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Abstract:
Model-based systems in control are a means to utilize efficiently human knowledge and achieve high
performance. While models consisting of formalized knowledge are used during the engineering step,
running systems usually do not contain a high-level, symbolic representation of the control and most
of its properties, typically named numerical parameters. On a system level and beyond the plant data,
there is also a need to represent the meaning of the data such that deployment and fault analysis could be
augmented with partly automated inference based on the semantics of the data. To that end, we extended
the formalized knowledge traditionally used in control to include the control purpose, engineering
assumption, quality, involved state machines, and so on. We then represented the control semantics in a
format that allows an easier extraction of information using querying and reasoning. It aims at making
knowledge in control engineering reusable so that it can be shipped together with the control systems.
We implemented prototypes that include automatic conversion of plant data from AutomationML into
RDF triples, as well as the automated extraction of control properties, the conversion of parameters, and
their storage in the same triple store. Although these techniques are standard within the semantic web
community, we believe that our robotic prototypes for semantic control represent a novel approach.
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1. INTRODUCTION

Model-based systems in control are a means to utilize effi-
ciently human knowledge and achieve high performance. Mod-
els are formalized knowledge, but that formalization is usually
limited to the mathematics used during engineering of the con-
trol; a running control system does not contain a high-level
representation of the control and most of its properties. Prop-
erties include the normal control parameters that are typically
represented as named numerical entities, which are used in
user interfaces for tuning and deployment. However, the mean-
ing of the control parameters is normally only documented
in a human-readable form. That is, even if mathematical de-
scriptions are part of a documentation, there is no machine-
understandable information structure that supports storage and
reuse of engineering knowledge, which in turn would be useful
for improved, possibly semi-automatic, engineering tools.

The control parameters, and a few other items such as log data
for monitoring, already exist as part of controller interfaces
today, and are suitable for initial prototyping. To store and reuse
the engineering knowledge, we need to extend the formalized
knowledge to include also the purpose of control, the engi-
neering assumption, the quality of control as a function of the
provided resources, state machines, and so on. In this paper, we
describe a method to represent explicitly the semantics of the
control so that querying and reasoning is made possible.
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2. CONTROL KNOWLEDGE

Accumulating control knowledge may be approached from dif-
ferent directions. Starting from actual controllers is a bottom-
up approach. On a system level, there are corresponding needs
that form a top-down approach starting from the overall plant or
manufacturing line. We need then to represent not only the plant
data, but also its meaning such that deployment and fault anal-
ysis can be partly automated using the semantic descriptions.
The top-down and bottom-up approaches need to be coherent
to facilitate the desired reuse of control engineering knowledge
and it should be possible, to some extent, to ship this knowledge
embedded with the control systems for later on-site usage.

While it is easy to pinpoint the above mentioned goals, it is
hard to show how that could and should be accomplished. The
normal system engineering approach would be to include it all
in a list of requirements, use standardized interfaces, encode
possible variation in flexible data structures, and develop the
complete system. One can even claim that some of the ex-
isting systems already embody what we suggest. However, as
we experienced in both academia and industry, control system
solutions result from human innovations in a manner that is too
expensive to track (extensive re-engineering of tools and inter-
faces) with the established system engineering approaches. In
practice, even a well-designed (but pre-engineered) system gets
too restrictive with respect to unforeseen upcoming changes.
Therefore we need to introduce techniques for storing and man-
aging some of the human knowledge within our domain.



3. SCOPE

The domain selected for this paper is robotics in manufacturing,
which sets severe requirements on flexibility and performance.
Flexibility includes interaction with human operators for tun-
ing the production and for handling unforeseen error situa-
tions. Performance, despite hard-to-predict variations of work-
pieces and in process dynamics, includes the use of application-
specific sensing and feedback control (not pre-engineered with
the robot, and subject to change at the production site). Thus,
the bottom-up focus is on productive sensor-based robot mo-
tions, which we refer to as skills in the following. The top-
down scenario is the manufacturing line with much equipment
already having their properties modeled, although not in a man-
ner that extends well when new features are added. A coherent
approach that extends efficiently (with no or little reprogram-
ming when another XML schema or another type of feedback
control is added) is the ultimate challenge for this work.

Research on knowledge representation for robotics has pro-
vided a multitude of alternatives ranging from application data
being stored in individual files, to database-driven platforms
supporting information types covering large facilities. Although
such systems are often presented as open and generic, most of
them are indeed closed systems, with proprietary know-how
and specialized tools necessary to create, maintain, and use
these knowledge bases. Therefore, as a basis for our contri-
bution we propose and prototype an architectural framework
based on semantic web techniques (Antoniou and van Harlme-
len, 2008) allowing a standardized representation, storage, and
distribution of knowledge. This architecture offers the potential
of making automation data modular and extensible, while well-
defined interfaces and APIs provide possibility of accessing it
as needed.

The paper is divided as follows. We first discuss related and
previous work. Next, we present a device and skill ontology that
we chose as the starting point for this investigation. Then we
discuss how this ontology can be incorporated in a knowledge
integration framework (KIF). Finally, we report the results of
first practical experiments. The paper ends with conclusions
and plans for future work.

4. PREVIOUS WORK

The semantic web has been designed to represent concepts,
objects, and their relationships. It should enable systems to
(Buitelaar, 2007):

• Encode and interpret data using a rich hierarchical and
relational structure;
• Extract data and integrate them into applications;
• Share data with a common format.

Semantic approaches have previously been applied to au-
tomation and robotics systems. The DEPUIS (Design of
environmental-friendly products using information standards)
(Amato et al., 2008) and S-TEN (Intelligent Self-describing
Technical and Environmental Networks) 1 are examples that in-
vestigated the compatibility of the STEP standard, ISO 10303,
with the Web ontology language (OWL) and their mutual con-
version. However, both lines of research seem to have been
discontinued.

1 http://www.s-ten.eu/

Earlier work on skill-based inspection and assembly for recon-
figurable automation systems (Malec et al., 2007) described
the possibility to base reconfiguration reasoning on common
semantical grounds using a manufacturing ontology. Although
it did not use the linked data paradigm (Berners-Lee, 2006), it
showed the advantages of having a common semantics for all
used data. However, common semantics should not be confused
with standardized semantics, otherwise this would assume a-
priori knowledge about the unforeseen new knowledge. This
issue is addressed by the open-world assumption imposed on
the representation.

There have been several attempts to codify production knowl-
edge in the form of suitable ontologies and associated tools.
Lastra and Delamer (2008) provided an overview of this ex-
panding field. Kim et al. (2006) described an early attempt fo-
cusing on collaboration issues in the design process. Naumann
et al. (2010) is a recent report of activities complementing our
work.

Knowledge in robotics systems covers a considerable set of dis-
ciplines and categories: logic information, finite–state machines
and discrete-event systems, differential-algebraic systems, ge-
ometric and kinematics models, databases and first-order logic,
and robot task programs to name a few. All these categories use
different data representations and even for the same category,
the formats of engineering tools may also be different. This lack
of standardization is a problem to manufacturers, as they cannot
easily switch equipment, and causes well-known difficulties to
customize the production.

AutomationML 2 is a standardized markup language that at-
tempts to model and unify all kinds of information used by
engineering tools. It covers plant topology, geometry and kine-
matics, logic information, reference and relations, and refer-
encing other formats (Drath, 2010). The upper-level part of
AutomationML uses the CAEX data exchange format. CAEX
is a semantic middleware framework to store hierarchical object
information, properties, and libraries (Fedai et al., 2003). It rep-
resents topology information in the form of plants, cells, com-
ponents, attributes, interfaces, relations, and references (Au-
tomationML, 2009). This CAEX top-level connects the differ-
ent data formats used downstream by the different categories
of engineering tools; for example COLLADA (Barnes and
Finch, 2008) for geometry and kinematics data and PLCopen
(PLCopen, 2003) for logic data.

Persson et al. (2010) is a recent attempt to exploit Automa-
tionML data for creating semantic knowledge base for auto-
matic production. We develop this concept further in this paper.

5. THE KNOWLEDGE INTEGRATION FRAMEWORK

We designed an architecture to represent, store, adapt, and dis-
tribute knowledge used in robotized production, where we ab-
stract the components as data sources. We call it the knowledge
integration framework (KIF). In our robotic applications, we
assume that data is normally available in the AutomationML
exchange format (Drath, 2010).

The semantic approach enables the different sources of models
to share a common, standardized storage and exchange format
and makes it easier to implement inference procedures about
those models. Choosing one common representation (RDF)

2 http://www.automationml.org/



with well-defined semantics is a clear advantage over propri-
etary exchange formats or even commonly used standardized
XML.

The choice of RDF solves only part of the problem, namely rep-
resentation of discrete data, expressible as logical relations be-
tween objects. Other kinds of models (procedural, equational,
hybrid) will require extensions of the models we currently ex-
press in RDF. One example is geometry, which according to
AutomationML should be expressed in COLLADA.

To cope with unforeseen changes that might invalidate earlier
assumptions on the control, it is central to adopt the open-world
assumption (OWA), that Allemang and Hendler (2008, page 11)
formulated as:

An open world [. . .] is one in which we must
assume at any time that new information could
come to light, and we may draw no conclusions
that rely on assuming that the information available
at any one point is all the information available.

The required mindset to develop such knowledge-based sys-
tems is quite different from that of current control engineering
and software engineering approaches. This is however manage-
able by focusing on the knowledge as such.

6. SKILL AND DEVICE REPRESENTATION

Malec et al. (2007) presented an initial attempt towards a man-
ufacturing ontology, which was centered around the concepts
of devices and their capabilities that we refer to as skills. Other
types of basic concepts and related (nonprocedural) knowledge
included tasks, workpieces, and the notion of an environment.
Most of these concepts can be specified on at least two levels:

• abstract descriptions, like a pickup skill, and
• instantiated, concrete ones, like the gripper G1 gripping

windshield W23 in factory F7.

Skill models involve explicit logical conditions and implicit
behavioral models referenced in the ontology.

The Device Library is an important part of the manufacturing
ontology. It contains the device descriptions that show as el-
ements (leaves) in the ontology. It is designed so that a rea-
soning system can extract compatibility constraints, functional
information, and parameters The device library consists of vir-
tual parts, plugged in as needed and as available. It could be
maintained by device manufacturers.

6.1 Contents of the Manufacturing Ontology

The original ontology contained knowledge about abstract
skills and devices. Figure 1 shows a top-level view of it. This is
an area where a categorization is easy to carry out as, for exam-
ple, with the concept of vacuum gripper, which is a subconcept
of gripper, which in turn is a subconcept of device. Similarly,
a vacuum-pickup skill is a subconcept of pickup skill. In this
work, we extended the ontology with process knowledge com-
plementing the so-called production triangle: process, product,
and resource.

To have a more complete graph, we also represented semantic
connections between the skills and the devices. In particular,
each device is able to perform one or more skills, and each
skill can be performed by one or more devices. The hierarchical

Fig. 1. The ontology top level.

structure of the ontology allows, for instance, to specify that a
vacuum gripper has a vacuum-grasp skill, from which it may
be automatically deduced that it is a gripper and has, therefore,
a more generic grasp skill as well.

However, when addressing robots, it might be necessary to
specify that a robot uses a tool, e.g. a gripper to perform some
skill. Doing it properly is outside the representational power of
an ontology, at least in the form it has now. We use the concept
of compound devices for this purpose. See Malec et al. (2007)
for details.

The tasks constitute means of achieving a particular manufac-
turing goal and a reasoner needs to be presented with at least
some description of this goal. It needs to be able to reason about
rationale for each task and about reasons why a particular de-
vice and particular parameters were chosen. At the very least, it
needs a list of criteria which distinguishes acceptable execution
of a task from unacceptable ones, considered as errors.

6.2 Device Library

The part of the ontology containing information about the phys-
ical devices and their properties is called the Device Library.
Although virtually indistinguishable from the rest of the ontol-
ogy, it forms a conceptually separate system with respect to the
rest of the ontology. The distributed nature of the KIF plays an
important role in allowing this to happen seamlessly.



One important aspect of the device library is that it must contain
not only static information about the devices like its name,
properties expressed using discrete parameters, e.g., weight,
power consumption, or accuracy, but also geometric informa-
tion, which may be parametrized in some way (for this pur-
pose we assume a COLLADA specification pointed to by an
appropriate URI) and some description of the dynamic behavior
of the device. The behavior may be described in many ways
and it will be the visualization/simulation or even deployment
interface that will determine what kind of descriptions will
be necessary or useful for its needs. However, there may, and
usually will, be more than one behavioral model, extending the
utility of information contained in the device library.

6.3 Development of the Ontology

The original ontology focused on the connection of skills and
devices. The relation to product and process aspects was only
contextual and provided implicitly in the reasoning algorithm.
The revised ontology presented here enhances the definition of
skill and stresses the interaction with all three nodes of the
production triangle: product, process, and resource. Namely,
the skills also include the coordination of actions

The extensions introduced for the KIF consist mainly of:

• The knowledge representation is based on persistent triple
stores (not restricted by the tables of classical databases);
• Reasoners are not committed to yet, and no particular

architectural solution for this task is chosen. Therefore,
the generic picture of a knowledge-based system, with
pluggable external reasoners is perfectly valid, while the
specific, blackboard-based utility-function mechanism of
reasoning in Malec et al. (2007) has not been considered
as relevant for KIF.

Summarizing this section: KIF exploits the previously devel-
oped skill and device ontology in a creative manner, augment-
ing it with other facets and enabling other kinds of reasoning
than those which were originally possible. The next section will
present some details of the solutions adopted and will illustrate
the approach.

7. EXPOSING THE SEMANTICS

7.1 The Resource Description Framework

The resource description framework (RDF) (RDF, 2004) is a
initiative of the World Wide Web consortium (W3C) to bring
semantics to the web. The framework represents information as
collections of triples consisting of a subject, a predicate, also
called a property, and an object.

A collection of triples forms a directed graph, where the pred-
icates correspond to the arc labels and the subjects and ob-
jects to the pairs of connected vertices. Subjects and predicates
are unambiguously named using uniform resource identifiers
(URIs); objects are either resources or literal values, i.e. num-
bers, strings, dates, etc. Literal values can only correspond to
terminal nodes of a graph. The line

<rosetta#d1e7> caex-xml:hasName "Cam_3".

is an example of a triple that connects the subject node
<rosetta#d1e7> to a literal string, "Cam_3". The pred-
icate gives a meaning to this relation: the object is a name

Data source #1 Data source #2

Native XML

XML-to-RDF conversion

RDF store

SPARQL endpoint SPARQL endpoint

Integration Server
Knowledge

SPARQL query SPARQL result

Fig. 2. The communication mechanism.

of the subject. The prefix caex-xml is the abbreviation of a
complete URI and e.g., in our current implementation, it stands
for

http://asimov.ludat.lth.se/2009/09/caex-xml.owl#

The RDF model is close to concepts used in classical logic
(De Bruijn et al., 2005). In the traditional predicate logic no-
tation, each RDF triple (Subject Predicate Object)
would correspond to the statement: Predicate(Subject,
Object). In addition to standardization, the possibility to
reformulate the RDF model into a logic setting enables its users
to benefit from a considerable amount of results and tools.

7.2 Exposing AutomationML as RDF Triples

To expose the semantics of CAEX and PLCopen files and make
their information content explicit, we convert them to RDF
triples. Following the DBpedia method (Auer et al., 2007), we
implemented a procedure that transforms the data sources used
in an AutomationML environment into RDF repositories and
we make them accessible using the SPARQL query protocol.
The procedure comprises the following steps:

(1) Extract and transform data from all the knowledge sources
into RDF triples;

(2) Expose the resulting graphs and make them accessible
using RDF repositories. For some nodes, we used the
Linked Data method to associate the node URIs to HTTP
accessible data;

(3) Access and modify the graphs from a central integration
server using a SPARQL update endpoint or another update
mechanism.

The system overall architecture thus enables the interconnec-
tion of distributed data sources in a transparent manner. Each
of these sources can utilize existing XML-based data, which is
very common in industry today. Figure 2 shows the communi-
cation between the data sources and the knowledge integration
server.

In order to convert an XML document, we use the document
object model (DOM) of the original XML documents and



we apply a syntactic mapping to produce the RDF triples, as
described in Persson et al. (2010). The conversion procedure
uses rules that take the elements of the source DOM tree
(i.e. xsd:elements and xsd:attributes) and create
the corresponding nodes of the output RDF graph. The RDF
predicates are automatically generated from the XML element
names by the concatenation of the prefix has and the element
name.

The procedure is implemented in the XSLT language, where
XSLT builds a DOM representation of the XML input docu-
ment, traverses the tree, and applies the rules to produce the
resulting RDF graph. The transformations are then straightfor-
ward and the graph can easily be understood by the means of
the XML schema describing the original document. Overall,
this procedure transforms XML documents – including the
AutomationML standard suite – into queryable data sources.
A drawback is that we lose the ability to validate the consis-
tency of the RDF graph with respect to the underlying XML
schema. This could be solved by constructing an appropriate
OWL ontology and using a reasoner.

7.3 Hosting and accessing RDF Triples

We host the converted triples in a network-enabled RDF repos-
itory using Sesame server developed by the OpenRDF 3 com-
munity. It is deployed as Java servlets with a web interface so
that users can easily save, export, and inspect graphs. In addi-
tion to the subject–predicate–object triple, Sesame associates a
context to each statement. A repository can thus contain one or
more named graphs.

Once the data sources are available in the RDF repository, one
can use SPARQL (SPARQL, 2008) to express queries over the
graphs. SPARQL extracts patterns from them in a way similar
to Prolog or Datalog (Schenk, 2007). SPARQL can deliver the
output as a table (using the SELECT keyword) or format it as an
RDF graph (using CONSTRUCT). RDF access is thus possible
with Sesame via a SPARQL endpoint, programmatically via the
platform API, or directly using Sesame’s web interface.

7.4 The prototype

The KIF server is the center point of an architecture con-
sisting in particular of an engineering station, a high-level
controller and a low-level firmware/hardware interface, among
other units.

An engineering station is used to enable a user to interact with
the system: select or modify the task to be performed, select
devices to be used and the physical environment of the work
cell. Although the station possesses simulation capabilities,
the generic knowledge about devices and tasks, stored in an
appropriate set of ontologies, is retrieved from KIF, using the
methods described above. When the work cell and task are
specified, they are exported in AutomationML-based format to
the KIF.

The high-level controller carries out the task synthesis from the
abstract, device-independent form stored in KIF to the concrete
one, containing the code to be executed in the robot and work
cell controller. At all levels of abstractions, we represent the
tasks as transition systems of various kinds: depending on the
software used at particular level it might be a PLCopen-like
3 http://www.openrdf.org/

structure, a sequential function chart of IEC 61131-3, a state
chart in the Simulink environment, with robot-specific actions
typically implemented in plain robot programming languages
of the native system, such as RAPID or KRL depending on the
target robot.

The synthesis is facilitated by the knowledge available in KIF.
The first phase, device-independent, is focused on task decom-
position leading to a task specification in which every step is
realizable by the available devices. As the robot prototype is to
assemble small parts, possibly with two hands, the reasoning in-
volved deals with fixtures, grasping, mounting, setting, moving,
etc. The second phase instantiates the generic task specification
with parameters and details specific to the concrete devices used
in assembly. For this purpose, the KIF contains a library of
available devices and possible ways of performing assembly,
together with the corresponding controller code.

The KIF is also used to store data gathered during run-time,
which is later exploited for learning and optimization. The
optimization may be local and applicable only to the current
set of devices and a concrete task, or may be global, spanning
over a number of realizations using replaceable devices, or even
several tasks.

The tests performed currently within the framework of EU
FP7 Rosetta project are done using the Robot Studio software
environment from ABB as the engineering station, our custom
KIF server implemented on top of Sesame, and a custom high-
level controller of the Rosetta project. The robots we target
include various manipulators from Kuka and ABB, including
the recent FRIDA two-handed manipulator.

8. CONCLUSIONS

The work presented in this paper aims at creating a knowledge
repository to support model-based engineering practices, in
particular in the context of robotized industry. The repository
would support knowledge reuse and learning, making it easier
to adapt the robots or, more generally, the available resources
to new tasks when a production line is changed. We have
designed and are currently further prototyping a knowledge
integration framework. First experiments show that we can
handle large amounts of data in the form of AutomationML
documents describing complete plants as well as hardware-
close information about the control used in a particular process.
One of the crucial steps is the use of an underlying ontology
that allows us to handle models used in control and automation
in an efficient fashion.

Targeting future usage in real production environments, the
ongoing efforts include enhancements influencing how the data
and control knowledge are gathered and represented. We inves-
tigate the replacement of the current syntax-based translation of
the XML formats used in AutomationML and PLCopen, which
may not be well suited for semantic processing or reasoning as
their structure is far from a natural rule formalism. Interfaces
towards engineering tools are currently being developed, so
that the contents of KIF may be on one hand properly visu-
alized, and on the other hand exploited by the control system
developers. The KIF has also been attached to the run-time
control system of an industrial robot, which will also be used
for gathering on-line knowledge while the production cell is
being run.



To make more sense of the graphs gathered from different
sources and describing different kind of models, one or more
additional ontologies could be created that would still fit the
initial RDF graph. This is the approach used by Runde et al.
(2009) on a limited set of examples. As multiple inheritance is
allowed in RDF, this does not contradict the ontology derived
from the XML schema, but could be considered as an additional
layer on top of the initial graph.
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