
A Knowledge Integration Framework for Robotics.
Jacob Persson, Axel Gallois, Anders Björkelund, Love Hafdell, Mathias Haage, Jacek Malec, Klas Nilsson, Pierre Nugues
Department of Computer Science, Lund University, Sweden

Abstract
This paper describes a knowledge integration framework for robotics, whose goal is to represent, store, adapt, and dis-
tribute knowledge across engineering platforms. The architecture abstracts the components as data sources, where data
are available in the AutomationML data exchange format. AutomationML is an on-going standard initiative that aims
at unifying data representation and APIs used by engineering tools. A triplification procedure converts native formats
used by data sources into RDF triples and then exposes them via a SPARQL endpoint. The triplification step has been
implemented for the CAEX top level and logic data parts of AutomationML, where the conversion uses XSLT rules.

1 Introduction

Although widely used in industrial production, robots are
still restricted to large series and require highly-skilled
workforce to carry out the preproduction steps: design,
setup, and programming. A crucial element in the design
is the composition of the production platform and its con-
figuration. This composition is often made complex be-
cause of the heterogeneity of the equipments and engineer-
ing tools that use specific data formats and need adaptation
layers. Adaptation stacks are often completely specific to
one product and one production setup.
This paper attempts to solve problems arising from dis-
parate data formats or representations between equipments
using a semantic knowledge integration framework (KIF).
We describe an architecture to represent, store, adapt, and
distribute knowledge used in robotized production, where
we abstract the robotics components as data sources. In our
robotics applications, we assume that data is available in
the AutomationML exchange format [9]. AutomationML
is an on-going standard initiative that aims at unifying data
representation and APIs used by engineering tools. Us-
ing the scheme proposed by DBpedia [1, 2], we imple-
mented a procedure that converts native formats used by
data sources into RDF triples and then exposes them via a
SPARQL endpoint.
This architecture makes it easier to integrate knowledge
and skills used in robotized production and access them
using a uniform protocol. It should simplify and stream-
line both the design and the composition of a robotics cell,
as well as the implementation of adaptation layers between
equipments.

2 Categories of Knowledge Used in
Robotized Production

Knowledge in robotics systems covers a considerable set
of disciplines and categories: logic information, finite–
state machines and discrete-event systems, differential-

algebraic systems, geometric and kinematics models,
databases and first-order logic, and robot task programs to
name a few.
All these categories use different data representations and
for a same category, the formats of engineering tools may
also be different. This lack of standardization is of course
a problem to manufacturers, as they cannot easily switch
equipments, and causes well-known difficulties to cus-
tomize the production.

2.1 AutomationML

AutomationML1 is a standardized markup language that
attempts to model and unify all kinds of information used
by engineering tools. It covers plant topology, geometry
and kinematics, logic information, reference and relations,
and referencing other formats [9]. Rather than reinventing
representations, we started from AutomationML as it in-
tegrates existing data formats and provides the glue to tie
them together.
The upper-level part of AutomationML uses the CAEX
data exchange format. CAEX is a framework to store hier-
archical object information, properties, and libraries [10].
It represents topology information in the form of plants,
cells, components, attributes, interfaces, relations, and ref-
erences [3]. This CAEX top-level connects the different
data formats used downstream by the different categories
of engineering tools; for example COLLADA [4] for ge-
ometry and kinematics data and PLCopen [15] for logic
data.

2.2 Logic Data in AutomationML

AutomationML aims at comprehensively describing most
of the fields of automation and robotics. Logic data [13]
is one of them and AutomationML provides a representa-
tion for four types of logic models: Gantt charts, PERT
charts, impulse diagrams, and sequential function charts.
AutomationML uses PLCopen as target format and intro-
duces a bridge format, the intermediate modeling layer

1http://www.automationml.org/



(IML), to transform specific models or proprietary encod-
ings into PLCopen. AutomationML carries out the conver-
sion of nonnative formats in two steps: The first step takes
the original format and produces an IML representation;
the second one produces a PLCopen XML document from
the intermediate representation.

2.3 Extracting Information from Automa-
tionML and PLCopen

The XML format used in AutomationML and PLCopen is
not well suited for semantic processing or reasoning as its
structure is far from any kind of query or rule formalism.
From this viewpoint, the code is difficult to grasp and this
makes it complex to extract meaningful information easily.
Gantt charts are one example given in the Automa-
tionML/PLCopen specifications [13, pp.72–84]. Data we
may want to extract from them are the predecessor to a
given task and the condition of their completion, for in-
stance. Even if PLCopen is not targeted to human readers,
the XML document structure makes this extraction unintu-
itive. In addition, it could suffer from some attribute and
variable naming discrepancies across different files.

3 Exposing the Semantics of Au-
tomationML

3.1 The Resource Description Framework
The resource description framework (RDF) [16] is a initia-
tive of the World Wide Web consortium (W3C) to bring se-
mantics to the web. The framework represents information
as collections of triples consisting of a subject, a predicate,
also called a property, and an object.
A collection of triples forms a directed graph, where the
predicates correspond to the arc labels and the subjects and
objects, the pairs of connected vertices (Fig. 1).

Subject ObjectPredicate

Figure 1: An RDF triple. The predicate is sometimes
called the property

Subjects and predicates are unambiguously named using
uniform resource identifiers (URIs); objects are either re-
sources or literal values, i.e. numbers, strings, dates, etc.
Literal values can only correspond to terminal nodes.
The next line

<demozelle#d1e7> caex-xml:hasName "Linie".

is an example of a triple that connects the subject node
<demozelle#d1e7> to a literal string, "Linie". The
predicate gives a meaning to this relation: the object is a

name. The prefix caex-xml is the abbreviation of a com-
plete URI and in our current implementation, it stands for

http://asimov.ludat.lth.se/2009/09/caex-xml.owl#

The RDF model is close to concepts used in classical logic
[8]. In the traditional predicate logic notation, each RDF
triple

Subject Predicate Object

would correspond to the statement (or the fact):

Predicate(Subject, Object).

In addition to standardization, the possibility to reformu-
late the RDF model into a logic setting enables its users to
benefit from a considerable amount of results and tools.

3.2 RDF Extensions
The W3C defined additional languages or vocabularies
on top of RDF. The two most significant ones are RDF
schema, RDFS, and the Web ontology language (OWL):

• RDFS defines notably the word rdfs:Class that al-
lows to declare a RDF resource as a class and the
predicate rdfs:subClassOf that allows to declare
subclasses of a class and build a hierarchy.

• OWL extends RDFS with a set of relations among
concepts, such as equality, inheritance, disjointed-
ness, and transitivity. This allows us to perform sim-
ple consistency checks on a collection of triples ex-
pressed in OWL, given an ontology.

3.3 Exposing AutomationML as RDF
Triples

To expose the semantics of CAEX and PLCopen files and
make information extraction easier, we converted them to
RDF triples. Following the DBpedia method [1], we im-
plemented a procedure that transforms the data sources
used in an AutomationML environment into RDF repos-
itories and we made them accessible using the SPARQL
query protocol. The procedure comprises the following
steps:

1. Extract and transform data from all the knowledge
sources into RDF triples;

2. Expose the resulting graphs and make them acces-
sible using RDF repositories. For some nodes, we
used the Linked Data method to associate the node
URIs to HTTP accessible data;

3. Access and modify the graphs from a central inte-
gration server using a SPARQL update endpoint or
another update mechanism.

Figure 2 shows a sketch of the system overall architecture
and Fig. 3, an outline of the communication between a data
source and the knowledge integration server.



Data source

Data source

Data source

Data source

Production knowledge

Figure 2: Sketch of the system architecture.

Data source

Native XML

XML-to-RDF conversion

RDF store

SPARQL endpoint

Integration server

SPARQL query

SPARQL result:
table or graph

Figure 3: The communication mechanism.

3.4 Converting XML to RDF

Numerous methods to convert XML to RDF have been in-
vestigated [12, 14, inter alia]. The conversion is not neces-
sarily trivial and may depend on what kind of RDF vocabu-
lary, possibly OWL ontology, is needed by the application.
A transformation that would enrich the XML original
structure with an ontology and make use of the full OWL
capacity is a complex problem. Coming up with a mean-
ingful ontology to describe a complete plant hierarchy
and/or logic data and geometry, for example, would need
further investigation. For an investigation on rules to use
to convert CAEX documents into OWL, see [18].

In our case, we used the document object model (DOM)
of the original XML documents and we applied a syntactic
mapping to produce the RDF triples. The conversion pro-
cedure uses rules that take the elements of the source DOM
tree (i.e. xsd:elements and xsd:attributes) and cre-
ate the corresponding nodes of the output RDF graph. The
RDF predicates are automatically generated from the XML
element names by the concatenation of the prefix has and
the element name.

The procedure is implemented in the XSLT language,
where XSLT builds a DOM representation of the XML
input document, traverses the tree, and applies the rules
to produce the resulting RDF graph. The transformations
are then straightforward and the graph can easily be un-
derstood by the means of the XML schema describing the
original document.

Overall, this procedure transforms XML documents – in-
cluding the AutomationML standard suite – into queryable
databases or data sources. A drawback of it is that we lose
the ability to validate the consistency of the RDF graph
with respect to the underlying XML schema. This could
be solved by constructing an OWL ontology and using a
reasoner.

3.5 A Conversion Example

The AutomationML specifications require to start the hi-
erarchy with a CAEX top-level. From this level, we can
branch other formats such as logic data. As an example,
the XML code below shows an excerpt of a description
used as the root of a document:

<CAEXFile FileName="sockectconnector.aml">
<InstanceHierarchy Name="SocketConnector">

<InternalElement Name="Station" ID="{1}">
<InternalElement Name="Robot" ID="{2}"/>

</InternalElement>
</InstanceHierarchy>
<RoleClassLib

Name="AutomationMLRoleClassLib">
<RoleClass Name="AutomationMLBaseRole"/>

</RoleClassLib>
</CAEXFile>

This code can be represented by the DOM tree shown in
Fig. 4. Using XSLT conversion rules, we mapped the
DOM tree onto an RDF graph as shown in Fig. 5.



CAEXFile

InstanceHierarchy

InternalElement

InternalElement

RoleClassLib

RoleClass

Figure 4: DOM structure of a CAEX document. At-
tributes are omitted for simplicity.

caex-xml:CAEXFile

Station

{1}

caex-xml:InternalElement

hasInstanceHierarchy

rdf:type

hasInternalElement

hasRoleClassLib

hasRoleClass

caex-xml:hasName

caex-xml:hasID
rdf:type

Figure 5: DOM to RDF conversion. For sake of simplic-
ity, only a subset of the nodes and arcs is included in the
figure.

4 Hosting RDF Triples
We hosted the converted triples in network-enabled RDF
repositories using Sesame servers developed by the Open-
RDF2 community. Sesame is a tool for storing and query-
ing RDF data. RDF repositories are deployed as Java

servlet containers with a web interface so that users can
easily save and export graphs. In addition to the subject–
predicate–object triple, Sesame associates a context to
each statement. Such contexts correspond to graph names
and take the form of URIs. A repository can thus contain
one or more named graphs.
Figure 6 shows the complete architecture of the knowledge
integration framework (KIF) and the standard components
we used to implement the first prototype.

4.1 Querying Triple Stores
Once the data sources are available as RDF repositories,
we can use SPARQL [20] to express queries across the
graphs. SPARQL extracts patterns from them in a way that
is related to Prolog or Datalog [19]. SPARQL can deliver
the output as a table using the SELECT keyword or format
it as an RDF graph using CONSTRUCT.
RDF access is possible with Sesame via a SPARQL end-
point, the platform API, or directly using Sesame’s web
interface. Using the example in Sect. 3.5 and the SPARQL
interface, the following query extracts the names of the el-
ements in an instance hierarchy, in our case a robot and a
station:

SELECT ?ie ?name
FROM <http://asimov.ludat.lth.se/isr>
WHERE {

?ih caex-xml:hasInternalElement ?ie.
?ie caex-xml:hasName ?name

}

The graph uses the caex-xml:hasInternalElement
predicate to connect the internal elements to the instance
hierarchy. The first line extracts the internal elements ?ie
from an instance hierarchy ?ih using this predicate. The
second line extracts the caex-xml:hasName attribute of
the internal elements.
The query produces the results shown in Table 1, where
the node URIs have been automatically generated by the
XML-to-RDF conversion procedure.

?ie ?name
<http://asimov.ludat.lth.se/isr#id0x1ef3eda0> "Station"
<http://asimov.ludat.lth.se/isr#id0x1ef3bfd0> "Robot"

Table 1: Results from the SPARQL query.

4.2 Network Architecture
4.2.1 Linked Data

The architecture of the knowledge integration framework
is designed to host multiple clients. They include browsers
to review engineering data, editors, and simulation tools
that may have to interact with the RDF repositories. The
architecture also embeds the concept of Linked Data [5],

2http://www.openrdf.org/



Data source Data source Data source RDF repositories
Sesame

Native XML

XML-to-RDF conversion

RDF store

SPARQL endpoint

Integration server Java servlet container
Tomcat

SPARQL query

SPARQL result:
table or graph

Rich client Rich client Rich client

Javascript
Tabulator

Figure 6: Complete architecture of the knowledge integration framework (KIF) including the visualization clients.

where we associate certain nodes of the graph to a URI
with a content accessible via the HTTP protocol.
In the context of AutomationML, CAEX, and their trans-
lation into RDFs, this means that we can access class de-
scriptions as they correspond to nodes in the graph. Fig-
ure 7 shows an example with the role class Port from the
AutomationML documentation. All the converted classes
could have a similar URL that would link them directly to
metadata on their purpose, functionality, etc.

4.2.2 Network Protocol

The W3C has defined specifications of a REST-inspired
interface to RDF repositories called the SPARQL protocol
[7]. The REST model [11, 17] – representation state trans-
fer – is an architecture to handle communications between
clients and servers. REST uses standards from the Web:
URI/URL to identify resources being accessed or trans-
ferred and HTTP as communication protocol, which makes
it easy to understand and implement. For a discussion, see
[22].
Using the SPARQL protocol, the query:

SELECT ?s ?p ?o
WHERE {?s ?p ?o}

is sent to a repository in a HTTP envelope using the GET
method. This mechanism makes the integration of a client–
server architecture easier as tools exist and are well speci-
fied.

In practice, HTTP messages can be built using tools like
cURL [21]. Using this tool, the command to send the query
above is:

curl -X GET -H \
"Accept: application/sparql-results+json" \
http://asimov.ludat.lth.se/openrdf-sesame/\
repositories/sandbox?query=SELECT+\
%3fs+%3fp+%3fo+WHERE+%7b%3fs+%3fp+%3fo%7d

where Accept: application/sparql-results+json
tells the server to send the results in JSON,
http://asimov.ludat.lth.se/ is the server,
openrdf-sesame/repositories/sandbox is the
repository, query tells that it is the start of the query,
and %3f is the UTF-8 value – simply ASCII here – of the
question mark for instance.
The REST concept provides a uniform network interface
to the servers that can return any type of RDF results:

1. Graph results corresponding to SPARQL
CONSTRUCT queries, retrieval of a specific context,
or retrieval of the complete graph in a repository;

2. Tuple results corresponding to SPARQL SELECT
queries as shown in the example above; and

3. Boolean results corresponding to SPARQL ASK
queries.

In our current implementation, we used Sesame’s imple-
mentation of the SPARQL REST protocol to handle data



"Port" a caex-xml:RoleClass

Description

"The role class “Port” is a role type for objects that groups a number of interfaces and allows describing
complex interfaces in this way. AutomationML Port objects shall reference this role. Details and
examples are specified in 9.2.
Additionally, if required, the AutomationML Port object shall have a CAEX ExternalInterface derived
from the AutomationML InterfaceClass “PortConnector” (see Table 25).
Note: This interface allows connecting the considered Port with a number of other ports on an abstract
level without detailed description of the inner relations between the sub-interfaces (see Figure 40)."

Parent http://asimov.ludat.lth.se/aml/roles/AutomationMLBaseRoleClassLib/AutomationMLBaseRole
Base class http://asimov.ludat.lth.se/aml/roles/AutomationMLBaseRoleClassLib/AutomationMLBaseRole

Attributes

"Direction" (this#Direction)

Description

"This attribute shall be used to describe the direction of the Port.
Values shall be one of the following: “In” or “Out” or “InOut”. Ports
with the direction “In” can only be connected to ports with the
direction “Out” or “InOut” and ports with the direction “Out” can only
be connected with ports with the direction “In” or “InOut”. Ports with
the direction “InOut” can be connected to Ports of arbitrary direction.
Examples:
Direction = ”Out” (e.g. a plug)
Direction = “In” (e.g. a socket)
Direction = “InOut”
This information can be used e.g. in order to prove the validity of a
connection."

Datatype "xs:string"

"Cardinality" (this#Cardinality)

Description "This attribute is a complex attribute type and shall not have a value.
The corresponding sub-attributes are described in Table 24."

Datatype "xs:complexType"

Nested
attributes:

"MinOccur" (this#MinOccur)

Description

"The MinOccur value describes the minimum possible number of connections to or from
this Port.
The attribute shall have values greater or equal to 0.
Example: MinOccur = 1
This means that this Port should be connected with minimum one other Port."

Datatype "xs:uint"

"MaxOccur" (this#MaxOccur)

Description

"The MaxOccur describes the maximum possible number of connections to or from this
Port.
The attribute shall have values greater than or equal to MinOccur, except 0 which means
infinite.
Example: MaxOccur = 3
This means that this Port can only be connected with maximal three other ports."

Datatype "xs:uint"

"Category" (this#Category)

Description
"The category attribute describes the Port type. The value of this attribute is user-defined. Only ports with the
same category value are allowed to be connected.
Example: Category = “MaterialFlow”"

Datatype "xs:string"

Underlying RDF triples

this rdf:type caex-xml:RoleClass
this caex-xml:hasName "Port"

this caex-
xml:refBaseClassPath http://asimov.ludat.lth.se/aml/roles/AutomationMLBaseRoleClassLib/AutomationMLBaseRole

this caex-
xml:hasAttribute this#Direction

this caex-
xml:hasAttribute this#Cardinality

this caex-
xml:hasAttribute this#Category

this caex-
xml:hasDescription

"The role class “Port” is a role type for objects that groups a number of interfaces and allows
describing complex interfaces in this way. AutomationML Port objects shall reference this
role. Details and examples are specified in 9.2. Additionally, if required, the AutomationML
Port object shall have a CAEX ExternalInterface derived from the AutomationML
InterfaceClass “PortConnector” (see Table 25). Note: This interface allows connecting the
considered Port with a number of other ports on an abstract level without detailed description
of the inner relations between the sub-interfaces (see Figure 40)."

http://asimov.ludat.lth.se/aml/roles/AutomationMLBaseRoleClassLib/AutomationMLBaseRole caex-
xml:hasRoleClass this

Figure 7: Linked data to associate nodes of the graph to accessible URIs.



communication between servers and clients within the KIF
architecture and manage the RDF graphs.

5 The Visualization Module
The visualization module is the end component of the
knowledge integration framework. Requirements for it in-
clude portability, concurrent access, and distribution across
the internet. We used standard web browsers as the main
vehicle for visualization. They fit the description above
and do not need specific installations or configurations.
AJAX technologies combining asynchronous JavaScript
and XML are then a natural choice to develop the client
side of the knowledge integration framework; carry out
data transfer and processing, page rendering, animation,
and interaction.
We developed prototype components to validate the pro-
posed architecture.

• We hosted the triples on Sesame servers.

• A knowledge integration server in the form of a Java
servlet container collects RDF data from the dis-
tributed stores and carries out additional processing.

• Finally, the rich clients use AJAX techniques to ren-
der the results and support user interaction.

Servers and users can be distributed on any point of the
internet.
Using the knowledge integration framework, we con-
verted the DemoZelle example that comes with the
AutomationML editor available from http://www.
automationml.org/. We transformed the CAEX de-
scription into RDF and designed SPARQL queries to ex-
tract information from it. Information is then visualized on
the browser using Javascript in a way that is similar to that
of the AutomationML editor (Fig. 8).
Objects with a COLLADA model are visualized in the cen-
ter pane using Java and Java 3D. The lower pane of the
KIF viewer enables the user to navigate in the graph. Each
click on a node will update the view with nodes connected
to the selected node. We built the visualizer with the help
of Javascript scripts from the Tabulator project [6].

6 Discussion
As we wrote earlier, the XML formats used in Automa-
tionML and PLCopen may not be well suited for semantic
processing or reasoning as their structure may be far from
a rule formalism. Since the RDF graph is a transposition
of the XML tree, we still face similar problems when deal-
ing with this graph and SPARQL queries could prove more
difficult to write, sometimes.
To make more sense out of these graphs, one or more ad-
ditional ontologies could be created that would still fit the
initial RDF graph. This is the approach used by [18] on a

limited set of examples. As multiple inheritance is allowed
in RDF, this does not contradict the ontology derived from
the XML schema, but could be considered as an additional
layer on top of the initial XML-like graph.

Acknowledgments
The research leading to these results has received funding
from the European Union’s seventh framework program
(FP7/2007-2013) under grant agreement n◦ 230902.

References
[1] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens

Lehmann, Richard Cyganiak, and Zachary Ives. Db-
pedia: A nucleus for a web of open data. In Aberer,
editor, The Semantic Web, 6th International Seman-
tic Web Conference, 2nd Asian Semantic Web Con-
ference, ISWC 2007 + ASWC 2007, Busan, Korea,
November 11-15 2007.

[2] Sören Auer, Sebastian Dietzold, Jens Lehmann, Se-
bastian Hellmann, and David Aumueller. Triplify
- lightweight linked data publication from relational
databases. In WWW 2009, 2009.

[3] AutomationML. AutomationML specification. Part
1 – Architecture and general requirements. Technical
report, AutomationML Group, January 2009.

[4] Mark Barnes and Ellen Levy Finch. COLLADA –
digital asset schema release 1.5.0. Technical report,
Khronos Group, 2008.

[5] Tim Berners-Lee. Linked data. http://www.w3.
org/DesignIssues/LinkedData.html, 2006.

[6] Tim Berners-Lee, Yuhsin Chen, Lydia Chilton, Dan
Connolly, Ruth Dhanaraj, James Hollenbach, Adam
Lerer, and David Sheets. Tabulator: Exploring and
analyzing linked data on the semantic web. In Pro-
ceedings of the The 3rd International Semantic Web
User Interaction Workshop, November 2006.

[7] Kendall Grant Clark, Lee Feigenbaum, and Elias Tor-
res. Sparql protocol for rdf. http://www.w3.org/
TR/rdf-sparql-protocol/, 2008.

[8] Jos De Bruijn, Enrico Franconi, and Sergio Tessaris.
Logical reconstruction of normative RDF. In OWL:
Experiences and Directions Workshop, 2005.

[9] Rainer Drath, editor. Datenaustausch in der Anlagen-
planung mit AutomationML. Integration von CAEX,
PLCopen, XML und COLLADA. Springer, 2010.

[10] Murat Fedai, Ulrich Epple, Rainer Drath, and
Alexander Fay. A metamodel for generic data ex-
change between various CAE systems. In I. Troch



Figure 8: The KIF viewer showing the DemoZelle example available from http://www.automationml.org/.

and F. Breitenecker, editors, Proceedings of 4th
Mathmod Conference, pages 1247–1256, Vienna,
2003.

[11] Roy Fielding. Architectural Styles and the Design of
Network-based Software Architectures. PhD thesis,
University of California, Irvine, 2000.

[12] Roberto García and Òscar Celma. Semantic inte-
gration and retrieval of multimedia metadata. In 5th
Knowledge Markup and Semantic Annotation Work-
shop, SemAnnot’05 CEUR Workshop Proceedings,
volume 185, pages 69–80, 2006.

[13] L. Hundt, A. Lüder, J. Peschke, and D. Weidemann.
Description of logic data. Technical report, Automa-
tionML consortium, April 2008.

[14] I. Miletic, M. Vujasinovic, N. Ivezic, and Z. Mar-
janovic. Enabling semantic mediation for business
applications: Xml-rdf, rdf-xml and xsd-rdfs transfor-
mations. In Enterprise Interoperability II, pages 483–
494. Springer, 2007.

[15] PLCopen. IEC 61131-3: Programmable controllers
– part 3: Programming languages. Technical report,
International Electrotechnical Commission, 2003.

[16] RDF. RDF/XML syntax specification. http://
www.w3.org/TR/rdf-syntax-grammar/, Febru-
ary 2004.

[17] Leonard Richardson and Sam Ruby. RESTful Web
Service. O’Reilly Media, 2007.

[18] Stefan Runde, Knut Güttel, and Alexander Fay.
Transformation von CAEX-Anlagenplanungsdaten
in OWL. Eine Anwendung von Technologien des
Semantic Web in der Automatisierungstechnik. In
AUTOMATION 2009. Der Automationskongress in
Deutschland, pages 175–178. VDI Verlag, 2009.

[19] Simon Schenk. A SPARQL semantics based on Dat-
alog. In KI 2007: Advances in Artificial Intelligence,
pages 160–174. Springer, 2007.

[20] SPARQL. SPARQL protocol and RDF
query language. http://www.w3.org/TR/
rdf-sparql-query/, January 2008.

[21] Daniel Stenberg. curl and libcurl 7.19.7. curl-
announce mailing list, 2009.

[22] Erik Wilde and Michael Hausenblas. RESTful
SPARQL? You name it! Aligning SPARQL with
REST and resource orientation. In WEWST 2009,
November 9 2009.


