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Abstract

This paper describes a baseline question answering sys-
tem for Swedish. The system includes modules to carry
out the question analysis, hypothesis generation, and
reranking of answers. It was trained and evaluated on
questions from a data set inspired by the Swedish tele-
vision quiz show Kvitt eller Dubbelt.

We used the Swedish Wikipedia as knowledge source
and we show that paragraph retrieval from this corpus
gives an acceptable coverage of answers when targeting
Kvitt eller Dubbelt questions, especially single-word
answer questions. Given a question, the hypothesis gen-
eration module retrieves a list of paragraphs, ranks them
using a vector space model score, and extract a set of
candidates.

The question analysis part performs a lexical answer
type prediction. To compute a baseline ranking, we
sorted answer candidates according to their frequencies
in the most relevant paragraphs. The reranker module
makes use of information from the previous stages to
estimate the correctness of the generated answer candi-
dates as well a grammatical information from a depen-
dency parser. The correctness estimate is then used to
re-weight the baseline ranking.

A 5-fold cross-validation showed that the median rank-
ing of the correct candidate went from rank 21 in the
baseline version to 10 using the reranker.

Introduction

This paper describes a baseline question answering system
for Swedish. The system includes modules for the question
analysis, hypothesis generation, and a reranking of answers
on which we evaluated the contribution of syntactic features.

The most prominent work in the question answering field
is certainly IBM Watson (Gondek et al. 2012), a system that
outperformed the human champions of the Jeopardy! quiz
show. Such a system is extremely appealing as it seems to
reach the limits of human intelligence and could find an un-
countable number of applications. However, IBM Watson
was designed for English and made use the numerous re-
sources available for this language. This makes it difficult to
replicate when moving to another language.
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In this paper, we show the feasibility of a question answer-
ing system for a language with less resources, Swedish in
our case. We describe an architecture that copes with such a
language and we restricted the search strategies to document
search over paragraphs. Its design roughly corresponds to a
simplified single path through the Watson pipeline.

We used the Swedish version of Wikipedia (Swedish
Wikipedia 2008) as knowledge source and we trained
and evaluated our system on questions inspired by the
Swedish television quiz show Kvitt eller Dubbelt — Tio-
tusenkronorsfragan (Thorsvad and Thorsvad 2005; Kvitt
eller Dubbelt 2013).

The question analysis part carries out a lexical answer
type prediction and is responsible for producing a search
query from the question text. The hypothesis generation
module uses the Lucene indexer to extract a set of para-
graphs. The reranker module makes use of information from
the other modules to estimate the correctness of the answer
candidates and thus create a new ranking.

Previous Work

In 2011, IBM Watson set a milestone in computing history
by beating the two best human champions in a real-time two-
game Jeopardy! contest (Ferrucci 2012). IBM Watson is, at
the time of writing, considered to be the state of the art in
question answering.

The IBM Watson system includes, in addition to its ques-
tion answering core and game play implementation, human-
computer interaction components such as: language inter-
pretation, answer formulation, and speech synthesis. In this
paper, we focused on the question answering core.

IBM Watson takes full advantage of the Jeopardy! format
of questions; for instance, in finding the focus (the part of
the question that refers to the answer) and the lexical an-
swer type (LAT), which indicates the class of the answer
in the question analysis. Its question answering architecture,
DeepQA, is heavily modularized and allows for multiple im-
plementations that can produce alternative results. This cre-
ates alternative paths through its pipeline; paths that are in-
dependent and can be pursued in parallel (Ferrucci 2012).

Multiple candidate answers can be proposed using dif-
ferent search strategies (Chu-Carroll et al. 2012), for exam-
ple: document search, passage search, lookup in structured
databases with extracted facts (triples), or using knowledge



graphs such as IBM’s frame database Prismatic (Fan et al.
2012). This also allows for pursuing different interpretations
of the question and category. Features and evidence are gath-
ered and analyzed for each answer before the final reranking
and selection of the answer candidates. Watson can then use
the estimated confidence to decide on its Jeopardy! game
strategy, e.g. whether or not to answer a question or how
much to bet.

Question Corpus

We gathered a corpus of 2310 questions that we transcribed
from a card version of the Kvitt eller Dubbelt — Tiotusenkro-
norsfragan quiz show (Thorsvad and Thorsvad 2005). Out
of these questions, 1683 are single-word answers and most
of them are nouns. Because of the Kvitt eller Dubbelt game
play, the questions are divided into 385 sets of six ques-
tions of different values printed on 385 different cards. The
cards are divided into seven categories, where each card has
a name. Each question consists of a question text, an an-
swer, optionally complemented with an alternative answer.
We annotated manually answers with one of the eight an-
swer categories listed in Table 1. These categories were in-
spired by Li and Roth (2002).

Table 2 shows three questions from this corpus. Note that
some questions have empty fields and that the categoriza-
tion is partly incomplete. The answer category for question
3, for instance, should be marked as a location. The question
text of all the examples in the table consists of a single sen-
tence, as most of the question texts in the corpus. However,
some shorter or longer question texts, ranging from one sin-
gle noun phrase to multiple sentences occasionally occur in
the corpus.

Table 1: The answer categories.

human
numeric

misc
abbrev

entity
action

description
location

Since our objective was not to implement the game play
but simply the question answering part, we only made use
of the following fields: question text, answer, alternative an-
swer, and answer category. We carried out some experiments
with the card categories and card names in the question anal-
ysis part when formulating queries. Eventually, we only used
the question text to build queries.

System Description
Overview

Figure 1 shows an outline of the system architecture and the
data flow from the question text to a list of ranked candidate
answers. It consists of the following modules, where the in-
put to the system is a full text question:

e The question analysis module predicts the answer type
using a classifier and is responsible for building a search

query.

14

e The search query is used by the hypothesis generation
to find the most relevant paragraphs from indexed text re-
sources, in our case the Swedish Wikipedia. Candidates
are generated from the retrieved paragraphs. For each
candidate, this module stores associated information that
might be useful in later stages: parts of speech, depen-
dency graphs, search score, etc.

e The candidates are merged when their normalized word
forms, lemmas, are equal. The candidate features are
merged with independent strategies. Furthermore, this
module extracts statistics such as the absolute and rela-
tive word frequencies.

e The reranker module uses the question text, its syntac-
tic analysis, the predicted answer types with their corre-
sponding estimated probabilities, the merged candidates
with their features, and statistics to create a final ranking.

The output from the system is a list of answer candidates
ranked by an estimated confidence.

Question Analysis

The question analysis module takes the question text as in-
put and creates a query to extract a set of paragraphs. It ap-
plies a part-of-speech tagger (Ostling 2013) to lemmatize the
question words and predicts its answer category. The mod-
ule builds an object from these results that is passed to the
reranking module. We set aside the card category (i.e. the
question topic) from the input as it resulted in a drop in the
rank of the first correct answer, when compared to only us-
ing the question text.

To predict the answer type, we trained a logistic regres-
sion classifier on the question corpus. We implemented the
classifier using LibShortText (Yu et al. 2013), a library for
short text classification based on bags of words and the vec-
tor space model. We selected a word and bigram represen-
tation, where the word values corresponded to their TF-IDF
(term frequency—inverse document frequency) scores. Given
a question text, we stored the top two predicted answer types
and their associated estimated probabilities in the result ob-
ject.

We did not use the LibShortText preprocessing options:
tokenization, stemming, and stop-word removal that are de-
signed for English. As our text is in Swedish, we normalized
the question and we extracted the lemmas from the part-of-
speech tagger output instead.

Hypothesis Generation

We implemented the hypothesis generation component us-
ing a paragraph-based search. Although other units of text,
e.g. article or sentence would also contain question answers,
we assumed that paragraphs would yield a better perfor-
mance because they pack strongly related information. Ar-
ticles, especially long articles, often contain unrelated infor-
mation, while single sentences might miss a question con-
text, such as coreferences that span multiple sentences.

We extracted the paragraphs from the Swedish Wikipedia
dump using JSoup (jsoup: Java HTML Parser 2013) and we



Table 2: Example of card content.

Field 1 2 3

Value 250 5000 5000

Question I vilken stad sitter Sveriges Vem dr kapten pa rymdskep- I vilket land édr Rom huvud-
regering? pet Millenium Falcon? stad?

Translation ‘In which city is the Swedish  ‘Who is the captain of the ‘Of which country Rome is
government?’ Millennium Falcon space- the capital?’

ship?’

Answer Stockholm Han Solo Italien

Alt. answer - - -

Answer category location human -

Answer subcategory || - - -

probabilies

question, predicted answer types,

Hypothesis Generation

Paragraph Search

document
title

@ Question Analysis

|
quer] I
|
|
|

canf

H Title of Wikipage

—» Nouns, Proper Nouns,
> Named Entities

Ranked Answers

flidate

Reranking

ranked
candidates

candidates

| E i
Indexed Paragraphs
Answer Type Classifier Model

|
|
Reranker Model

Figure 1: System overview.

indexed them using Lucene (Apache Lucene 2013). We ap-
plied Lucene’s Swedish Analyser to stem the words and re-
move the stop words, both when indexing and when query-
ing.

Lucene combines a Boolean model of information re-
trieval with the vector space model. By default, Lucene’s
vector space model uses TF-IDF weights. The vector space
model score of document d, here a paragraph, for query
q, here a question, is the cosine similarity of the TF-IDF
weighted query vectors V' (g) and V(d). Lucene then re-
weights the cosine similarity with its Conceptual scoring
formula.

Given a question, the hypothesis generation module re-
trieves the 60 most relevant paragraphs using Lucene’s
scores. We set the upper bound to 60 to keep the system
responsive enough with a near real-time performance on
an ordinary laptop. For a complementary study on passage
retrieval using the same corpus, see Pyykko, Weegar, and
Nugues (2014).

The module then applies the Stagger tagger (Ostling
2013) to the text of the retrieved paragraphs to annotate
the words with their parts of speech and named entities and
parses it with a dependency parser (Nivre, Hall, and Nils-
son 2006). Table 3 shows the entity types recognized by the
tagger.

The hypothesis generation module extracts all the com-
mon nouns (NN), proper nouns (PM), and named entities
from the retrieved paragraphs to build a list of candidates. A
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Table 3: The entity types recognized by the Stagger tagger.

inst other

event

work
animal

person
place

product
myth

named entity can consist of multiple words while the other
candidates can only be single words. We complemented
each candidate object with additional information that we
derived from the paragraphs. It includes the count, relative
frequency, named entity type, the sentence the candidate oc-
curred in with its part-of-speech tags and dependency graph,
the Lucene score of the paragraph, Wikipedia article title,
and paragraph text (Figure 2).

Candidate r>— Word [—<> Question
+answer +form +text
+1lemma +1lemma +answer
+netype +pos +alt_answer
+occurrence +deprel +answer_category
+frequency +head +sentences: List<List<Word=>
+word: Word +answer_category_labels: List
+sentence: List<Words +answer_category probabilities: List
+hit: SearchHit k——] SearchHit

+isTitle
+1sNoun
+1sNe

+title
+paragraph
+score

Figure 2: Candidate and question UML.

Most questions generate a considerable number of dupli-
cate answer candidates. We considered two candidates to



be equal when their case-normalized lemmas were identi-
cal. We merged the corresponding objects using indepen-
dent procedures for each object field: we added the counts;
we kept the most relevant named entity type according to
the Lucene score; we applied an or operator on the Boolean
features. As a result, merging significantly reduced the num-
ber of candidates. Finally, the hypothesis generation returns
a list of candidate objects.

As a consequence of the paragraph search described
above, a significant number of words from the question of-
ten have both a high frequency in the most relevant para-
graphs and a high Lucene score. Usually, those answer can-
didates are incorrect. A simple stop-word filter removing
them proved effective.

Reranking

We first ranked the candidate answers by their counts in
the 60 most relevant paragraphs. Although extremely sim-
ple, this proved surprisingly effective and we adopted it as a
baseline.

We then applied a reranker to this list that we trained on
the question corpus (Ravichandran, Hovy, and Och 2003).
We submitted the questions through the candidate genera-
tion module and, given a question, we marked a candidate
as positive if it corresponded to the correct answer, or neg-
ative if not. We trained a binary classifier using logistic re-
gression and the LIBLINEAR library (Fan et al. 2008). Due
to the unbalanced nature of the data, we only used questions
having a correct answer in the candidates. Furthermore, we
applied a uniform sampling to restrict the number of nega-
tive instances. In the end, the training data files consisted of
about 500,000 instances, each having 29 features.

In addition to the nominal, numerical, and binary features
shown in Figure 2, we used a bag of words of lexical fea-
tures to build a contextual model. We extracted these lexical
features from both the question context and the candidate
answer context. Similarly to Comas, Turmo, and Marquez
(2010), we parsed the questions and the candidate contexts
using a dependency parser. Figure 3 shows an example of a
dependency graph for a corpus question. We extracted triples
consisting of subject-verb-object (SVO) frame projections
from the dependency graphs of the last sentence of the ques-
tion text and from the paragraph sentences containing the
candidate answers.

We added the first word of the question sentence to the
bag of words as, usually, it is an interrogative determiner,
pronoun, or adverb: vem ‘who’, var ‘where’, ndr ‘when’,
etc. that is a hint at the answer type. For the lexical features,
we built vocabularies for both the question and candidate
contexts, where we kept the 50 most frequent words for re-
spectively, the first word of the context, the subject, the verb,
and the object. We represented the words not present in this
vocabulary with a rare word flag. We also used a specific
value to denote missing syntactic functions, for example the
absence of a subject or an object in the sentence. Table 4
shows an overview of the features.

We finally used the probability outputs from the model as
well as the Lucene score to rerank the baseline scores.
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Results and Evaluation

We used a correctness criterion for the answers that we de-
fined as a case-insensitive equality between the word form
or the lemma in the candidate answer and the answer or the
alternative answer provided in the question corpus. If one of
the answer candidates generated for a question fulfills the
correctness criterion, we consider the question as answer-
able.

In order to evaluate the candidate generation and the “an-
swerability”, we computed a histogram of the rank of the
first paragraph that contains the answer to a question for all
the questions in the corpus and the cumulative distribution of
this histogram. This histogram is shown in Figure 4, where
the y axes are normalized by the total number of questions.
We can see that approximately 71% of the questions are an-
swerable when we retrieve 500 paragraphs and considering
all the questions. When considering only the single-word an-
swers, up to 80% of the questions are answerable.

As we restricted the number of paragraphs in the hypoth-
esis generation to the 60 most relevant ones, we can at most
expect that 57% of all questions are answerable, and roughly
65% of the single word answers.

To evaluate the reranker, we looked at the rank distribu-
tions of the correct answers (Figure 5). The candidate ranks
were computed using a 5-fold cross validation. The answer
type prediction model was not part of the cross validation,
i.e. it was trained using all the corpus questions. The up-
per plot shows the rank distribution of the baseline, and the
lower plot, the rank distribution of the reranker. We can ob-
serve that the distribution shifted to the left in the lower plot.
Both the median and the mean improved when using the
reranker and we could reach a median 10 for the reranker
down from 21 for the baseline. The number of questions
with top ranked correct answers increased from the base-
line’s 155 questions to 224 questions for the reranker.

Conclusion

In this paper, we showed that we could build a question
answering system using relatively simple components that
could fit a language like Swedish for which less resources
are available. We showed that a reranker could improve sig-
nificantly the results, dividing the median by nearly two.

The lexical answer type is an indicator of the correctness
of a candidate answer. This information was available for the
questions and, because of the part-of-speech tagger we used,
only for the named entities on the candidate side. Using a
fine-grained answer type categorization might improve the
results. Especially, if used together with a better type reso-
lution for the candidate answer side. In addition, some ques-
tions with a fixed structure, such as Vilken forfattare skrev...
? ‘Which author wrote... 7’ have always the same answer
type, human in this case. Such questions could be handled
by specialized rules.

A way to improve the system performance would be to
incorporate more knowledge sources, for example in loca-
tion questions, and use external resources such as Geon-
ames, DBpedia (Auer et al. 2007; Bizer et al. 2009), Yago
(Suchanek, Kasneci, and Weikum 2007), or Freebase (Bol-
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Root- Vilket stort djur brukar kallas skogens konung ?
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Figure 3: An example dependency graph for a question from the corpus: Vilket stort djur brukar kallas skogens konung? ‘“Which
large animal is commonly called the king of the forest?” The graph shows both dependency relations, lemma, and part-of-speech
tags. In this case, the SVO triple is djur brukar kallas.

Table 4: An overview the reranker features.
Type [ Question Candidate Both
Nominal Two best answer types ~ named entity type —
Numerical || Two best probabilities count, frequency, Lucene score, # -
words in answer
Boolean isMultiChoiceQuestion isTitle, isNoun, isNE, isNumeric, is- isWordInQuestion, isNEMatchingL AT
Date (persons and places)
Lexical first, SVO first, SVO Boolean comparisons
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Figure 4: (upper part) Distribution of paragraph ranks for first found correct answer candidate. (lower part) Cumulative Distri-
bution.

17



140

Baseline: mean = 84.80, median = 21.00
0.2 T T T T T

g | I Answer rank histogram [ binsize = 1 ] |

2 015} .
>
(e
2

€ 0.1 .
[
=
2

< 0.05 1
©
R

0
20 40 60 80 100 120
Rank of first correct answer
Reranker: mean = 59.12, median = 10.00
0.2 T T T T T
| I Answer rank histogram [ binsize = 1 ] |
0.15 i

0.1

0.05

% of answerable questions

20 40 60

80 100
Rank of first correct answer

120 140

Figure 5: Distribution of candidate ranks for first correct answer candidate. Baseline (upper part) and Reranker (lower part).

lacker et al. 2008). Nonetheless, such databases were de-
signed primarily for English and would require an adapta-
tion to Swedish. Another option would be to use a cross-
lingual question-answering framework (Ko et al. 2010).

As mentioned in Sect. Previous Work, more search strate-
gies could be used: document search, custom similarity mea-
sures such as the distance between the question words and
the answer candidate in the retrieved paragraph text, infor-
mation measures such as pointwise mutual information, and
plain text passage search. We could also use anchor text, the
title from the Wikipedia articles as answer candidates, struc-
tured databases with SVO triples, and other relations to gen-
erate candidates.

For questions such as Anja Pdrson dr uppvuxen i samma
lilla fjillby som bl a Ingemar Stenmark. Vad heter den?
‘Anja Parson grew up in the same small village than Ingemar
Stenmark. What is it called?’, coreference resolution could
yield an improved performance by both adding a richer con-
text to the question sentence and helping find the lexical an-
swer type.

Using better context models for question text and for the
sentences containing the candidates could also improve the
performance. One approach to a more robust context mod-
eling is to use word clusters instead of lexical features (Pin-
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chak and Lin 2006), i.e. create a vector quantization of word-
based contextual features including lexical, part-of-speech,
and dependency information. A word cluster would then
represent words often appearing in similar contexts.

Finally, we could add features to validate the answer can-
didate, e.g. the strength of an association between the can-
didate answer and key parts of the question such as the total
number of search hits for a candidate answer and key parts
of the question query using conventional web search.
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