
Teaching Portfolio
Teaching Portfolio

Dr. Per Runeson

Software Engineering Research Group
Dept. of Communication Systems

Lund University

v 1.3
Per Runeson 13 May 2004 1

Teaching Portfolio
1. Introduction

Born 1966, growing up with “Hej matematik” at school, with mother and grandmother
being teachers, two older sisters being teachers, and since 14 years married to a teacher, it is
hard to avoid teaching. However, I tried my best in the choice of education program, when I
began at the Lund Institute of Technology, LTH, in 1987 at the program for Computer Sci-
ence and Engineering.

After taking my degree 1991, I was employed at Q-Labs, as consulting expert in software
engineering. However, I gradually moved towards Ph.D. studies and graduated 1998 with a
thesis on how to measure faults and failures in software inspection and testing. On gradua-
tion, I was offered the opportunity to assume responsibility for developing the software engi-
neering bachelor’s program at the LTH Engineering School in Helsingborg. Under relatively
free circumstances, I designed a three-year program in the domain of software engineering,
and was the program director responsible for coordinating the program during its first three
years.

Hence, my background is a mixture of industry and academia, giving insight in different
kinds of learning, both for myself, and for others which I have been a teacher.

2. Personal Viewpoint on Teaching

My personal view on teaching is that it should focus on student learning [1]. As a teacher, I
am not satisfied by “bringing out” my message, but measure success in terms of how much is
“getting in”. The same holds for communication in general, but is even more important to
stress in the teacher-student relation, which is unbalanced in favour of the teacher.

In a pedagogic course during summer 20011, we
were asked to find a picture representing one’s view
of teaching. My choice was a glass sculpture by
Bertil Vallien, see Figure 1. It represents to me the
teacher shaping the student. The student is in focus,
and the teacher has the possibility to form the stu-
dent to some extent.

Later in the course, we met the basic theories by
Fox [3], see Table 1. I still like the shaping role, but
guided by his model, I tend to turn towards the
growing student with the teacher as a gardener. This
theory also emphasizes the individuality of the stu-
dent. Each student will learn their own way, not
necessary the well structured and thought through
structure of the lectures and courses which they
attend.

The shaping model is particularly valid for the
supervision of post-graduate students. With Ph.D.
supervision, you may follow the development of the student during a period of 4-5 years,
rather than the 7 or 14 weeks for normal courses at LTH. During the long period, the inter-
action between the student and the supervisor develops. As the student develops, gradually
more responsibilities and more challenging tasks can be given to match the student at the
specific point of time.

1. Sommarinstitutet 2001, http://www.hgur.se

Figure 1. “Head” by Bertil Vallien.
Per Runeson 13 May 2004 2

Teaching Portfolio
From my point of view, the students
are the “customers” of the university. This
means that the students should be in the
focus of the learning situation, but it does
not imply that the “customers” are always
right. The teacher has a better long-term
perspective than the student, but the stu-
dent is often better at seeing what is suc-
cessful within a shorter range of time.

My topic, software engineering, is
defined as “the application of a system-
atic, disciplined, quantifyable approach to the development, operation, and maintenance of
software; that is, the application of engineering to software” [4]. Hence it is natural for me to
take a holistic viewpoint of the topic and to focus more on the complete picture than specific
details of the topic. I prefer structuring the topic top-down, connecting to the student’s
existing experience and knowledge, and then support the way towards deepened knowledge
and skills. However, the learning process is not strictly linear, but rather iterative. Hence, I
strive towards first giving a complete picture, on a very high level of abstraction, adding
some details on lower levels, end then returning back to the complete picture again, now
with a little more details in it, and then iterate again. From the student point of view, this
means that they have a context in terms of a “roadmap” to relate more specific knowledge to.
This procedure is illustrated in the teaching examples (Section 3.1 and Section 3.2) and is
related to the Kolb circle, see Figure 2.

In the process of relating to knowledge, I
think that practising is a very important con-
tributor. As the human has five different
senses, it is waste of bandwidth, just to use the
ears. There is Chinese proverb which I
rephrase as:

What you hear, you will forget
What you see, you will remember
What you do, you will know
As a consequence, teaching should include project work. In addition to practising a topic,

projects involves practicing communication skills and develop other relational skills. The
course projects have, in my opinion, not to be complete software projects, with real custom-
ers and requirements derived from them. Instead, I prefer projects which are tailored to spe-
cific learning goals. This focuses learning on the specific issues, which are the topics of the
course. In the analysis of the projects, reflection and generalization in terms of abstract
thinking should be stimulated.

Expressed in terms of Bloom’s taxonomy
(Table 2), course projects support the students in
reaching the application level, and the reflection
and generalization performed during and after
the projects, support reaching the analysis level. A
sequence of projects may support reaching the
synthesis level, while I think that the evaluation
level cannot be reached before having practical
experience from software engineering in industry,
or in a post-graduate program.

TABLE 1. Basic theories of teaching, after
Fox [3], with slightly modified terminology

Simple
theories

Developed
theories

Subject
focus

Transfer Travel

Student
focus

Shape Grow

1. Concrete experience

2. Reflection

3. Abstract thinking
4. Practical action

Figure 2. The Kolb circle [5]

TABLE 2. Bloom’s taxonomy [2]

6 Evaluation

5 Synthesis

4 Analysis

3 Application

2 Comprehension

1 Knowledge
Per Runeson 13 May 2004 3

Teaching Portfolio
This discussion leads to the goals of the education, goals for education programs, goals
for courses and goals for specific course items. When setting up the software engineering
bachelor’s program (see Section 3.1 and [6]), the division of goals in knowledge, skills and
attitude goals have been very helpful. Knowledge refers to, for example, basic terminology
and concepts of the topic, which should not be lost in the strive for deeper understanding.
Skills include the application of the gained knowledge; moving the knowledge “from head to
hand”. Attitudes refer to the motivation behind how one is acting in different situations. It is
questioned whether it is a task of the teaching to impact on the students’ attitudes. My point
of view is that the attitudes are always impacted on implicitly, and then it is better to make
them explicit, to enable students to question attitudes. Returning back to the initial “shap-
ing” model, the students are always changed, and the most fair approach is to report openly
our intentions with the shaping.

Finally, some words on examination. Ideally, learning should be driven by curiosity and a
never-ending search for more knowledge and experience. However, the world is not ideal,
but needs quality monitoring and control. The examination should act as monitoring of the
learning process. When we need this monitoring, we should strive towards making the
examination as such, a learning occasion as well. In my courses I prefer examination through
project assignments, reports and presentations. Being very much in favour of “alternative”
examination methods, I have to remind myself that written exams are still an option, in par-
ticular for examination related to knowledge goals. Project assignments are better suited to
examine skills objectives and report writing are well suited to follow up attitude goals.

To summarize, teaching...
• is student focused, shaping or gardening the growth of the student;
• relates to a complete roadmap, in which practising is important for learning;
• is goal oriented, and examination means assessment related to goals.

3. Teaching Examples

3.1 SE bachelors Program

The most extensive teaching experience I have, at least in terms of the scope, lies outside the
lecture rooms. I have planned and supported the implementation of the software engineer-
ing bachelor’s programme at the LTH Engineering School in Helsingborg1. The key values
behind the program are:
• The students should achieve a holistic view of software development. Important atti-

tudes are customer-focused development, and that software development is a long
chain from idea to final product. Hence the students should be given a broad overview
from the beginning, which also provides an identity of the education program chosen.

• In order to provide a comprehensible overview of the development over the three
years, each year is given a certain focus; individual, project and organization focus. This
is referred to as the program policy and helps students see the intentions of the three
years.

• To ensure a balance between different topics, five main areas are defined to help bridge
the large gap between the programme and its goals as a whole, and courses and their
goals on the lower level. The main areas are Mathematics, Computer Science, Software
Engineering, Hardware and Systems Engineering, and Non-technical issues.

1. http://www.programvaruteknik.hbg.lth.se
Per Runeson 13 May 2004 4

Teaching Portfolio
In the program, the Kolb cycle (Section 2) is iterated in many cycles, each cycle adding
something new to the knowledge base. The software engineering courses of the first year
(Section 3.2) are more focused on the knowledge and comprehension levels of Bloom’s tax-
onomy. The project focus of the second year is dedicated to application and analysis, and we
reach the synthesis level in a course on Software Quality in the third year.

The development of the program was very much goal driven. Goals were set up in terms
of knowledge, skills and attitudes [6]:
• “The knowledge goal is that the students acquire basic and deepened knowledge

within the areas of software development, computer science, mathematics and mathe-
matical statistics, computer and systems engineering and non-technical areas such as
oral and written communication, economics and English.

• The skills goal is that the students be able to join a large industrial software develop-
ment project and after a short period of time be productive in the project. The stu-
dents also be able to develop and vitalize an employer’s way of conducting and
managing software development projects.

• The attitudes goal is that the students achieve good understanding of industrial soft-
ware development, and thereby understanding for the need of a balance between tech-
nology and methodology.”

Based on these goals, a brainstorming meeting was held with colleagues to define a set of
courses to be given to the students to achieve the goals. The courses were grouped into the
course areas, and lined up in sequences of courses that built on each other. The procedure
was iterated, as the first set of courses fitted a master’s program rather than a bachelor’s.

The program was launched in the fall semester of 1998. In my role as an education pro-
gram director, I was responsible for the overall structure, and in the role as a teacher, I gave
courses, among those the introductory course (Section 3.2). The combination of teacher and
program director was important, as the courses provided meeting points with the students
which gave feedback from the students on how the program worked, or did not work.

The structures in terms of goals and course groups have been valuable in the communica-
tion with the students, to motivate them to take a course by setting it into the context of the
whole program. Furthermore, it has been helpful in the communication with the education
program board, as the discussions have been held on a higher level of abstraction than the
course definition level. Changes to the program took place during the first year, based on
direct student feedback, see Section 3.5, and courses were exchanged later which did not
achieve the educational goals, see [7].

During summer 2001, the program leadership was handed over to a newly employed col-
league. The hand-over seems to have been successful, and one of the contributing factors was
that the new program director also took the responsibility for the introductory course.

3.2 Introductory Course for SE

In the software engineering program, there is an introductory course which aims to give an
overview of the whole area of software engineering. The purpose was to provide a “roadmap”
that the students could use for their “navigation” through the education program, hence
directed towards knowledge and comprehension [2].

The course is designed with a set of traditional lectures and training sessions, primarily
connected in pairs, where the training session applies the topics presented in the lecture.
Each pair of lecture and training session is approximately related to one course later in the
education program. However, to provide an integrated view of the area and the program,
“the Software Tapestry” was introduced. This is a visual view of the different steps in a soft-
ware development project, see Figure 3.
Per Runeson 13 May 2004 5

Teaching Portfolio
Another step towards integration in the course is the dictionary. The students are given a
list of terms each week, which they are to explain. The terms are, by the way, given in both
Swedish and English to enable the students have relevant terminology in both languages.
After each week, the continuously growing dictionary is reviewed, either by a student peer,
or by a teacher.

Finally, a project is run following the steps in “the Software Tapestry”, to give some prac-
tical experience. The steps are, of course, not followed in detail, but in a very overview fash-
ion, to provide a first insight to what is to come during the education program, and during
the professional life.

The course has been given in different versions since 1998. In the second run, a parallel
course on communication and reading skills was coordinated with this course. A sales bro-
chure was to be developed and presented by the students, for the product that was developed
in the project. The coordination did not require much effort from the teacher’s side, but
nevertheless provided a more holistic view from the student’s perspective. Unfortunately, this
is not possible any more due to a changed program schedule.

Further developments of the course concepts would be to return to “the Software Tapes-
try” in later courses in the program, and thereby integrate the courses better. Having
changed responsibilities, this is currently out of my scope, but there is still a development
potential in the concept, see Section 4.2.

3.3 Introductory Course for InfoCom

In the education program for Information and Communication Technology, I have devel-
oped an introductory course in software engineering, with a substantial part of project man-
agement issues. As this course is given during the first year, I have taken the opportunity to
include some course issues aimed at “soft” skills, and attitudes towards software engineering.
The course is linked to a subsequent course given by another department. A simple require-
ments specification for a chat system is derived in this course which is partially implemented
in the subsequent course. This interface between the courses and departments is not very
extensive, but helps the students integrate the knowledge and skills gained in the two courses
into a complete picture.

One specific part I of the course is the training sessions around the question What is an
engineer? It was inspired by the picture task, which we performed at the pedagogic course,
referred to in Section 2. At the very first lecture, the students are asked to find a picture
which tells them something about what an engineer is. The students choose a wide variety of
pictures, including electronic equipment, people, screws and bolts, “kylskåpsingenjör Stig-
Helmer Olsson” and computers, see Figure 4.

As the very last task of the course, they turn back to the picture, and write a short report
about their picture and how their view was changed during the course. Again, the variety
among the students was large. One student wrote a single line that “his view of an engineer
was his father, being an engineer, and the view was not changed during the course”. At the
other end of the spectrum, the view of the engineer had changed from being rather individ-
ually oriented with a technical focus, to a more team-oriented view. See further [8].

Figure 3. The Software Tapestry
Per Runeson 13 May 2004 6

Teaching Portfolio
The main result of the tasks was to catalyze reflections and discussions about the role of
an engineer. The picture helps thinking in new directions, and involves more capabilities
than just reading and writing skills.

3.4 Project-based Courses

In the courses I have been teaching, project assignments have mostly been a part. Within the
software engineering domain, some teachers state that only complete projects with real cus-
tomers are sufficient to give the experience needed on project work.

I do not agree with this statement. By limiting projects in scope, the learning can be
focused on specific issues, and making the project environment sufficiently complex to give
students hands-on experience of all the issues, which are in focus for the current course. By
climbing the ladder of Bloom’s taxonomy for different sub-topics, the synthesis can be
achieved in a later step, like the example presented in Section 3.1.

One example project based course is the flagship for our department, “PUSS” (Program-
varuUtveckling för Stora System), which has been run for at least 10 years in different
shapes, and has been continuously evolved by different teachers [10]. In the course, the same
products is developed over and over again, by new groups of students; project groups of 15-
18 students. Still, the challenges of large software development projects are illustrated during
the course. The students meet the challenges of communicating to and informing so many
people, being dependent on each other’s work etc. The technical problems are rather limited,
and those are not the focus for the course. The problems lie in effectuating the project.

The “PUSS” course focuses on application - learning by doing. During the project work,
a structured approach to system development is fostered, i.e. turing software development
into engineering. At the end of the project, a final report is delivered as an important part of
the assessment, which comprises analysis of what happened during the course. Before, one
report was written for the whole project, which implied that the project leader s learned the
most. As an improvement step, we have introduced an individual analysis report for each
project member, to foster analysis and to constitute the basis for individual examination.

Another project I have used in teaching, with limited scope, is the one in a course regard-
ing Software Verification, which I was responsible for developing. This course covers one
step in the middle of the development cycle. The students are given a product, which is
developed through the steps up to the verification step. Thereby, they can spend the time in
the course, specifically towards the course topics.

In the Software Verification course, the guidelines given to the students are less restrictive
compared to the guidelines given “PUSS” course. It turned out that the students felt inse-
cure in the Software Verification course, which also caused more conflicts within the project
group. For the next run of the course some more guidelines were given to support the learn-
ing in the direction related to the goal of the course, which was primarily software verifica-
tion, and secondary project management, not vice versa.

In general, the value of projects are that the students experience and feel more directly,
and are set into situations where they have to apply the theoretical knowledge, leading to
higher level of learning. Again, traversing the Chinese proverb: What you do, you will know.

Figure 4. Sample pictures chosen.
Per Runeson 13 May 2004 7

Teaching Portfolio
3.5 Student Feed-back

Student feed-back is very important in order to provide better learning situations, both
within an instance of a course, and for coming generations of students. The most common
tool for feed-back are questionnaires, free or more structured ones, either on paper or web-
based. I consider this being a very “blunt” tool. It provides some basic level of assessment,
but it has to be complemented with both quicker and deeper methods. In order to achieve
the really valuable comments, occasional discussions provide the best feed-back.

I have an example of written feed-back from a course, which illustrates some of the prob-
lems with written, quantitative course evaluations. Firstly, the response rate was 42%, and
the question is what did the 58% non-answering students think? Secondly, there are no sig-
nificant deviations from satisfaction. Thirdly, the deviations that seem to be in the data,
indicate that the book is among the least appreciated issue, while the project is among the
highest graded issue. However, based on qualitative information, we have decided that the
book is not changeable, but needs to be used more by the students to give the intended
gains, while the project will be given better support. If we were to follow the feed-back
results, the project needs no changes, while the book should be replaced.

With the drawbacks of written student feed-back in mind, I prefer direct communication
with the students as a means for getting the really valuable feed-back. It is quick, direct, and
bi-directional. However, this requires an open and clear relation between the students and
the teacher. In my experience, some enablers or catalysts are needed to initiate this commu-
nication.

As a program director for the software engineering program, I set up meetings with all
students, or with student representatives, but these were attended by a small group only.
Instead, when more spontaneous discussions started, these were more fruitful. For example,
in the introductory course for InfoCom students (see Section 3.3), we had a session on inter-
personal communication models. In the break after this session, a very fruitful discussion
regarding the course and the education program took place. The session on communication
models acted as a catalyst for the discussion and spending some time during the break was
really worthwhile.

4. Directions for the Future

My viewpoints on teaching are summarized as: the teaching...
• is student focused, shaping or gardening the growth of the student;
• relates to a complete roadmap, in which practising is important for learning;
• is goal oriented, and examination means assessment related to goals.
As I am pragmatic and opportunity driven, I prefer to show a direction, and the detailed

implementation will be worked out in the specific roles and occasions where I have a chance
to impact on the teaching. The areas I specifically want to focus on mean work on different
levels, related to the areas above. Motivate students, which involves methods to motivate stu-
dents to learn, rather than forcing them, and fostering learning for life, not for the test. Inte-
grate courses into an education program, which involves a strengthened role for the
education program director, teacher awareness of other courses and a focus on teaching
teams. Assess students related to learning goals as a part of learning, and a continuous quality
assurance of the learning, rather than an end-product pass or fail check.
Per Runeson 13 May 2004 8

Teaching Portfolio
4.1 Motivate

Spending effort to motivate students to learn is an investment that pays back in two respects:
firstly, it is more satisfactory to work proactively and positively; secondly, I think that joyful
learning is better learning. Hence, I want to focus on student motivation for the future.

I think that there are (at least) three important contributors to student motivation:
• Knowing why I as a student should learn this.
• Knowing how it relates to my current knowledge.
• Finding the learning situation joyful.
The first issue, I want to address by even more focus-

ing on the goals; the goals of a course, and the goals of an
education program. If the goals are well formulated, they
provide a rationale for the course. I always present the
goal in an initial lecture, as well as in the course program,
but I want to integrate them continuously in the course,
trying to break the overall goals down into the constitu-
ents of the course, e.g. seminars, projects and tasks, and
to return back to the goals several times during the
course. I would also like the standard for goal setting on
the program and course level to improve.

Another method is to show where the topic of the
course fits into a complete picture, like the one presented in Section 3.2. Knowing where
some pieces fit creates motivation by itself.

As a teacher, you expect that the students have grasped what you have presented so far in
the course, and in previous courses you have taught. They have not! On the other hand, the
students have knowledge and experiences gathered outside the classroom, which can be
brought in to help add to the current course. An example of the use of this strategy is the
picture task presented in Section 3.3, where the students were asked to bring in what they
had before the course, and then at the end of the course reflect on what was changed [8]. For
future runs of the course, more focus could be set on the analysis of the outcome.

Teaching an applied engineering topic, I also have the chance to bring in guest lecturers
to tell students what the outside world looks like and corroborate their need for the knowl-
edge and skills I am teaching. However, the format for these lectures is not very stimulating,
as they often have a one-way communication format. I would like to make the sessions more
interactive, and also involve more active work by the students.

Finally, making the learning situation as joyful as possible involves all kinds of variation,
but also a good relation between the student and the teacher, based on mutual respect and
both parties fulfilling their part of the contract. Here I want to continue finding the balance
between being an authority, which I am in my role as a teacher, and being a coach that sup-
ports the students in their learning efforts.

4.2 Integrate

During the planning and implementation of the software engineering bachelor’s program, I
realized that there is a potential for more integrated education programs, see Section 3.1, to
give the students a more complete picture and thereby provide more efficient learning.

Let us compare an education program to a software system, e.g. a word processor to an
education program, in my case the software engineering program. In the software system
there are components, e.g. editor, spell checker, font manager, and in the education system,
the components correspond to courses. In a software system, the components shall have well
defined interfaces to ease communication, be cohesive and have as low coupling between each

Figure 5. Goal focus.
Per Runeson 13 May 2004 9

Teaching Portfolio
other, to ease the maintenance and understanding of the system, but still focus on the overall
goal of the system. This is also very much like a jigsaw, see Figure 6.

In the education system, we have to maintain the same rules
as in a software system case. The courses should have well
defined interfaces in terms of pre-and post-conditions regarding
knowledge and skills. The courses should be cohesive, i.e. focus
on specific learning goals in contrast to supplying a little of
everything. The coupling between the courses, i.e. interdepen-
dencies should be avoided from a course maintenance perspec-
tive, but this is often in conflict with the overall system goal.
Teachers should be aware of the contents of other courses to be
able to provide their piece of the jigsaw into the complete pic-
ture. Still, for practical reasons, interconnections between
courses should be kept low, to enable continuous improvements of each course. If the
courses are too much interconnected, a change in one course will lead to changes in many
other courses.

I want each study program to have a well defined overall picture, and each course to have
well defined interfaces, in terms of pre- and post conditions and goals. This is an important
basis for integration. My vision is that more focus is set on the integration between teachers,
supporting communication between them, and integration between courses which is man-
ageable (as the examples given in Section 3.2 and Section 3.3). The program director is the
role which may contribute and catalyze this integration, and this potential is not fully uti-
lized. As this is a matter of change management within LTH, the integration has to start in-
the-small. Successively when trust and good experiences are built up, there is a foundation
for tighter integration.

4.3 Assess

The assessment culture at LTH is very much the culture of
the written exams and re-exams. I dislike the written
exam, from my personal experience as a student, and from
the personal experience as a teacher assessing exams.
Hence, I wanted to change the assessment culture, at least
in my courses. In new courses, I have used projects and
report writing as assessment methods rather than written
exams.

However, I think that I have gone too far, and lost the
motivational part of individual written exams. As men-
tioned in Section 2, the written exams have their role, in
particular to assess knowledge and comprehension level
goals. Therefore, I want to find this balance between indi-
vidual and group assessment, between written and oral exams, between knowledge, skills
and attitudes goals. As an example, we are currently introducing a written exam in the intro-
ductory course presented in Section 3.3. To communicate goals via the assessment, we have
introduced a model-based assessment approach [9].

For the future, I am also interested in trying some kind of portfolio assessment, as these
methods activate the student, moving the “proof burden” to the student to show that he/she
has achieved the goals. This is a large cultural step, which has to be handled with care, but I
think it is possible to introduce this kind of techniques gradually, to empower the students
and improve learning.

Figure 6. Jigsaw.

Figure 7. Assessment as a part of
learning.
Per Runeson 13 May 2004 10

Teaching Portfolio
5. Summary

Teaching portfolio is a somewhat misleading title for what rather should be entitled learning
portfolio. My basic standpoint is that what takes place in and between the students is more
important, than how the teacher acts. However, the teacher may facilitate learning and pro-
vide positive learning environments.

The teaching examples are given to illustrate how the basic principles of my attitudes
towards teaching and learning, are put into practice. They are not always as student focus as
I wish, but I think they are steps in a right direction.

For the future, my key words are complete pictures and a variety of methods. Students
learn differently, and we have to support them in different ways. But they all have to know
why they are learning something, and hence we should for this sake strive towards bringing
knowledge in its full context.

6. References

1. R. B. Barr and J. Tagg, “From Teaching to Learning - A New Paradigm for Undergradu-
ate Education”, Change, November/December 1995.

2. B. S. Bloom, M. D. Engelhart, E. J. Furst, G. F. Hill and D. Krathwohl, Taxonomy of
educational objectives: The cognitive domain, New York: McKay 1956.

3. D. Fox, “Personal Theories of Teaching”, Studies in Higher Education, Vol. 8, No. 2,
1983.

4. IEEE Std 610.12-1990, IEEE Standard Glossary of Software Engineering Terminology.
5. D. A. Kolb, Experiential Learning. Experience as The Source of Learning and Development,

New Jersey, Prentice-Hall, 1984.
6. P. Runeson, “A New Software Engineering Programme - Structure and Initial Experi-

ences”, Proceeding 13th Conference on Software Engineering Education & Training, Austin,
Texas, USA, pp. 223-232, 2000.

7. P. Runeson, “Experience from Teaching PSP for Freshmen” Proceedings 14th Conference
on Software Engineering Education & Training, Charlotte, North Carolina, USA, pp. 98-
107, 2001.

8. P. Runeson and T. Thelin, “Addressing Attitudes Explicitly in Engineering Education-
An Exercise to Stimulate Reflection through Pictures”, LTH pedagogisk inspirationskonfe-
rens, pp. 40-41, May 27, 2003. Available at http://serg.telecom.lth.se/research/publica-
tions/docs/268_SE_attitudes_final.pdf

9. P. Runeson and B. Regnell, “Model-Based Course Assessment - Principles and Practice”,
LTH pedagogisk inspirationskonferens, May 27, 2004. Available at http://serg.tele-
com.lth.se/research/publications/docs/269_Model-Based%20Assessment.pdf

10. C. Wohlin, “Meeting the Challenge of Large Scale Software Development in an Educa-
tional Environment”, Proceedings 10th Conference on Software Engineering Education &
Training, pp. 40-52, Virginia Beach, Virginia, USA, 1997.
Per Runeson 13 May 2004 11

	Teaching Portfolio
	Dr. Per Runeson

	1. Introduction
	2. Personal Viewpoint on Teaching
	Figure 1. “Head” by Bertil Vallien.
	TABLE 1. Basic theories of teaching, after Fox [3], with slightly modified terminology
	Figure 2. The Kolb circle [5]

	TABLE 2. Bloom’s taxonomy [2]

	3. Teaching Examples
	3.1 SE bachelors Program
	3.2 Introductory Course for SE
	Figure 3. The Software Tapestry

	3.3 Introductory Course for InfoCom
	Figure 4. Sample pictures chosen.

	3.4 Project-based Courses
	3.5 Student Feed-back

	4. Directions for the Future
	4.1 Motivate
	Figure 5. Goal focus.

	4.2 Integrate
	Figure 6. Jigsaw.

	4.3 Assess
	Figure 7. Assessment as a part of learning.

	5. Summary
	6. References
	1. R. B. Barr and J. Tagg, “From Teaching to Learning - A New Paradigm for Undergraduate Educatio...
	2. B. S. Bloom, M. D. Engelhart, E. J. Furst, G. F. Hill and D. Krathwohl, Taxonomy of educationa...
	3. D. Fox, “Personal Theories of Teaching”, Studies in Higher Education, Vol. 8, No. 2, 1983.
	4. IEEE Std 610.12-1990, IEEE Standard Glossary of Software Engineering Terminology.
	5. D. A. Kolb, Experiential Learning. Experience as The Source of Learning and Development, New J...
	6. P. Runeson, “A New Software Engineering Programme - Structure and Initial Experiences”, Procee...
	7. P. Runeson, “Experience from Teaching PSP for Freshmen” Proceedings 14th Conference on Softwar...
	8. P. Runeson and T. Thelin, “Addressing Attitudes Explicitly in Engineering Education- An Exerci...
	9. P. Runeson and B. Regnell, “Model-Based Course Assessment - Principles and Practice”, LTH peda...
	10. C. Wohlin, “Meeting the Challenge of Large Scale Software Development in an Educational Envir...

