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Abstract
This paper describes the implementation and evaluatiorgeharic component to extract temporal information frontgéx Swedish.
It proceeds in two steps. The first step extracts time exjgpressind events, and generates a feature vector for eachrlé@rdentifies.
Using the vectors, the second step determines the temmagions, possibly none, between the extracted events m@teisothem in
time. We used a machine learning approach to find the relabetween events. To run the learning algorithm, we colteateorpus
of road accident reports from newspapers websites that vmeiaiig annotated. It enabled us to train decision trees amddluate the
performance of the algorithm.

1. Previous Work work by creating a larger set of conventions for time stamp-
The logic of event ordering and automatic extraction ofind and ordering of phrases.
such information has been a research topic for over 2¢-ascarides and Asher (1993) presented a system that used
years. Allen (1984) pioneered the field by creating a formaf wealth of sem_annc knowledge to order events of phrases
classification of temporal relations. He identified 13 diffe N Pluperfect. Hitzeman et al. (1995) argued that such an
ent relations between pairs of temporal intervals. If Aen @PProach is too complex, and work along those lines has
relations were to be applied to the text below, a graph sucR€en discontinued.

as the one in Figure 1 could be created. Machine learning techniques to extract time expressions
and to determine temporal relations in texts in English are
Tva personer dag nar en bil kérde, av vagen appearing. Verhagen et al. (2005), Boguraev and Ando
och krockadg; med ett trad. Bilen {kérde o} (2005), and Mani and Schiffman (2005) are recent exam-
en annan bil nar féraren {tappade kontrolf} ples of them. Li et al. (2004) is another example for Chi-
Over den. nese.
‘Two people die¢h when a car drovg off the 2. Temporal Information Processing

road and crasheg into a tree. The car {was
overtaking}k, another car when the driver {lost
control}s of it.’

We designed and implemented a generic component to ex-
tract temporal information from texts in Swedish. The first
step uses a pipeline of finite-state machines and phrase-
structure rules that identifies time expressions and events
This step also generates a feature vector for each element it

identifies. Using the vectors, the second step determires th
e4-"wasovertaking' | eSduinge4 | e5 -Mlost contro temporal relations between the extracted events and orders

o2 after 5 them in time. In the rest of this article, we will focus on
the second step, i.e., the detection of the relations betwee
e2 - "drove off" events.
e o3 after 62 We use a set of decision trees to find the relations between

events. As input to the second step, the decision trees con-
sider sequences of adjacent events, ranging from two to
five, extracted by the first step and decide the temporal re-
lation, possibly none, between pairs of them. We apply

Time a transitive closure to these partial orderings to produce a
temporal ordering for all the events in a text.

e3 - "crashed"

el after e3

Figure 1: The chain of events in the example text. 3. Corpus and Annotation

We automatically created the decision trees using the C4.5
Later, Dowty (1986) introduced the “narrative convention” machine learning program (Quinlan, 1992). As far as
the idea that the usage of two verbs in the perfect tenseve know, there is no available time-annotated corpus in
means that the second event occurs after the first one. In tf&wvedish. We decided to collect and annotate a corpus of
accidentreport above, this implies that evehhappens af-  texts with temporal relations on which we trained the ma-
ter evenk?2 as well as events happening after eventl. It  chine learning algorithm.
also implies that evert! happens after even8, whichun-  Several schemes have been proposed to annotate temporal
fortunately is not true. Webber (1988) continued Dowty’sinformation in texts. TimeML is an attempt to create a uni-
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fied annotation standard for temporal information in textsWe used five decision trees in total. The first tréd, con-
(Pustejovsky et al., 2003a; Pustejovsky et al., 2005). Itsiders two adjacehevents and orders them. A second and
goal is to capture most aspects of temporal relations bea third tree {t2 and dt3) order adjacent events consider-
tween events in discourses. It is based on Allen’s relaing features of the two events as well as features from the
tions and a variation of Vendler's classification of verbs.preceding and succeeding event, respectively. A fouréh tre
It defines XML elements to annotate time expressions anddt4) orders two events separated by a third event, using
events. Most notablylLI NKs describe the temporal rela- features from all three events. The fifth tregX) orders

tion holding between events or between an event and a timevents separated by two other events, using features from
TimeML is still an evolving standard (the latest annotationall four events in question.

guidelines are from October 2005), and TimeBank (PusteWe never apply the decision trees across time expressions
jovsky et al., 2003b), the annotated corpus in English, isas we noted that the decision trees performed very poorly in
still rather small. these cases. As a consequenié can be applied more of-

As development and test sets, we collected approximatelien than the others as it only requires two events in sequence
300 reports of road accidents from various Swedish newsinstead of 3 or more. Our motivation for having trees that
papers. Each report is annotated with its publishing dateorder events spaced further apatt| dt5) is that the re-
Analyzing the reports is complex because of their variabil-sulting ordering can be more fine-grained, and the motiva-
ity in style and length. Their size ranges from a couple oftion for having treeglt2 anddt3 is that they consider more
sentences to more than a page. The amount of details fontext.

overwhelming in some reports, while in others most of the

information is implicit. The complexity of the accidents 4.1. Features

described ranges from simple accidents with only one vehiThe decision trees use the features of the involved events,
cle to multiple collisions with several participating veléis  as well as some measures we believe are useful such as an
and complex movements. indication of what temporal signals were found between the
We manually annotated a subset of this corpus consisting afvents.

25 texts, 476 events, and 1,162 temporal links using a suldnstead of the TimeML class attribute, the decision trees
set of the TimeML scheme. The annotation of the traininguse the morphological structure of the events. Both, the
set for the decision trees was done by a single annotatoclass attributes and morphological structures, contam si
When the relation was difficult to classify, we removed it ilar data, but as the number of the different morphological
from the training set. structures is greater than the number of classes, the struc-
Annotation is difficult for humans as well as for machinesture carries more information.

and human interannotator agreement is low. The complexBelow we present the features for the simplest tié;,

ity of the annotation scheme, and the fact that a large part

of the information to annotate is implicit, accounts forsthi e nai nEvent Tense: none, past, present,
phenomenon. Additionally, the question of how to evaluate ~ f ut ur e, NOT_DETERM NED.

the performance is still not completely settled. When eval-
uating the temporal links, we used the method proposed *®
by Setzer and Gaizauskas (2001), which measures preci-
sion/recall on the transitive closure of temporal links.

mai nEvent Aspect : pr ogr essi ve,
perfective, perfective_progressive,
none, NOT_DETERM NED.

o e mai nEvent St ruct ure: NOUN,
4. The Decision Trees VB_GR_COP_I NF, VB_GR _CCP_FI N,
VB_GR MDD INF, VB _GR MDD FIN, VB_GR

To order the eventsin time and create the temporal links, we VB_I NF, VB_FI N, UNKNOWN.

use a set of decision trees. We apply each tree to sequences
of events to decide the order between a pair of events in ¢ (o] at edEvent Tense: (asmai nEvent Tense)
each sequence. #, ..., e,, are the events in the sequence

they appear in the text, the trees correspond to the foligwin e r el at edEvent Aspect : (as mai nEvent -
functions: Aspect)

fan(eis eir1) = tra(ei, i) e rel atedEvent Structure: (as mai nEvent -

fdtQ(eia ei-‘rla ei+2) = trel (eia ei-‘rl) St ructur e)

fatz(€is €ir1,€iv2) = trei(€iy1; €ita)

fara(ei, eir1,€ip2) = trei(€s, €i12) e t enporal Si gnal | nbet ween: none, bef or e,

fars(€i, €in1,€iva,eivs) = trer(€i, €ir3) after,| at er,when, conti nui ng,several .
The possible output values asenultaneousafter, before e tokenDistance: 1,2 to 3,4 to 6,7 to
is_included includes andnone As a set of features, the 10,greater than 10.

decision trees use attributes of the considered events, tem

poral cue words or expressions between them, and other pa-e sent enceDi st ance: 0, 1, 2, 3, 4, greater
rameters such as the number of tokens separating the pair than 4.

of events. The temporal cue words are called “signals” in
TimeML. !Adjacent in the narrative order of the text.

260



e punctuationSi gnbi stance: 0,1, 2, 3,4,5,
greater than 5.

4.4. Resolving Temporal Loops

Figure 4 shows the 1ZLI NKs that can be expected be-
tween a chain of four events. TheBel NKs often conflict,
€and therefore there is a need to remove some of them.
Instead of removing LI NKs, we addTLI NKs to an ini-
tially empty set if their inclusion wouldn’tintroduce termp

4.2. Applying the Trees ! . .

_ PPyIng , _ ral conflicts. We add th&LI| NKs with the highest scores
Figure 2 shows a part of C4.5's output iéfl. From this ¢ thys “removing” the conflictingTLI NKs with the
tree, we can extract the rule that when we consider a paiyest score.

of adjacent events whose first oma{ nEvent ) is in the

preterit tense and the second onel(at edEvent) is in 5. Results
the past perfect tense, the first event occurs after the decon

one in time. Figure 3 shows the application of this rule to>-1- Two Example Runs

the pair of simple sentenceBijlen krockade med ett trad. The texts R123 and R129 below are two examples of car ac-

Foraren hade druckit alkoholThe car crashed against a cidentreports from our corpus. The translation to Engbsh i
tree. The driver had drunk alcohol'. done word-for-word as the order and indices of the tokens
As Figure 2 shows, the C4.5 program also outputs pairs okr€ important. Also note in text R129 that in (1) the prepo-
numbers for each leaf of the decision trees. The first numsitioni ‘in’ is necessary in Swedish, butit is missing in both
ber is the “weight” of all queries reaching the leaf in ques-Vversions and clause (2) is ungrammatical. These mistakes
tion whereas the second one is the weight of the queries th¥tere made by the journalist who wrote the original text. As

The other trees use similar features, including the featur
of the other events involved in the query.

were erroneously answered. These numbers do not corré-rule, we did not edit the texts in our corpus.

spond directly to the number of times the leaf is reached,
but they are an indication of the accuracy of the leaf.

We use these numbers to compute a score for every
leaf of the trees. The score for a leaf is computed as
weightcorrect/Wweightiora. The score for each generated
TLI NKiis scoretree * 5COT€answer_leaf, WNEI€SCOTEC 1 IS
1—{CA4.5’s error estimate for the final tree}. If the leaf has

a weight 0f0.0, no queries reached that leaf in the training
set. We then set the score to the arbitrarily chosen value of
0.2.

We use these scores when we resolve temporal loops as de-
scribed in Section 4.4.

4.3. Training Set and Performance

Table 1 shows the final training set sizes, the final errosrate
for the trees as well as C4.5's error estimate for the final
tree. The size of the training sets for the trees varies be-
cause of the number of matches madg;is applied many
more times than e.glt5. The reason thait2 andd¢3 have
different training set sizes although they are applied tixac
as many times is that we removed some relations from the
training set.

Tree | Size | Errorsy;,, | C4.5's error estimate
dtl 449 36.3% 44.2%
dt2 382 37.5% 46.1%
dt3 384 39.3% 46.0%
dt4 220 30.9% 47.5%
dth 221 34.5% 46.2%

Table 1: Training set sizes and error rates for decisiorstree
dt1—dt5.

The error rate presented in Table 1 is quite high. Our strat-
egy relies on the redundancy of the trees and the assumption
that theTLI NKs with the higher scores are correct when
they conflict with links with lower scores. The conflicting
TLI NKs with the lower scores are invalidated when we re-
solve temporal loops.
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En trafikolycka 5 intraffades i snéovéadret vid
Faro kyrka i gar formiddag. En bikordeyy

av vagen ocHortsatteg in i ett trad varpa en
personklamdes,s fast. Raddningstjansten och
ambulanskoms, pd plats. Detfanns;; under
gardagskvallen inga uppgifter pd hur pass all-
varliga personskadornear 47.

Text R123.Gotlands Tidningar04 January
2003.

A trafic.accidenty occured; in
the.snow.bad.weather by Faré church vyes-
terday forenoon. A cadrove, off the.road and
continued;s in into a tree after.which a person
was.jammedg stuck. The.rescue.service and
ambulancecame;, to the.site. Thereweres;
during yesterday.evening no reports regarding
how serious the.person.injuriegre,;.

Text R123. English translation.

Fyra personerfordes; till sjukhus efter en
bilolyckag pé riksvég 66 vid Erikslund i Vasteras
vid tiotiden p& sondagsférmiddagen. Enligt
polisenharsys ingen av dem livshotande skador.
Tva personbilar och en lastbil varblandadesg
(1) olyckans, somintraffade 4o p& Riksvag un-
der E18 (2). Véagerstangdes, av fran olyck-
platsen sbderut meéippnadess igen efter ett par
timmar.

Text R129.Expressen29 December 2002.

Four personswere.taker; to hospital af-

ter a car.accident on national.highway 66
by Erikslund in Vasterds at the.ten.time on
Sunday.forenoon.  According [to] the.police
have,; none of them life.threatening injuries.



mai nEvent Tense = past:
r el at edEvent Tense
r el at edEvent Tense
rel at edEvent Tense

rel at edEvent Tense
r el at edEvent Tense
r el at edEvent Tense
r el at edEvent Tense

g

rel at edEvent Aspect
rel at edEvent Aspect
rel at edEvent Aspect
rel at edEvent Aspect
| sent enceDi st ance
sent enceDi st ance
sent enceDi st ance
sent enceDi st ance
sent enceDi st ance
| sent enceDi st ance
i nEvent Tense = present:

present: before (42.0/10.4)
future: before (0.0)

past :

none:

PR O

gt 4:

progressi ve:
perfective:

before (145.0/73.7)
after (7.0/6.1)
before (21.0/5.9)
perfective_progressive:
: simul taneous (6.0/2.3)
before (2.0/1.8)
si mul t aneous (0. 0)
si mul t aneous (0.0)
. simultaneous (0.0)
si mul t aneous (0.0)

none: after (16.0/4.8)

past: after (37.0/13.5)

present: sinultaneous (56.0/20.0)
future: simultaneous (0.0)

Figure 2: Part of C4.5’s output felt1.

Text Bilen krockade med ett trad. Foraren hade druckit alkohol.
‘The car crashed against a tree. The driver had drunk al¢ohol
Analysis Main eventKrockadg: tense = past, aspect = progressive

Related eventade drucki}: tense = past, aspect = perfective
Decision tree mainEventTense = past =>
relatedEventTense = past =>
relatedEventAspect = perfective =>
mainEvengafter relatedEvent =>
krockadeafter hade druckit
‘crashed’after ‘had drunk’

Figure 3: Applyingdt1 to a simple sentence

Two person.cars and a truck weig/olvedss
(1) the.accidengz, which occurredy, on na-
tional.highway under E18 (2). The.road
was.closed; off from the.accident.site south-
wards butvas.openegs; again after a couple [of]

hours.

Text R129. English translation.

Figures 5 and 6 show the screenshots of the final event or-
dering. A line connecting two boxes means that the eventin
the upper box precedes the one in the lower box. In Figure
5, both @2&ldmdeswas jammed’ and @3Rom‘came’
are correctly ordered with respect to @kdde‘drove’ and

@47var ‘were’. However, they are ordered incorrectly in

respect to each other. In Figure 6, the event ordering is

completely correct.

5.2. Interannotator Agreement

Interannotator agreement is known to be problematic in the
context of temporal markup. In one pilot study, Setzer and
Gaizauskas (2001), amongst other results, report a preci-
sion of 0.68 on average for the interannotator agreement for
the classification of temporal relations. They used the same
set of temporal relations that we used for our markup (i.e.,
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Figure 5: The event chain graph for text R123.



NN\

,,,,,, Eventi+0 | _____ Event i+1 Event i+2

,,,,,,,,,,,,, Event i+3
? ? ? ?

Figure 4: Between a sequence of four eventsTILPNKs can be expected.

The overall measures of recall and precision are de-
. StnSt|+|BLNBY |+]1 I |
fined as: R = %05 ke Lk L and P
ENEIENERVN
Sk NS, [+]B 0B, | +]1;, N1, |
CISEIHIBLIHIT ) )
We limited our evaluation to the relations in the &k E
as our system doesn’t support comparisons of time expres-
sions..

7. Evaluation

We evaluated the temporal ordering created by the system
for 10 previously unseen texts. We created a Gold Standard
for these texts, and in order for us to judge their complexity
relative to the texts used by Setzer and Gaizauskas, we also
did an interannotator evaluation on the same texts where
another member of our group also annotated the 10 texts.
Table 2 shows our results averaged over the 10 texts. As
a reference, we also included Setzer and Gaizauskas av-
. ] eraged results for interannotator agreement on temporal
Figure 6: The event chain graph for text R129. relations in six texts in English. Note that Setzer and
Gaizauskas did their evaluation over thedetUT') x (E'U

a subset of TimeML), and they also used newswire textsT) instead of over x L.

so their measure of precision for interannotator agreemerggggﬁgsgs, t:vealJ;?ir(;ﬂur\rgith%(és:):t?errr:gkessen?ifitlzeerM?:sc{
gives an indication of the difficulty of the problem. y )

ing a single link often results in a loss of scores of genérate

. transitive links and thus has a massive impact on the final
6. Experimental Setup evaluation figures.

We evaluated three aspects of the temporal information ex-

traction: the detection of time expressions, the deteaifon 8. Application

events, and the quality of the final ordering. We considerede integrated this module, called TimeCore, in the Carsim
that all the verbs and verb groups were events together witBrogram that generates 3D scenes from narratives describ-
a small set of nouns. We built the trees automatically fromng road accidents (Johansson et al., 2005). TimeCore out-
this set using the C4.5 program.We report here the final orpyts its analysis in an XML format, and Carsim uses this
dering. information to order the events it detects. Many events are
We applied a method proposed by Setzer and Gaizausk@gelevant for the visualization task and Carsim only uses a
(2001). They used the Cartesian prodUctUT) x (EUT)  subset of the detected events. The temporal module enables
where E' denotes the set of all the events in the text ancthe text-to-scene converter to animate the generated scene
T, all the time expressions, and they denatéd I, and  and visualize events described in the narrative.

B", the transitive closures for the relatiossnultaneous

includes andbefore respectively. 9. Conclusion and Perspectives

If S and S, represent the Gold Standard and the sysyye paye developed a method for automatically detecting
tem response, respectively, for the sgt, the mea- ;o expressions, events, and for ordering these events tem
sures of precision and recall for tr@multaneousre- o441y~ Although other systems have been described that
lation are R = % and P = % extract temporal relations between pairs of events (Mani
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Evaluation AV. Nyords | AV. Nevents | Pmean | Bmean | Fmean
Gold vs. Automatic 98.5 14.3| 54.85| 37.72| 43.97
Gold vs. Other Annotato " " | 85,55 58.02| 68.01
Setzer & Gaizauskas 312.2 26.7| 67.72| 40.07| 49.13

Table 2: Evaluation results for final ordering with P, R, anid Fb.

et al., 2003) or between clauses (Lapata and Lascarides, Human Language Technology Conference (HLT, &2i-
2004), we believe we are the first to report results on the monton, Canada.

automatic ordering of events in complete narratives. James Pustejovsky, José Castafio, Robert Ingria, Roser
The work we have presented can be improved in several Sauri, Robert Gaizauskas, Andrea Setzer, and Graham
ways. The accuracy of the decision trees should improve Katz. 2003a. TimeML: Robust specification of event
with a larger training set. Switching from decision treesto and temporal expressions in text. Pmoceedings of the
other training methods such as Support Vector Machines Fifth International Workshop on Computational Seman-
could also improve results. The resolution of temporal tics (IWCS-5)Tilburg, The Netherlands.

loops could also gain from a global optimization insteadJames Pustejovsky, Patrick Hanks, Roser Sauri, An-

of just discarding conflicting links. drew See, Robert Gaizauskas, Andrea Setzer, Dragomir
Radev, Beth Sundheim, David Day, Lisa Ferro, and Mar-
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