
Generating a 3D Simulation of a Car Accident from a Formal Description:
the CarSim System

Arjan Egges, Anton Nijholt

Department of Computer Science
University of Twente

PO Box 217, 7500 AE Enschede
the Netherlands

Phone: (31) 53 4893686
Fax: (31) 53 4893503

Email: {egges,anijholt}@cs.utwente.nl

Pierre Nugues

GREYC laboratory
ISMRA

6, bd du Maréchal Juin
F-14050 Caen, France

Phone: (33) 231 452 705
Fax: (33) 231 452 760

Email: pnugues@greyc.ismra.fr

ABSTRACT

The problem of generating a 3D simulation of a
car accident from a written description can be
divided into two subtasks: the linguistic analysis
and the virtual scene generation. As a means of
communication between these two system parts,
we designed a template formalism to represent
a written accident report. The CarSim system
processes template formal descriptions and cre-
ates corresponding 3D simulations. A planning
component models the trajectories and tempo-
ral values of every vehicle that is involved in the
accident.

1. INTRODUCTION

This paper presents the results of a prototype
system to visualize and animate a 3D scene from
a written description. It considers the narrow
class of texts describing car accident reports.
For example, such a system can be applied within
insurance companies to generate an animated
scene from a police report. The research is part
of the TACIT1 project [1, 2] at the GREYC2

laboratory of the University of Caen, in cooper-
ation with the ISMRA3.

There are few projects that consider auto-
matic scene generation from a written text, al-
though many projects exist that incorporate nat-
ural language interaction in virtual worlds, like
TRAINS [3], Ulysse [4, 5] and AnimNL [6].

Visualising a written story requires a differ-
ent approach. The language analysis has to deal

1Traitements Automatiques pour la Compréhension
d’Informations Textuelles

2Groupe de Recherches En Informatique, Image,
Instrumentation

3Institut des Sciences de la Matière et du
Rayonnement

with texts where syntax and semantics are more
complex than with spoken orders. TACIT bases
its language processing techniques on a template
filling paradigm, see [7] and [8] for more informa-
tion about the conversion from text to template.
This technique is successfully implemented in
the FASTUS system [9], in which it is possible to
obtain information from a static (written) text
very efficiently.

2. FORMAL REPRESENTATION IN
CARSIM

“I was driving on a crossroad with
a slow speed, approximately 40 km/h.
Vehicle B arrived from my left, ignored
the priority from the right and collided
with my vehicle. On the first impact,
my rear fender on the left side was hit
and because of the slippery road, I lost
control of my vehicle and hit the metal-
lic protection of a tree, hence a second
frontal collision.” Text A4, MAIF cor-
pus, our translation.

The text above describes an example of an
accident from the MAIF4 corpus. This corpus
contains 87 accident descriptions that are writ-
ten in French.

The task of simulating an accident is divided
in two main tasks: extract the necessary and rel-
evant information from the text, and create a 3D
simulation from this (formalized) information.
Figure 1 shows this division. The CarSim 5

system encapsulates the second task.
A final question is: why should we bother to

make a 3D simulation of the accident? Proba-
4Mutuelle Assurance Automobile des Instituteurs de

France. MAIF is a French insurance company.
5Car Accident Simulator

FD

Linguistic
analysis

Virtual scene
generator

Figure 1: The two subsystems and the FD (For-
mal Description) as a means of communication.

bly a 2D environment will provide enough func-
tionality to simulate almost every accident. We
chose to use a 3D model, because of the extensi-
bility. Perhaps, in the future, we might want an
option in the system to see the accident from the
driver’s point of view. Furthermore, a 3D envi-
ronment provides a way to view the accident in
every possible angle.

We designed a formal model (M) that repre-
sents the accident. The CarSim system knows
the following kinds of objects: moving objects
(dynamic objects) and objects that do not move
(static objects). Furthermore it knows collision
objects. We define M as follows:

Definition 1 Model M consists of three parts:
a list MS of k static objects S1, . . . , Sk, a list
MD of l dynamic objects D1, . . . , Dl, and a list
MC of n collision objects C1, . . . , Cn.

In general, a static object can be defined
with two parameters: one parameter defining
the nature of the object and another parame-
ter that defines the location of the object. Ex-
amples of static objects are: trees, crossroads,
pedestrian crossings, etc.

Dynamic objects can’t be defined by giving
only their nature and position. Instead of a
position, the movement of the object must be
defined. In the CarSim formal representation,
the movement of an object is defined by two
parameters. The first parameter, the initial di-
rection, defines the direction to which the ob-
ject is headed before it starts driving. This di-
rection can be to the North, South, East, or
West. The second parameter is an ordered list of
atomic movements. This list is called the event
chain. Atomic movements can be driving for-
ward, turning left and so on.

A collision is defined by giving the two ob-
jects, the collision coordinates and the parts of
the vehicles that are involved in the collision
(these parts can be the left side, the right side,
the front or the rear, to keep things simple). A
collision occurs between an actor and a victim.
The victim can be either a static or a dynamic

object, the actor clearly has to be a dynamic
object.

With this formalism, most accidents can be
described. For example, we give the formal de-
scription of text A4:

// Static objects

STATIC [

ROAD [

KIND = crossroad;

]

TREE [

ID = tree1; COORD = (5.0, -5.0);

]

]

// Dynamic objects

DYNAMIC [

VEHICLE [

ID = vehicleB; KIND = car;

INITDIRECTION = east;

CHAIN [

EVENT [

KIND = driving_forward;

]

]

]

VEHICLE [

ID = vehicleA; KIND = car;

INITDIRECTION = north;

CHAIN [

EVENT [

KIND = driving_forward;

]

]

]

]

// Collision objects

ACCIDENT [

COLLISION [

ACTOR = vehicleB, front;

VICTIM = vehicleA, leftside;

COORD = (1.0, 1.0);

]

COLLISION [

ACTOR = vehicleA, front;

VICTIM = tree1, unknown;

]

]

3. PLANNING

Planning complex events like collisions requires
a well-defined and flexible planning architecture.
General planning algorithms which apply meth-
ods incorporating artificial intelligence, are dis-
cussed in [10] and [11]. The CarSim planner
is much more straighforward, because the plan-
ning process is not as complex as a lot of tradi-
tional AI planning problems, see also [12]. The
total planning process is performed by using five
different subplanners, which all perform a small
part of the total planning task.

3.1. The preplanner

The preplanner is a planner that ensures the
consistency of the formal description. If some
values are not given (e.g. coordinates of a static
object or initial directions of dynamic objects)
or some values imply a contradiction (a vehi-
cle turning left on a straight road), this planner
tries to find (default) values and to solve the con-
tradictions, if possible. This planner is a simple
knowledge base, as discussed in [12].

3.2. The position planner

The position planner estimates the start and end
positions of the vehicles in the simulation. By
default a vehicle is placed 20 metres away from
the center of the (cross)road. If two or more
vehicles are moving in the same direction, they
can’t all be placed at this distance because they
would overlap. Therefore, if there is more than
one vehicle facing a particular direction, the sec-
ond vehicle is placed at a distance of 26 metres
from the center and if there is a third vehicle,
it is placed at 32 metres from the center6. Re-
garding the end points of the vehicles, the vehi-
cle that is placed closest to the center, will have
its end point placed farther away from the cen-
ter. The vehicle initially having a start point
far away from the center, will have an end point
close to the center, so that every vehicle tra-
verses approximately the same distance.

3.3. The trajectory planner

Based on the (very global) description of the
movement of every vehicle in the formal model,
this planner constructs a trajectory, represented
by a set of points in the Euclidian space. Every
event in the event chain is converted to a list of
trajectory points. A turn is approximated by a
number of points lying on a circle arc. Overtak-
ing is modeled by using a goniometrical func-
tion.

3.4. The accident planner

The accident planner uses the trajectory that is
created by the trajectory planner. Since event
chains only include atomic movements and no
collisions, this trajectory is planned as if there
was no collision at all. The task of the accident
planner is to change this trajectory in such a way
that it incorporates the collision. Some part of
it has to be thrown away and an alternative part
(which ultimately leads to the point of collision)

6In the CarSim system, the maximum number of ve-
hicles that can have the same initial direction is three.

has to be added to the trajectory. For every
vehicle, actor or victim, the trajectory is thus
changed in two steps7:

1. Remove a part of the trajectory.

2. Add a part to the trajectory so that the
final result will be a trajectory that leads
the vehicle to the point of collision.

3.5. The temporal planner

The temporal planner of the CarSim system is
not a planner in the sense of the planners de-
scribed in [10] and [11]. The temporal planner
of the CarSim system plans the temporal values
of the trajectory in two steps. Generally, a tra-
jectory consists of a number of ‘normal’ trajec-
tory points, followed by a number of trajectory
points that represent a collision. First the seg-
ment that is not part of any collision is planned.
After that, the system plans the remaining seg-
ment. In the CarSim system, every trajectory
point has a time value. This is a value between 0
and 1, with 0 representing the beginning of the
simulation and 1 being the end of it. The tem-
poral planner tries to find time values for the
trajectory points so that the collisions happen
in a natural way.

For a more detailed description of the tem-
poral planner, see [13].

4. SIMULATION OF TEXT A4

Given the accident description in Section 2, the
CarSim system can generate an animated scene
of the accident. Figure 2 shows the two colli-
sions.

5. CONCLUSION

Right now, the CarSim system is able to gen-
erate an acceptable simulation of least 50 texts
of the accident descriptions in the MAIF cor-
pus. This boils down to a little less than 60%!
The accidents that can’t be simulated, are ac-
cidents with motorcycles, accidents with an un-
usual cause or complex interactive models (for
example simulations depending on traffic lights
that change color). The performance of a fi-
nal system that incorporates automatic linguis-
tic analysis will certainly be lower. However, we
believe that information contained in templates
can be obtained with a good accuracy using in-
formation extraction techniques. Linking Car-
Sim with the linguistic part corresponds to the
next stage of our project.

7For a more detailed description, see [13].

Figure 2: The two collisions in text A4.

6. REFERENCES

[1] F. Pied, C. Poirier, P. Enjalbert, and
B. Victorri. From language to model.
In Workshop Corpus-Oriented Semantic
Analysis in European Conference on Arti-
ficial Intelligence (ECAI), August 1996.

[2] C. Poirier and F. Pied. Analyse de constats
amiables d’accident automobile. In 1er Col-
loque étudiant en Linguistique Informatique
de Montréal, June 1996.

[3] George Ferguson, James F. Allen, and Brad
Miller. TRAINS-95: Towards a mixed-
initiative planning assistant. In Proceed-
ings of the Third International Conference
on AI Planning Systems (AIPS-96), May
1996.

[4] O. Bersot, P.O. El-Guedj, C. Godéreaux,
and P. Nugues. A conversational agent to
help navigation and collaboration in virtual
worlds. Virtual Reality, 3(1):71–82, 1998.

[5] C. Godéreaux, P.O. El-Guedj, F. Revolta,
and P. Nugues. Ulysse: An interactive, spo-
ken dialogue interface to navigate in virtual
worlds, lexical, syntactic, and semantic is-
sues. In John Vince and Ray Earnshaw, ed-
itors, Virtual Worlds on the Internet, chap-
ter 4, pages 53–70. IEEE Computer Society
Press, 1999.

[6] N. Badler, W. Becket, B. Di Eugenio,
C. Geib, L. Levison, M. Moore, B. Web-
ber, M. White, and X. Zhao. Intentions
and expectations in animating instructions:
the AnimNL project. In Intentions in An-
imation and Action. Institute for Research
in Cognitive Science, University of Pennsyl-
vania, March 1993.

[7] Proceedings of the fifth Message Under-
standing Conference. Morgan Kaufmann
Publishers, Inc., August 1993.

[8] Proceedings of the sixth Message Under-
standing Conference. Morgan Kaufmann
Publishers, Inc., November 1995.

[9] Jerry R. Hobbs, Douglas Appelt, John
Bear, David Israel, Megumi Kameyama,
Mark Stickel, and Mabry Tyson. FASTUS:
A cascaded finite-state transducer for ex-
tracting information from natural-language
text. In Roche and Schabes, editors, Finite
State Devices for Natural Language Pro-
cessing. MIT Press, 1996.

[10] Nils J. Nilsson. Artificial Intelligence, a
New Synthesis. Morgan Kaufmann Pub-
lishers, Inc., 1998.

[11] Yoav Shoham. Artificial Intelligence Tech-
niques in Prolog. Morgan Kaufmann Pub-
lishers, Inc., 1994.

[12] P. Norvig and S. J. Russell. Artificial intel-
ligence: a modern approach. Prentice Hall,
1995.

[13] J. Egges, P. Nugues, and A. Nijholt. Car-
Sim: Automatic 3D scene generation of a
car accident description. Technical report,
University of Twente, 2001.

