
Generating a 3D Simulation of a Car Accident from a Written
Description in Natural Language: the CarSim System

Sylvain DUPUY, Arjan EGGES, Vincent LEGENDRE, and Pierre NUGUES
GREYC laboratory - ISMRA

6, bd du Maréchal Juin
F-14050 Caen, France

Email: {dupuy,vlegendr}@ensicaen.ismra.fr
pnugues@greyc.ismra.fr
egges@cs.utwente.nl

Abstract

This paper describes a prototype system
to visualize and animate 3D scenes from
car accident reports, written in French.
The problem of generating such a 3D
simulation can be divided into two sub-
tasks: the linguistic analysis and the vir-
tual scene generation. As a means of
communication between these two mod-
ules, we first designed a template for-
malism to represent a written accident
report. The CarSim system first pro-
cesses written reports, gathers relevant
information, and converts it into a for-
mal description. Then, it creates the cor-
responding 3D scene and animates the
vehicles.

1 Introduction

This paper describes a prototype system to visu-
alize and animate a 3D scene from a written de-
scription. It considers the narrow class of texts
describing car accident reports. Such a system
could be applied within insurance companies to
generate an animated scene from reports written
by drivers. The research is related to the TACIT
project (Pied et al., 1996) at the GREYC labora-
tory of the University of Caen and ISMRA.

There are few projects that consider automatic
scene generation from a written text, although
many projects exist that incorporate natural lan-
guage interaction in virtual worlds, like Ulysse
(Bersot et al., 1998; Godéreaux et al., 1999) or An-
imNL (Badler et al., 1993). Visualizing a written
car accident report requires a different approach.
It is closer to projects focusing on text-to-scene
conversion, like WordsEye (Coyne and Sproat,
2001). However, unlike the latter, our objective
is to build an animation rather than a static pic-
ture and behavior of dynamic objects must then

be taken into account. There also exist systems
that carry out the reverse processing, from video
data to text description, as ANTLIMA (Blocher
and Schirra, 1995).

We present here an overview of the CarSim

system that includes a formalism to describe and
represent car accidents, a linguistic module that
summarizes car accident reports according to this
formalism, and a visualizing module that converts
formal descriptions to 3D animations. In our case,
the linguistic module has to deal with texts where
syntax and semantics involve time and space de-
scription and simultaneous actions of two or more
actors (i.e. the cars).

The remainder of our paper is organized as fol-
lows. Section 2 presents the formalism for describ-
ing an accident. Section 3 describes the template
filling methods that lead to the conversion of a
text into its formal representation. Section 4 cov-
ers planning techniques and accident modelling al-
gorithms that we use. Finally, Section 5 presents
and discusses the evaluation of the system on the
test corpus (MAIF corpus).

FD

Linguistic
analysis

Virtual scene
generator

Figure 1: The two subsystems and the FD (For-
mal Description) as a means of communication.

2 Formal Representation in

CarSim

“Véhicule B venant de ma gauche, je me
trouve dans le carrefour, à faible vitesse en-
viron 40 km/h, quand le véhicule B, per-
cute mon véhicule, et me refuse la priorité
à droite. Le premier choc atteint mon aile
arrière gauche, sous le choc, et à cause de
la chaussée glissante, mon véhicule dérape,

et percute la protection métallique d’un ar-
bre, d’où un second choc frontal.” Text A4,
MAIF corpus.

“I was driving on a crossroads with a
slow speed, approximately 40 km/h. Vehicle
B arrived from my left, ignored the priority
from the right and collided with my vehicle.
On the first impact, my rear fender on the
left side was hit and because of the slippery
road, I lost control of my vehicle and hit the
metallic protection of a tree, hence a second
frontal collision.” Text A4, MAIF corpus,
our translation.

The text above is an accident report from the
MAIF1 corpus, which contains 87 texts in French.
It is a good example of the possible contents of an
accident description: a rather complex interaction
between a set of different objects (two cars and a
tree). This section describes the formal represen-
tation used in the CarSim system. The example
of Text A4 will be explained with more details in
Section 2.5.

2.1 The General Accident Model

In CarSim, the general accident model con-
sists of three lists of objects: motionless objects
(STATIC), moving objects (DYNAMIC), and fi-
nally collisions (ACCIDENT).

STATIC and DYNAMIC lists describe the gen-
eral environment in which the accident takes
place. Knowing them, the accident itself is the
only remaining item to determine. Using manual
simulation, we realized that most accidents in the
corpus could be framed using an ordered list of
collisions2. Each collision is represented by a re-
lation between two objects either in DYNAMIC
and/or STATIC lists

2.2 Static Objects

In general, a static object can be defined with two
parameters: one defining the nature of the object
and another one that defines its location. In Car-

Sim, a static object can be either a road type or
an object that can participate in a collision (e.g.
a tree). In the formal description, a reference to
the latter kind of object can occur in a collision
specification. This is why these static objects are
defined with an identity parameter (ID).

Concerning ROAD objects, their nature is spec-
ified in the KIND parameter. The possible KIND
values in the present prototype are: crossroads,
straightroad, turn left, and turn right.

TREEs, LIGHTs (traffic lights), STOPSIGNs,
and CROSSINGs (pedestrian crossings) are the

1Mutuelle Assurance Automobile des Instituteurs
de France. MAIF is a French insurance company.

2Two collisions will never happen at the same time.

other possible static objects. Their location is
given by the COORD parameter. Since trees and
traffic lights can participate in collisions, they also
have an ID, that allows further references. Finally,
traffic lights contain a COLOR parameter to in-
dicate the color of the light (red, orange, green or
inactive).

2.3 Dynamic Objects

Dynamic objects cannot be defined by giving only
their nature and position. Rather than the posi-
tion, the movement of the object must be defined.

In the CarSim formal representation, each
dynamic object is represented by a VEHICLE,
with a KIND parameter indicating its nature,
(car or truck) and a unique identifier ID. The
movement of a dynamic object is defined by
two parameters. The INITIAL DIRECTION
defines the direction to which the object is
headed before it starts driving (north, south,
east, or west). The second parameter is an
ordered list of atomic movements that are de-
scribed by EVENTs. This list is called the event
chain and corresponds to the CHAIN parame-
ter. KIND specifies the nature of each event.
At present, CarSim recognizes the following
events: driving forward, stop, turn left, turn right,
change lane left, change lane right, overtake.

Figure 2 shows the motion of a dynamic object
with KIND = car, INITIAL DIRECTION = East
and CHAIN =<driving forward, turn left, driv-
ing forward>.

event 1

event 2

event 3

Figure 2: A crossroads with a vehicle driving for-
ward, turning left and driving forward with an
initial direction to the East.

2.4 Collisions

As we said before, the accident is described by
an ordered list of collisions. The order of the

collisions in the list corresponds to the order in
which they take place in the accident simulation.
A collision is defined by giving the two objects
that participate in the collision and some addi-
tional attributes. At present, these attributes are
the collision coordinates and the parts of the vehi-
cles that are involved in the collision (participat-
ing parts).

There is a slight distinction between the vehi-
cle that collides (in other words: the actor) and
the vehicle that is hit (the victim). For planning
reasons (and also for linguistic grounds) it is use-
ful to maintain this distinction in the formalism.
To summarize, a collision occurs between an actor
and a victim. The victim can be either a static or
a dynamic object, the actor clearly has to be a
dynamic object. The notions of actor and victim
are not related with the responsibility of one par-
ticular vehicle within the accident. This kind of
relationships must be deduced from a complex re-
sponsibilities analysis, that could be based on the
traffic rules.

Next to the location (coordinates) of the colli-
sion, something has to be said about the configu-
ration of the objects while colliding. The partici-
pating parts are sometimes given in the text, see
for example Text A4 at the beginning of this sec-
tion. The CarSim system uses a simplified model
of these vehicle parts. They are divided in four
categories: front, rear, leftside, and rightside, plus
one unknown category.

2.5 An Example

In order to give an example of a formal accident
description and also to introduce the linguistic
part, we will give now more details about the man-
ually written FD of Text A4.

In a written text, information can be given ei-
ther explicitly or implicitly. Besides, the contents
of implicit information differs in each text. In Text
A4, what information can we directly gather from
the text?

Text A4 describes an accident with two
collisions, involving two vehicles and a tree. It
takes place at a crossroads. The first collision in-
volves two vehicles. One of them is referred to
as the “vehicle B”, the other is the narrator’s ve-
hicle (“my vehicle”). From now on, vehicles will
be called vehicleB and vehicleA respectively. The
second collision involves vehicleA and the tree. In
the FD, the tree is identified in a unique way as
tree1. From this information, we already know
how many objects will be needed to describe the
accident: two static objects (a crossroads and a
tree tree1), two dynamic objects (vehicleB and
vehicleA) and finally two collisions.

The text does not mention any special behavior
of the two vehicles. They are both driving when
the accident occurs. Hence, the event chain is the
same for both vehicles, a single driving forward
event.

The roles played by the vehicles in each colli-
sion are also given. As human beings, we deduce
them from the grammatical functions of the noun
groups or pronouns referring to the vehicles in the
sentences where collisions are described. In the
first collision, the actor is vehicleB and the victim
vehicleA (respectively, subject and object of the
verb “percuter”, “to collide with” in the transla-
tion). In the second one, the actor is vehicleA and
the victim tree1.

The parts of the vehicles that participate in
a collision are sometimes explicitly given in the
report, as for example for vehicleA in Text A4.
In the first collision, the impact occurs at the
rear left-hand side of the vehicle (“On the first
impact, my rear fender on the left side was hit”)
and in the second one, vehicleA hits the tree
with the front of the car (“hence a second frontal
collision”).

Actually, we don’t know whether the vehicles
in the text are cars, trucks or something else. As
no precise information is explicitly given in the
text, we simply assume that these vehicles are
cars3. The type of vehicles is not the only im-
plicit piece of information in the text. The initial
directions of the vehicles are only known relatively
to each other. We know that vehicleB is coming
from the left-hand side of vehicleA (“Vehicle B
arrived from my left”) and if we arbitrary decide
that vehicleA starts heading to the North, then
vehicleB has to start heading to the East. The
same fragment of the text gives us the participat-
ing part of vehicleB. Since the participating part
of vehicleA in the first collision is leftside, we can
conclude that vehicleB’s part is front. The tree
has no particular participating part. Thus, it will
be defined as unknown but we can assume that
the impact occurs with the trunk because all the
scene takes place in a two-dimensional plane.

Below is the formal description of Text A4 that
can be given to the simulation module of CarSim:

// Static objects
STATIC [

ROAD [
KIND = crossroads;

]
TREE [

ID = tree1; COORD = (5.0, -5.0);

3car will be the default value of the KIND param-
eter of dynamic objects.

]
]

// Dynamic objects
DYNAMIC [

VEHICLE [
ID = vehicleB; KIND = car;
INITDIRECTION = east;
CHAIN [

EVENT [
KIND = driving_forward;

]
]

]
VEHICLE [

ID = vehicleA; KIND = car;
INITDIRECTION = north;
CHAIN [

EVENT [
KIND = driving_forward;

]
]

]
]

// Collision objects
ACCIDENT [

COLLISION [
ACTOR = vehicleB, front;
VICTIM = vehicleA, leftside;
COORD = (1.0, 1.0);

]
COLLISION [

ACTOR = vehicleA, front;
VICTIM = tree1, unknown;

]
]

The only information we did not discuss yet are
the coordinates of static objects and impacts. Co-
ordinates are numbers. They are never explicitly
given in the text and obviously, even if some num-
bers appeared in the text, the semantic of these
numbers would be implicit too. CarSim assumes
that coordinates (0,0) are the center of the scene.
In Text A4, the origin is the center of the cross-
roads. The first collision occurs in the crossroads,
hence the coordinates will be close to the origin.
The coordinates of the tree are chosen so that they
match the idea of the scene as a reader could imag-
ine it. They also depend on the size of the graphi-
cal objects that are used in the 3D scene (e.g. the
size of the roads).

3 The Information Extraction Task

The first stage of the CarSim processing chain is
an information extraction (IE) task that consists
in filling a template corresponding to the formal
accident description (FD) described in Section 2.
Such systems have been already implemented, as
FASTUS (Hobbs et al., 1996), and proved their
robustness. Our information retrieval subsystem

is restricted to car accident reports and is goal-
driven. The main idea is to start from a default
description, a pre-formatted FD, that the IE task
alters or refines using inference rules. Hence, the
default output will be a well-formatted FD, de-
scribing a collision between two cars, even if the
given text is a poem.

3.1 Parsing

The first step of the information extraction pro-
cess is a lexical analysis and a partial parsing. The
parser generates tokenized sentences, where noun
groups, verb groups, and prepositional groups are
extracted. The parser uses DCG rules (Pereira
and Shieber, 1987) and a dictionary containing
all the words that occur in the corpus.

3.2 Extracting Static Objects

The formalism describes two types of static ob-
jects: the type of road (the road configuration)
and some other static objects (stop signs, traf-
fic lights, pedestrian crossings and trees). The
method used to extract these objects consists in
looking up for keywords in the tokenized text.

The extraction of static objects is done at the
beginning of the information extraction task. We
realized that the road configuration is the most
relevant piece of information in the description of
an accident, since it conditions all the following
steps (see Section 3.4 for further explanations).

The formalism considers four different config-
urations: straightroad, crossroads, turn left, and
turn right. In the present system, we restricted it
to three types of road:

• crossroads, indicated by cue words such
as “carrefour”, “intersection”, “croisement”
(crossroads, intersection, junction).

• turn left, with cues such as “virage”,
“courbe”, “tournant” (bend, curb, turn).
We assume that turn left and turn right are
equivalent.

• straightroad, that corresponds to the situa-
tion when none of the previous words have
been found.

3.3 Extracting Collisions

A collision consists of a verb, an actor, a vic-
tim and of the participating parts of the two
vehicles. We select verbs describing a colli-
sion such as “heurter” (“to hit”), “taper” (“to
bang”), “percuter” (“to crash into”), “toucher”
(“to touch”),. . .

For each extracted verb, the system checks
whether the verb group is in passive or active

form, then identify the related grammatical rela-
tions: subject-verb and verb-object or verb-agent.
Extraction techniques of such dependencies have
already been implemented, as in (Aı̈t-Mokhtar
and Chanod, 1997). Our system uses three pred-
icates in order to find the subject (find subject)
and either the object (find object) or the agent
(find agent) of the verb. If the verb is in an active
form, it makes the assumption that the subject
and the object of the verb will be respectively the
actor and the victim of the collision. In the case
of a passive form, the subject will be the victim
and the agent, the actor.

Below is the sketch of the algorithm of these
three predicates:

• find subject looks for the last noun group be-
fore the verb that describes a valid actor, that
is a vehicle or a personal pronoun like “je”
(“I”), “il” (“he”), or “nous” (“we”) .

• find object starts looking for the first noun
group after the verb that describes a valid
victim, that is both vehicles and static ob-
jects. If no valid victim is found, it searches
for a reflexive or personal pronoun inside the
verb group. In case of failure, the first noun
group after the verb is chosen.

• find agent looks for a valid actor in a prepo-
sitional group introduced by “par” (“by”).

3.4 Generating Collisions and Dynamic

Objects

For each collision, the system tries to extract the
participating parts of the vehicles in the noun
groups that refer to the actor and the victim. To
do this, it looks for cues like “avant”, “arrière”,
“droite”, or “gauche” (“front”, “rear”, “right”, or
“left”).

Then, the system creates two dynamic objects
(see Section 3.5) and a collision between them.
The generated properties of the collision depend
on the road configuration:

• Straight road: the first vehicle heads to the
East, the other one starts from the opposite
end of the road, heading to the West. The
collision is a head-on impact.

• Turn: The first vehicle starts heading to the
East, then turns to the Left. The second one
starts heading to the South, then turns to the
Right. The collision is frontal and happens at
the center of the turn.

• Crossroads: We choose to represent here the
most frequent traffic offence (in France). The

first vehicle drives straight to the East, the
second one drives to the North. The front of
the actor’s vehicle collides with the left-hand
side of the victim.

As we do not extract the initial directions of
the vehicles, these three cases are the only possi-
ble ones. When the system cannot find the actor
or the victim of a collision, default objects are cre-
ated matching the road configuration.

3.5 Deleting Useless Objects

When creating collision objects, two new vehicles
are instantiated for each collision, even if the vic-
tim is a static object. Moreover, one vehicle can
obviously participate in several collisions. All the
unnecessary vehicles should then be thrown away.

A vehicle that represents a static object can be
removed easily, since the real static object still
exists. All we have to do is to modify the reference
given in the victim parameter of the collision in
the template, then delete the redundant vehicle.

Deleting the duplicates is more difficult and in-
volves a coreference resolution. An identification
mechanism of the narrator has been added to the
system. All the personal pronouns in the first per-
son or some expressions like “the vehicle A” will
be designated with the id enunciator. In the other
cases, coreference occurs only when the two ids
are strictly the same (in the sense of string com-
parison). Then, the system keeps only the first
created object between the duplicates and delete
the others.

3.6 Extracting Event Chains

The vehicles generally do not drive straight
forward. They carry out two or more
successive actions. In the formal descrip-
tion, these possible actions correspond to the
events of dynamic objects and are in limited
number: driving forward, turn left, turn right,
change lane right, change lane left, overtake, and
stop.

In written reports, these actions are mostly in-
dicated by verbs. The system has to identify them
and to link the corresponding event(s) to the ap-
propriate vehicle. When the subject is identified
as the narrator, the link is obvious. In the other
cases, if there are only two vehicles, the narra-
tor and another one, a new event is added to the
event chain of the second vehicle. Otherwise, the
system checks whether the subject of the verb is
strictly identical (string comparison) to one vehi-
cle’s id. In this case, a new event is also created
and added to the event chain. Some verbs imply
multiple events, e.g. “redémarrer” (“to get driv-

ing again”) that indicates that the driver stopped
beforehand. Consequently, a stop event then a
driving forward event are added.

With this simple extraction mechanism, the or-
der of the events in the event chain does not neces-
sarily respect the chronology but rather the order
of the text. We assume that the story is linear,
which is the case in most accident reports.

3.7 Writing the Formal Description

The final step of the linguistic part consists in for-
matting a template corresponding to the accident
description. Because the inferred facts have ex-
actly the same attributes as the formalism’s el-
ements, a very simple transcription algorithm is
used to convert the facts in a text file that can be
processed afterwards by the simulator.

4 Planning

Planning complex events like collisions requires
a well-defined and flexible planning architecture.
General planning algorithms which apply methods
incorporating artificial intelligence, are discussed
in (Nilsson, 1998). The CarSim planner is much
more straightforward, because the planning pro-
cess is not as complex as a lot of traditional AI
planning problems, see also (Norvig and Russell,
1995). The total planning process is performed by
using five different subplanners, which all perform
a small part of the total planning task.

4.1 The Preplanner

The preplanner is a planner that ensures the con-
sistency of the formal description. If some values
are not given (e.g. coordinates of a static object or
initial directions of dynamic objects) or some val-
ues imply a contradiction (a vehicle turning left on
a straight road), this planner tries to find (default)
values and to solve the conflicts. This planner is
a simple knowledge base, as discussed in (Norvig
and Russell, 1995).

4.2 The Position Planner

The position planner estimates the start and end
positions of the vehicles in the simulation. By de-
fault, a vehicle is placed 20 meters away from the
center of the (cross)road. If two or more vehicles
are moving in the same direction, they can’t all be
placed at this distance because they would over-
lap. Therefore, if there is more than one vehicle
facing a particular direction, the second vehicle is
placed at a distance of 26 meters from the center
and if there is a third vehicle, it is placed at 32 me-

ters from the center4. Regarding the end points of
the vehicles, the vehicle that is placed closest to
the center, will have its end point placed farther
away from the center. The vehicle initially having
a start point far away from the center will have an
end point close to the center, so that every vehicle
traverses approximately the same distance.

4.3 The Trajectory Planner

Based on the (very global) description of the
movement of every vehicle in the formal model,
this planner constructs a trajectory, represented
by a set of points in the Euclidian space. Every
event in the event chain is converted to a list of
trajectory points. A turn is approximated by a
number of points lying on a circle arc. Overtak-
ing is modelled by using a goniometrical function.

4.4 The Accident Planner

The accident planner uses the trajectory that is
created by the trajectory planner. Since event
chains only include atomic movements and not
collisions, this trajectory is planned as if there was
no collision at all. The task of the accident plan-
ner is to change this trajectory in such a way that
it incorporates the collision. Some part of it has
to be thrown away and an alternative part (which
ultimately leads to the point of collision) has to be
added to the trajectory. For every vehicle, actor
or victim, the trajectory is thus changed in two
steps:

1. Remove a part of the trajectory.

2. Add a part to the trajectory so that the fi-
nal result will be a trajectory that leads the
vehicle to the point of collision.

The part of the trajectory that has to be re-
moved depends on the coordinates where the colli-
sion occurs. We designed an algorithm that draws
a circle around the collision point and removes the
trajectory part that lies within the circle region.
Also, the segment that comes after the removed
trajectory part is thrown away, because a trajec-
tory does not allow gaps. The radius of the circle
is thus a parameter that defines the precision of
the algorithm. If a large radius is chosen, a large
part of the trajectory will be removed. An appli-
cation of the algorithm using a small radius only
removes the trajectory part closest to the collision
point.

4In the CarSim system, the maximum number of
vehicles that can have the same initial direction is
three.

4.5 The Temporal Planner

The temporal planner of the CarSim system is
not a planner in the sense of the planners de-
scribed in (Nilsson, 1998) The temporal planner
of the CarSim system plans the temporal values
of the trajectory in two steps. Generally, a trajec-
tory consists of a number of ‘normal’ trajectory
points, followed by a number of trajectory points
that represent a collision. First the segment that
is not part of any collision is planned. After that,
the system plans the remaining segment. In the
CarSim system, every trajectory point has a time
value. This is a value between 0 and 1, with 0 rep-
resenting the beginning of the simulation and 1
being the end of it. The temporal planner tries to
find time values for the trajectory points so that
the collisions happen in a natural way.

5 Results and Discussion

The CarSim system has been implemented and
evaluated over the MAIF corpus. The assessment
method does not consist, as usually done with IE
systems, in calculating a precision and a recall.
Our objective is to design a system that carries
out the whole processing chain, that is from a
written report up to a 3D animation. Therefore,
we preferred to compare the simulation with the
understanding and mental representation of the
scene that could have a human reader. This im-
plies that some aspects of the formal description
are not taken into account when evaluating the
system, e.g. we assume that the value of the INI-
TIAL DIRECTION parameter is less important
than the positions of the vehicles relatively to each
other. Hence, we considered that the result is ac-
ceptable as far as the latter is correct.

According to such criteria, we considered that
the simulation provided by the system corre-
sponds, in 17% of the texts, with what could have
imagined a human being. Figure 3 & 4 show the
two collisions described in Text A4.

Failure cases have many different grounds.
They may be related either to the IE task, to
the simulator, or to a lack of cooperation between
the two subsystems. Evaluating separately each
subsystem leads to a better understanding of the
actual limits of the system.

Feeding the simulator with manually written
formal descriptions provides a good way to eval-
uate it for itself. According to such tests, the
CarSim system generates an acceptable simula-
tion of almost 60% of the reports. This implies
that the results of the overall system will be lower.
CarSim’s simulator does not succeed in simulat-
ing manually written formal descriptions because

Figure 3: The first collision in Text A4.

Figure 4: The second collision in Text A4.

of three main causes: expressivity of the formal-
ism that does not cover all possible accidents (e.g.
synchronization between event chains of different
objects), the restricted number of scenarios con-
sidered by the CarSim visualizer and the limited
database of 3D graphical objects. Depending on
the text, the failure is the result of either only
one of these restrictions or a combination. Future
work on the project will focus on these issues.

The efficiency of the IE task varies with the
nature of extracted information. First, the results
clearly depend on the accuracy with which the
system can correctly extract impacts, that is
find the verb representing the collision and also
resolve the actor, the victim and possibly their
participating parts5. This task is successfully
accomplished in 69% of the texts6. In addition,
the system correctly extracts EVENTS in 35% of
the texts. This means that in 35% of the texts,
all the events are properly extracted with a good
ordering.

5when the parts are explicitly described
6In the rest, it generates default impacts or impacts

are erroneous.

Concerning time and space information, the
system provides only simple mechanisms to ob-
tain them. Our system is at an early stage and
our objective when designing it was to see whether
such an approach was feasible. It represents a
sort of improved baseline with which we can com-
pare further results. At this time, the temporal
information known by the system is restricted to
the events associated with dynamic objects. Our
method assumes that they are given in the text in
the same order they occur in reality. This is a sim-
plification that proves wrong in some reports. Fur-
ther improvements could take into account tenses
of verbs, temporal adverbs and prepositions, so
that the system could determine the real chrono-
logical relationships between events.

A similar comment can be given with regards to
spatial information. In CarSim, the spatial con-
figuration (the background of the scene) is given
mainly by the type of roads. The extraction of
participating parts also provides additional in-
formation that influence the relative positions of
the vehicles when colliding. During preplanning
stage, the system checks the consistency of the
FD and tries to resolve conflicts between the dif-
ferent information. At present, initial directions
of the vehicles depend only on the background of
the scene, that is the road configuration. The co-
ordinates are also chosen arbitrary from the be-
ginning. See for example the tree referred as tree1
in Text A4: no information about its location is
given in the text. The only facts relative to it that
we can deduce from the original report are its ex-
istence and its involvement in a collision. More-
over, the problem of choosing a referential from
which to calculate coordinates is quite unsolvable
for texts that do not mention it explicitly. The IE
task could involve deeper semantic analysis that
provides means of constructing a more global spa-
tial representation of the scene.

6 Conclusion

This paper has presented a prototype system that
is able to process correctly 17% of our corpus of
car accident reports up to a 3D simulation of the
scene. The chosen approach divides the task be-
tween information extraction to fill templates and
planning to animate the scene. It leads to en-
couraging results, considering that the informa-
tion retrieval could be improved by integrating
more elaborate methods to deal with space and
time in written texts.

References

S. Aı̈t-Mokhtar and J-P. Chanod. 1997. Subject
and object dependency extraction using finite-
state transducers. In Proceedings of ACL work-
shop on Automatic Information Extraction and
Building of Lexical Semantic Resources for NLP
Applications.

N. Badler, W. Becket, B. Di Eugenio, C. Geib,
L. Levison, M. Moore, B. Webber, M. White,
and X. Zhao. 1993. Intentions and expectations
in animating instructions: the AnimNL project.
In Intentions in Animation and Action. Insti-
tute for Research in Cognitive Science, Univer-
sity of Pennsylvania, March.

O. Bersot, P.O. El-Guedj, C. Godéreaux, and
P. Nugues. 1998. A conversational agent to
help navigation and collaboration in virtual
worlds. Virtual Reality, 3(1):71–82.

A. Blocher and J.R.J. Schirra. 1995. Optional
deep case filling and focus control with mental
images: ANTLIMA-KOREF. In Proceedings of
IJCAI-95, pages 417–423.

R.E. Coyne and R. Sproat. 2001. Wordseye:
An automatic text-to-scene conversion system.
In Proceedings of International Conference on
Computer Graphics and Interactive Technolo-
gies (SIGGRAPH 2001). AT&T Research Lab.

C. Godéreaux, P.O. El-Guedj, F. Revolta, and
P. Nugues. 1999. Ulysse: An interactive, spo-
ken dialogue interface to navigate in virtual
worlds, lexical, syntactic, and semantic issues.
In John Vince and Ray Earnshaw, editors, Vir-
tual Worlds on the Internet, chapter 4, pages
53–70. IEEE Computer Society Press.

J.R. Hobbs, D. Appelt, J. Bear, D. Israel,
M. Kameyama, M. Stickel, and M. Tyson. 1996.
FASTUS: A cascaded finite-state transducer for
extracting information from natural-language
text. In Roche and Schabes, editors, Finite
State Devices for Natural Language Processing.
MIT Press.

N.J. Nilsson. 1998. Artificial Intelligence, a New
Synthesis. Morgan Kaufmann Publishers, Inc.

P. Norvig and S.J. Russell. 1995. Artificial intel-
ligence: a modern approach. Prentice Hall.

F.C.N. Pereira and S.M. Shieber. 1987. Prolog
and Natural Language Analysis. Stanford Uni-
versity. CSLI Lecture Notes No.10.

F. Pied, C. Poirier, P. Enjalbert, and B. Vic-
torri. 1996. From language to model. In
Workshop Corpus-Oriented Semantic Analysis
in European Conference on Artificial Intelli-
gence (ECAI), August.

