in response to spoken com-
mands.

Virtual environment

The prototype needed a replacement for the 3D vi-
sualization usually shipped with robot programming
applications to be realistic. A small 3D viewer previ-
ously developed was taken and enhanced with inter-
pretation and simulation capabilities for a small subset
of the RAPID language.
The tool is capable of acting as a player of trajecto-

ries stored in the XEmacs database. Player commands
(play, reverse, stop, pause) is controlled from the ac-
tion logic application.
3.3 Dialogue design
A preliminary experiment based onWizard-of-Oz data
obtained from the authors has been implemented.
The basic idea of this interface is to view trajectory

modeling as editing a movie. It is possible to play the
trajectory on the 3D visualizer, insert new trajectory
segments at the current point on the trajectory, re-
move trajectory segments, and moving along the tra-
jectory backward and forward using different speeds.
All editing is controlled using spoken commands,

see Table 3. The user gets feedback in the form of a
synthesized voice repeating the last issued command,
seeing the trajectory in text form in the XEmacs buffer
window and seeing the trajectory being executed in
the 3D window. The command is always repeated by
a synthesized voice in order to detect erroneous inter-
pretations immediately. At some points (for critical
operations like removal of trajectory segments), the
interface asks the user if he/she wants to complete the
operation.

4 Ongoing experiments and future
work

The prototype will be used to explore the design space
of speech interfaces with multimodal feedback. Below
follows a few issues that would be interesting to gather
data on:

• Varying the degree of voice feedback, as well as
the type of information conveyed.

 251

Figure 6: The prototype system user interface con-
sists of four windows; 1. The voice panel containing
lists of available voice commands. 2. The XEmacs
editor containing the RAPID program statements. 3.
The 3D visualization showing the current state of the
hardware. 4. The TTS application showing the spo-
ken text.

• Varying between different kinds of visual feed-
back.

• Varying the command vocabulary and interface
functionality. For instance by allowing some task
level abstractions in movement specifications, i.e.
move to object, grab object.

For the future, there is a list of wanted extensions:

• Allow multiple domains in the speech recognition
application, with the option of choosing which one
to be applied from the action logic application.
This feature could be used to test speech inter-
faces with state.

• Allow the entire experiment interface configura-
tion to be specified in XML. Remove all hacking
necessary to tune the interface. This would also
speed up development since it would be easy to
switch between different configurations.

5 Conclusion
We have developed a speech interface to edit robot
trajectories. An architecture based on reusable appli-
cation modules was proposed and implemented.
The work is aimed at studying feasability and use-

fulness of adding a speech component to existing soft-
ware for programming robots. Initial feedback from

Spoken commands Purpose
Forward, backward, left, right, Jog robot
up, down
Play, stop, step forward, step Play trajectory
backward, faster, slower
Mark, add point, move point, Edit trajectory
erase point
Yes, no User response
Undo Undo

Table 3: Vocabulary used in the prototype.

users of the interface are encouraging. The users, in-
cluding the authors, almost immediately wanted to
raise the abstraction level of the interface by refer-
ring to objects in the surrounding virtual environment.
This suggests that a future interface enhancement in
such direction could be fruitful.

References
[1] ABB Flexible Automation, S-72168 Väster̊as,

Sweden. RAPID Reference Manual. Art. No.
3HAC 7783-1.

[2] Cohen, Philip R. The Role of Natural Language in
a Multimodal Interface. UIST’92 Conference Pro-
ceedings. Monterey, California. p. 143-149. 1992.

[3] Craig, John J. Introduction to Robotics. Addison-
Wesley Publishing Company. Reading, Mas-
sachusetts. 1989.

[4] Grasso, Michael A, Ebert, David S, Finin, Timo-
thy W. The Integrality of Speech in Multimodal
Interfaces. ACM Transactions on Computer-
Human Intraction, Vol 5, No 4. p. 303-325. 1998.

[5] Prototype homepage, http://www.cs.lth.se/
~mathias/speech/.

[6] Microsoft Speech Technologies, http://www.
microsoft.com/speech/.

[7] Rosenfeld, Ronald, Olsen, Dan, Rudnicky, Alex.
Universal Speech Interfaces. Interactions Novem-
ber + December. p. 34-44. 2001.

[8] Suhm, B., Myers, B., Waibel, A. Multimodal Er-
ror Correction for Speech User Interfaces. ACM
Transactions on Computer-Human Interaction,
Vol. 8, No. 1. p. 60-98. 2001.

 252

	Copyright
	Foreword
	Table of Contents
	Author Index
	Sponsors
	Committees
	Cover

