Overview

- System architecture
 - Rendering performance
 - GPU architecture
- Unified shader
- Memory Export
- Texture/Vertex Fetch
- HDR rendering
- Displaced subdivision surfaces
System architecture

- **CPU**: 2x 10.8 GB/s
- **Southbridge**: 2x PCIE 500MB/s
- **GPU**: 32GB/s
 - **UNIFIED MEMORY**: 22.4GB/s
 - 700MHz 128bit GDDR3
- **Northbridge**: 2x 10.8 GB/s
- **DAUGHTER DIE**: 32GB/s

Rendering performance

- **GPU to Daughter Die interface**
 - 8 pixels/clk
 - 32BPP color
 - 4 samples Z - Lossless compression
 - 16 pixels/clk – Double Z
 - 4 samples Z - Lossless compression
- **GPU**: 32GB/s
- **DAUGHTER DIE**: 32GB/s
Rendering performance

- Alpha and Z logic to EDRAM interface
 - 256GB/s
 - Color and Z - 32 samples
 - 32bit color, 24bit Z, 8bit stencil
 - Double Z - 64 samples
 - 24bit Z, 8bit stencil

GPU architecture

- DAUGHTER DIE
 - 8pix/clk, 4x MSAA, Stencil and Z test, Alpha blending
 - 256GB/s
 - 10MB EDRAM

- UNIFIED MEMORY
 - Texture/Vertex Fetch
 - Index Stream Generator
 - Rasterizer
 - Clipper
 - Primitive Setup
 - Output Buffer
 - Memory Export
 - Vertex Pipeline
 - Pixel Pipeline
 - Display Pixels
Unified Shader

- A revolutionary step in Graphics Hardware
- One hardware design that performs both Vertex and Pixel shaders
- Vertex processing power

Unified Shader

- GPU based vertex and pixel load balancing
 - Better vertex and pixel resource usage
- Union of features
 - E.g. Control flow, indexable constant, ...
- DX9 Shader Model 3.0+
Memory Export

- Shader output to a computed address
- Virtualize shader resources - multipass
- Shader debug
- Randomly update data structures from Vertex or Pixel Shader
- Scatter write

Texture/Vertex Fetch

- Shader fetch can be either:
 - Texture fetch (16 units)
 - LOD computation
 - Linear, Bi-linear, Tri-linear Filtering
 - Uses cache optimized for 2D, 3D texture data with varying pixel sizes
 - Unified texture cache
 - Vertex fetch (16 units)
 - Uses cache optimized for vertex-style data
Texture Arrays

- Generalization of 6 faced cube maps to 64 faces
- Each face is a 2D mip mapped surface
- Not volume texture
- Applications
 - Animation frames
 - Varying skins for instanced characters / objects
 - Character shadow texture flipbook animations

Texture array application:
Unique seeds for instanced shading
Texture array application:
Hundreds of instanced characters

Texture compression

- All of the old DXT formats
 - DXT1, DXT2/3, DXT4/5
- Several new formats (variations on above formats)
 - DXT3A
 - 4 bit scalar replicated into four channels in shader
 - DXT3A as 1111
 - 1 bit per channel pixel
 - DXT5A
 - 3bit selection between 2 8bit endpoints
 - DXN
 - 3Dc normal compression,
 - 2-channel version of DXT5A
 - CTX1
 - 2bit selection between 2 8.8bit endpoints
High Dynamic Range Rendering

• Special compact HDR render target format:
 • Just 32 bits: 7e3 7e3 7e3 2
 • Compatible with multisample antialiasing
 • R, G and B are unsigned floating point numbers
 • 7 bits of mantissa
 • 3 bits of exponent
 • Range of 0..16
 • 2 bits of alpha channel
• 16-bit fixed point at half speed
 • With full blending

Displaced subdivision surfaces

Base mesh
• Used by Tessellator to generate vertices

Subdivision surface

Displaced subdivision surface
Questions ?