
Bloqqi
Feature-Oriented Control Programming

Niklas Fors, Lund University, @Zoom, 2020-08-18

The Bloqqi Project

Goal: Improve code reuse

Method: Experiment with language constructs in a prototype language

Participants: Computer Science@LU, Control@LU, ABB Malmö, Modelon

Funding: PiiA (part of Vinnova)

Participants

Computer Science@LU
Dr. Niklas Fors

Prof. Görel Hedin

Dr. Sven Gestegård Robertz

ABB Malmö
Ulf Hagberg

Christina Persson

Stefan Sällberg

Dr. Alfred Theorin

Control@LU
Prof. Anders Robertsson

(Prof. Charlotta Johnsson)

Modelon
Filip Stenström

Dr. Per-Ola Larsson

(Dr. Johan Åkesson)

Bloqqi – Improving Automation Programming

• Directed data-flow with periodic execution

• Both visual and textual

• Supports reuse: inheritance, features, ...

• Supports distributed execution: MQTT

• Supports interoperability: FMI

• Open source language and tools

• High-level implementation techniques: JastAdd RAGs

Bloqqi: Feature-based data-flow programming

diagramtype Tank(setLevel: Int, tolerance: Int
=> level: Int, withinRange: Bool) {

upperValve: Valve;
lowerValve: Valve;
levelSensor: Sensor;
...
connect(setLevel, Sub_1.in1);
connect(levelSensor.out, Sub_1.in2);
connect(levelSensor.out, level);
...

}

Visual view

Textual view

Real world

Control system
2. Compute control signal

1. Read
liquid
level

3. Open/
close
valves

Runs in

Bloqqi program for tank control
Tolerance feature

Inspiration
ABB Control Builder

Modelica

Bloqqi

- Directed data-flow
- Execution model
- Simplified examples

- Textual and visual syntax
- Inheritance
- Block redeclare

Prototype language to explore
different language constructs
for code reuse.

Language Constructs

• Diagram inheritance

• Connection interception
• Block redeclare
• Multiple inheritance

• Feature specifications

• State machines (simple)

Diagram Inheritance
A

B extends A
diagramtype B extends A {

s2: S;
connect(s1.out, s2.in);

}

A subtype:
• Inherits all elements from its supertypes (depicted as grey/dotted)
• Can declare new elements: parameters, blocks, variables, connections (depicted as blue/solid)
• Can specialize even more: source/target connection intercept, block redeclare

diagramtype A {
s1: S;

}

(Target) Connection Interception

C1 extends B

Connection to port in on s2
is intercepted

with a new block s3

diagramtype C1 extends B {
s3: S;
intercept s2.in with s3.in,s3.out;

}

A
diagramtype A {

s1: S;
}

B extends A
diagramtype B extends A {

s2: S;
connect(s1.out, s2.in);

}

Block Redeclare

C2 extends B

Block type for s2 is
redeclared from S to T

(where T is a subtype of S)

diagramtype C2 extends B {
redeclare s2: T;

}

A

B extends A
diagramtype B extends A {

s2: S;
connect(s1.out, s2.in);

}

diagramtype A {
s1: S;

}

Multiple Inheritance
Y1 Y2

Z extends Y1, Y2

A diagram type can inherit from multiple supertypes.

The order Y1, Y2 matters in some cases.

It’s fine if two blocks with the same names are added
from different supertypes (names are prefixed).

The Diamond Problem

Y1 extends X

Z extends Y1, Y2

Block s3 is before s4 because
Z is extended with first Y1 and then Y2

Elements are added in order: X, Z1, Z2, Z (a linearization order)

Y2 extends X

X

Linearization Order

Source Interception

Y1 extends X

Z extends Y1, Y2

Y2 extends X

X

Intercepts s1.out (source port instead of target port)

This results in that s4 is
connected to s3 instead of s1

Subtypes

How do two subtypes A and B relate?

• Can they be combined or are they alternatives?

• If they are combined, in which order should they be applied?

• The number of combinations grows very fast

• Only a small number of combinations can be anticipated

Feature Specifications

• Capturing how subtypes can be combined in feature specifications,

where each subtype is viewed as a feature
• Ordering statements are required when two features interact

• A variant is a selection of features

• Generation of feature wizards
• (Easier specification than previously and supports features consisting

of several blocks)

PID Example (by Alfred Theorin)

Feature diagram

Feature Selection in Feature Wizard

Generated Wizard

Specification Steps

1. Define a base diagram (P)

2. Define all features as separate subtypes (PD, PI, PTrack, …)

3. Specify the subtypes as features and specify the order between

features if needed

P (base type)

diagramtype P(SP: Real, PV: Real,
K: Real => Out: Real) {

e: RSub;
PPart: RMul;
connect(SP, e.in1);
connect(PV, e.in2);
connect(e.out, PPart.in1);
connect(K, PPart.in2);
connect(PPart.out, Out);

}

SP, PV, …, are parameters

P

PD

diagramtype PD(Td: Real, N: Real) extends P {
DPart: DPart;
RAdd: RAdd;
connect(PV, DPart.PV);
...
intercept Out with RAdd.in1, RAdd.out;

}

The computation is abstracted
into the block DPart

PD extends P
Intercepts parameter Out

PI
PI extends D

Intercepts parameter Out

PTrack
PTrack extends P

Intercepts parameter Out

PID
PID extends PD, PI

PD needs to be before PI because PI has tracking

How do we know in which order supertypes should be inherited?

Since both PD and PI intercept Out,
the order in which they are inherited matters

features P {
PTrack excludes Integral;

}

Feature Specifications

features P {
optional Derivative: PD;
optional Integral: PI;
optional PTrack: PTrack;

}

features P {
Derivative before Integral;
Derivative before PTrack;

}

Optional features

Excluding features

Ordering features

Optional features with
feature names and subtypes
where they are defined

Both PTrack and Integral
have tracking, so they can’t
be used at the same time

We need to order all
features that intercept the
same ports

Feature Instantiation

diagramtype Main {
pid: P {

feature Derivative;
feature Integral;

};
}

Wizard

A block pid that has the base type P, and
with the features Derivative and Integral

Feature Instantiation

Example from Ulf Hagberg

Cooling Feature
+ Or block
+ Intercept

+ Blocks
+ Variables
+ Connections

+ And block
+ Intercept

+ And block
+ Intercept

features CentrifugalPump {
Cooling: CentrifugalWithCooling;

}

Heating Feature

+ Blocks
+ Variables
+ Connections

+ And block
+ Intercept

+ Or block
+ Intercept

Correction: Changing1to0 and Changing0to1
should be used in the same way as previous slide

features CentrifugalPump {
Heating: CentrifugalWithHeating;
Cooling before Heating;

}

Heating + Cooling

Base

abstract AbstractBase extends Base

BaseAdd extends AbstractBase BaseMul extends AbstractBase

Extract functionality to
common supertype.
Other subtypes might not
need this functionality.

Abstract Common Functionality

Simple State Machines
statemachine DoubleAcc(enable: Bool => out: Int) {

var x: Int;
// States
normal {

out = x;
x = x + 1;

}
double {

out = x * 2;
x = x + 1;

}
// Transitions
normal => double: enable;
double => normal: !enable;

}

An accumulator state machine that returns double the value if
in the double state.

A state can be prefixed with public, which creates an extra
output parameter returning if the machine is in that state

diagramtype Main {
DoubleAcc: DoubleAcc;

}

Main

Instantiation as a block

Execution of Bloqqi Programs

The Bloqqi compiler generates C code
• Easy to run on different platforms (e.g., embedded systems)

• Distributed execution over MQTT (publish/subscribe middleware)

The compiler also generates Functional Mock-up Units (FMUs):
• Defined in standard Functional Mock-up Interface (FMI)

• Standard for connecting simulation models defined in different tools

• Bloqqi compiler generates Co-Simulation FMUs

MQTT

Regulator Broker Tank
(simulation)

Web
Browser

(visualization)

pub tank/level

sub tank/upperValve
sub tank/lowerValve

pub tank/upperValve
pub tank/lowerValve

sub tank/level

sub tank/upperValve
sub tank/lowerValve
sub tank/level
(over WebSocket)

Test Control Program by Simulating Process

Bloqqi
Code

Executable
Controller

FMU of
Controller

Process

FMU of
Process

Modelica
Model of
Process

OR

Simulation of Process

Control of Process

generate

generate

FMUs can be connected using SSP, for example,
using OMSimulator or FMI Composer

Modular Tool Implementation
Bloqqi
code

C codeBloqqi
Compiler

Bloqqi
code

Bloqqi
Editor

Semantic specification

Editing ops

JastAdd

JastAdd

Eclipse
GEF

Metacompiler

C code gen
Reference attribute
grammar specifications

Conclusions

• Bloqqi

• Prototype language for exploring code reuse constructs
• Inheritance, connection interception, block redeclare
• Features and Feature wizards
• Support for state machines
• FMI integration for simulating process

• Current/Future work

• Add support of nested features
• More examples
• Hopefully use FMI 3.0 to communicate events to master algorithm

