
Challenges for GPU Architecture

Michael Doggett
Graphics Architecture Group

April 2, 2008

Challenges for GPU Architecture2

Graphics Processing Unit

Architecture
– CPUs vs GPUs

– AMD’s ATI RADEON 2900

Programming
– Brook+, CAL, ShaderAnalyzer

Architecture Challenges
– Accelerated Computing

Challenges for GPU Architecture3 Architecture

ATI WhiteOut Demo [2007]

Challenges for GPU Architecture4

Chip Design Focus Point

Throughput machinesLatency machines

Simple syncComplex sync

No OSNeeds OS

Data parallelTask parallel

Little reuseReuse and locality

Few instructions lots of data
SIMD

Hardware threading

Lots of instructions little data
Out of order exec
Branch prediction

GPUGPUCPUCPU

Challenges for GPU Architecture5

Typical CPU Operation

Wait for memory, gaps prevent peak performance
Gap size varies dynamically
Hard to tolerate latency

One iteration at a time
Single CPU unit
Cannot reach 100%

Hard to prefetch data
Multi-core does not help
Cluster does not help
Limited number of outstanding
fetches

Challenges for GPU Architecture6

GPU THREADS
(Lower Clock – Different Scale)

Overlapped fetch and alu
Many outstanding fetches

Lots of threads
Fetch unit + ALU unit
Fast thread switch
In-order finish

ALU units reach 100% utilization
Hardware sync for final Output

Challenges for GPU Architecture7

RADEON
2900
Top Level
Red – Compute/

Fixed Function

Yellow – Cache

Unified shader

Shader R/W Cache

Instr./Const. cache

Unified texture cache

Compression

Tessellator

Z/
S

te
nc

il
C

ac
he

Color Cache

Vertex
Assembler

Command Processor

Geometry
Assembler

Rasterizer

InterpolatorsH
ie

ra
rc

hi
ca

l Z

S
haderC

aches
Instruction &

C

onstant

Vertex Index Fetch

S
tre

am
 O

ut

L1 Texture C
ache

L2 Texture C
ache

Tessellator

UltraUltra--Threaded Dispatch ProcessorThreaded Dispatch Processor

Shader Export

Unified
Shader

Processors

Unified
Shader

Processors

Render Back-EndsRender Back-Ends

Texture U
nits

Texture U
nits

M
em

or
y

R
ea

d/
W

rit
e

C
ac

he

Setup
Unit

Setup
Unit

Z/
S

te
nc

il
C

ac
he

Color Cache

Vertex
Assembler

Command Processor

Geometry
Assembler

Rasterizer

InterpolatorsH
ie

ra
rc

hi
ca

l Z

S
haderC

aches
Instruction &

C

onstant

Vertex Index Fetch

S
tre

am
 O

ut

L1 Texture C
ache

L2 Texture C
ache

Tessellator

UltraUltra--Threaded Dispatch ProcessorThreaded Dispatch Processor

Shader Export

Unified
Shader

Processors

Unified
Shader

Processors

Render Back-EndsRender Back-Ends

Texture U
nits

Texture U
nits

M
em

or
y

R
ea

d/
W

rit
e

C
ac

he

Setup
Unit

Setup
Unit

Challenges for GPU Architecture8

Ultra-Threaded Dispatch Processor/
Scheduler

Main control for the shader core
– All workloads have threads of 64 elements

– 100’s of threads in flight

– Threads are put to sleep when they request a slow
responding resource

Arbitration policy
– Age/Need/Availability

– When in doubt favor pixels

– Programmable

Vertex
Assembler

Geometry
AssemblerInterpolatorsH

ie
ra C

aches
ction &

stant

S
tre

am
 O

L

UltraUltra--Threaded Dispatch ProcessorThreaded Dispatch Processor

ch
e

Vertex
Assembler

Geometry
AssemblerInterpolatorsH

ie
ra C

aches
ction &

stant

S
tre

am
 O

L

UltraUltra--Threaded Dispatch ProcessorThreaded Dispatch Processor

ch
e

Challenges for GPU Architecture9

Ultra-Threaded Dispatch Processor

UltraUltra--ThreadedThreaded
DispatchDispatch
ProcessorProcessor

Vertex Shader
Command Queue

VS Thread 1
VS Thread 2
VS Thread 3

Geometry Shader
Command Queue

GS Thread 1
GS Thread 2

PIxel Shader
Command Queue

PS Thread 1
PS Thread 2
PS Thread 3
PS Thread 4

Arbiter

Arbiter

Arbiter

Arbiter

Arbiter

Arbiter

Arbiter

Arbiter

Sequencer

Sequencer

Sequencer

Sequencer

Sequencer

Sequencer

Sequencer

Sequencer

Texture Fetch
Arbiter

Texture Fetch
Sequencer

Vertex Fetch
Arbiter

Vertex Fetch
Sequencer

Vertex / Texture C
ache

Setup EngineSetup Engine

InterpolatorsGeometry AssemblerVertex Assembler

SIMD
Array

80
Stream

Processing
Units

SIMD
Array

80
Stream

Processing
Units

SIMD
Array

80
Stream

Processing
Units

SIMD
Array

80
Stream

Processing
Units

Vertex / Texture U
nits

ShaderInstruction C
ache

ShaderC
onstant C

ache

Instructions
and Control

Challenges for GPU Architecture10

Shader Core

4 parallel SIMD units

Each unit receives independent ALU instruction

Very Long Instruction Word (VLIW)

ALU Instruction (1 to 7 64-bit words)
– 5 scalar ops – 64 bits for src/dst/cntrls/op

– 2 additional for literal constant(s)

Challenges for GPU Architecture11

Stream Processing Units

5 Scalar Units
• Each scalar unit does FP Multiply-

Add (MAD) and integer operations
• One also handles transcendental

instructions
• IEEE 32-bit floating point precision

Branch Execution Unit
• Flow control instructions

Up to 6 operations co-issued

General Purpose RegistersGeneral Purpose Registers

BranchBranch
ExecutionExecution

UnitUnit

Challenges for GPU Architecture12

Programming

Challenges for GPU Architecture13

Programming model

Vertex and pixel kernels (shaders)

Parallel loops are implicit

Performance aware code does not know how many cores
or how many threads

All sorts of queues maintained under covers

All kinds of sync done implicitly

Programs are very small

Challenges for GPU Architecture14

Parallelism Model

All parallel operations are hidden via domain specific API
calls

Developers write sequential code + kernels

Kernel operate on one vertex or pixel

Developers never deal with parallelism directly

No need for auto parallel compilers

Challenges for GPU Architecture15

Ruby Demo Series

Four versions – each done by experts to show of features
of the chip as well as develop novel forward-looking
graphics techniques

First 3 written in DirectX9, fourth in DirectX10

Challenges for GPU Architecture16

DX Pixel Shader Length

shader size

de
m

o
ve

rs
io

n

1

2

3

4

0 200 400 600 800

Num Pixel Shaders
demo 1 = 140
demo 2 = 163
demo 3 = 312
demo 4 = 250

Triangles in 1000

500

1000

1500

2000

d1 d2 d3 d4

Challenges for GPU Architecture17

AMD Stream Computing

Challenges for GPU Architecture18

GPU ShaderAnalyzer

Challenges for GPU Architecture19

Architecture Challenges

Challenges for GPU Architecture20

GPU Directions

Continued improvement and evolution in Graphics
– RADEON 2900 Tessellator

Continued conversion/removal of fixed function
– Which fixed function ?

Increasing importance of GPU as an accelerator
– Generalization of GPU architecture

More aggressive GPU thread scheduler
Shader read-only via texture, write-only via color exports

Need new GPU shader architectures to meet much wider
requirements
– Already has a range of requirements across Graphics and

Compute

Challenges for GPU Architecture21

Accelerated Computing

Challenges for GPU Architecture22

The Accelerated Computing Imperative

Homogeneous multi-core becomes increasingly
inadequate

Targeted special purpose HW solutions can offer
substantially better power efficiency and
throughput than traditional microprocessors when
operating on some of these new data types.

Power constraints will force applications to be
performance heterogeneous
– Applications can target the HW device to get this power

benefit

GPUs - high power efficiency, more than 2 GFLOPs/watt
– 20x > than dual-core CPU

Challenges for GPU Architecture23

AMD's Accelerated Computing Initiative

Discrete CPUs + GPUs

Full Integration - Fusion - Mutli-core CPU + GPU Accelerator

Compatibility will continue to be a key enabler in our industry
– Need SW for new HW

How should existing Compute APIs evolve ?

Do we need new API models ?

GPU parallelism is so successful because graphics APIs are sequential

New APIs can’t tie down GPU progress

– Need to replicate success of DX, need IHV input

Can only use GPGPU APIs when performance is necessary and
programmer understands machine

– Layers of computation
Compilers that can target workloads at appropriate processors

Challenges for GPU Architecture24

Future GPU/Accelerated Computing
Applications

Which applications benefit from combined CPU+GPU and how
?

What type of architectural workload coupling between
CPU+GPU do these applications require ?

What are the new data and communication requirements ?

What are the costs to existing performance to broaden what
we do well ?

Challenges for GPU Architecture25

Form Factors for Accelerated Computing

UMPC

HDTV

Handset

Home Cinema

Notebook

Desktop

Digital STB/PVR

Game consoleHome Media
Server

OCUR

Embedded space has already
embraced heterogeneous

computing models

Challenges for GPU Architecture26

Accelerated Computing

GPGPU APIs enable offloading compute to GPUs
– Without heroic programming efforts

– API compatibility enables
Hardware innovation without new SW

Improving performance on new HW without existing apps

Broad range of possible accelerator designs
– We need both CPUs and GPUs

Amdahl's law

Challenges for GPU Architecture27

Lots of Challenges …

• Managing context state and exceptions
This includes the program-visible state in the compute offload engine!
Virtualizing the context state

• Communications/Messaging
Simplified & fabric independent producer-consumer model
Optimized communications is a key enabler
It’s the synchronization, stupid

• Memory BW and Data Movement
Keeping up with the computation rates will require increasingly capable
memory systems

• New and appropriate APIs
Must offer a programming model that is actually easier than today’s
multi-core models
Use abstraction to trade some performance for programmer productivity
Live within bounds set by OS and Concurrent Runtimes

Challenges for GPU Architecture28

Processor World Map

CPU

GPU

HC

MPP

Challenges for GPU Architecture29

Questions ?

Internships

ATI Fellowships

Michael.doggett ‘at’ amd.com

Challenges for GPU Architecture30

References

“Issues and Challenges in Compiling for Graphics
Processors”, Norm Rubin, Code Generation and
Optimization 8 April, 2008

“The Role of Accelerated Computing in the Multi-Core
Era”, Chuck Moore, March 2008

