

Radeon™ HD 2900

Michael Doggett

August 5, 2007

Overview

- Starting Point
- Requirements
- Top level
- Pipeline Blocks from 'top to bottom'
 - Command Processor
 - Shader Setup Engine
 - Ultra Threaded Dispatch Processor
 - Shader Core
 - Texture
 - Render Backend
 - Memory Controller
- Conclusion

Starting point

- Combine the best of existing technology
 - R5xx series
 - Heavily threaded shader cores
 - Hides latency of memory fetch
 - Vec4+1 Vertex and Vec3+1 Pixel shaders
 - Ringbus memory subsystem
 - XBOX 360 GPU
 - Unified shader architecture
 - Vertex and Pixel
 - Vec4+1
 - Stream Out
 - Unified L1 texture cache
 - Introduced Tessellator

Requirements

- DirectX10 compatible
- Support new driver model
 - Vista driver model
- Scalable family
 - "Number" of shader cores, texture units, render back-ends.
 - Shader scalable in number of pipes, SIMDs.
 - Target specific cost, feature set and performance levels for each part

Top Level

Red - Compute

Yellow - Cache

Unified shader

Shader R/W

Instr./Const. cache

Unified texture cache

Compression

Command Processor

- GPU interface with host
- A custom RISC based Micro-Coded engine
- First class memory client with Read/Write access
- State management

- 3 groups of blocks feeding 3 data streams
 - Each group feeding 16 elements (Vertices/Geometry/Pixels)/cycle

Vertex blocks

- Primitive Tessellation
- Inputs Index & instancing
- Sends vertex addresses to shader core

Geometry blocks

- Uses on/off chip staging
- Sends processed vertex addresses, near neighbor addresses and topological information to shader core

Pixel blocks

- Triangle setup, Rasterization and Interpolation
- Interfaces to depth to perform HiZ/Early Z checks

Ultra-Threaded Dispatch Processor

- Main control for the shader core
 - All workloads have threads of 64 elements
 - 100's of threads in flight
 - Threads are put to sleep when they request a slow responding resource
- Arbitration policy
 - Age/Need/Availability
 - When in doubt favor pixels
 - Programmable

Ultra-Threaded Dispatch Processor

Shader Core

- 4 parallel SIMD units
- Each unit receives independent ALU instruction
- Very Long Instruction Word (VLIW)
- ALU Instruction (1 to 7 64-bit words)
 - 5 scalar ops 64 bits for src/dst/cntrls/op
 - 2 additional for literal constant(s)

Stream Processing Units

5 Scalar Units

- Each scalar unit does FP Multiply-Add (MAD) and integer operations
- One also handles transcendental instructions
- IEEE 32-bit floating point precision

Branch Execution Unit

Flow control instructions

Up to 6 operations co-issued

Memory Read/Write Cache

Virtualizes register space

- Allows overflow to graphics memory
- Can be read from or written to by any SIMD (texture & vertex caches are read-only)
- 8KB Fully associative cache, write combining

Stream Out

- Allows shader output to bypass render back-ends and color buffer
- Outputs sequential stream of data instead of bitmaps
- Used for Inter-thread communication

Texture Units

Fetch Units

- 8 Fetch Address Processors each
 - 4 filtered and 4 unfiltered
- 20 Texture Samplers each
 - Can fetch a single data value per clock
- 4 filtered texels (with BW)
 - Bilinear filter one 64-bit FP color value per clock, 128b FP per 2 clocks for each pixel

Fetch Caches

- Unified caches across all SIMDs
- Vertex/Unfiltered cache
 - 4kb L1, 32Kb L2
- Texture cache
 - 32KB L1, 256KB L2
 - Texture

Render Back-Ends

Double rate depth/stencil test

- 32 pixels per clock for HD 2900
- New HiStencil

Programmable MSAA resolve

Allows Custom AA Filters

New blend-able DX10 surface formats

 128-bit and 11:11:10 floating point format

Up to 8 Mulptiple Render Targets with MSAA support

Memory Interface and Controller

- 512-bit Interface
 - Compact, stacked I/O pad design
 - More bandwidth with existing memory technology
 - Improved cost:bandwidth ratio
 - -8×64 bit memory channels
- Double ringbus
 - 512 bit read and write

Radeon HD 2000 Series

Radeon	2900	2600	2400
Stream Processors	320	120	40
SIMDs	4	3	2
Pipelines	16	8	4
Texture Units	16	8	4
Render Backends	16	4	4
L2 texture cache (KB)	256	128	0
Technology (nm)	80	65	65
Area (mm2)	420	153	82
Transistors (Millions)	720	390	180
Memory Bandwidth	512	128	64

Where next?

- Move fixed functions blocks to shader
 - Improve programmability, reduce area, improve reuse, maintain/target performance
- Enhancements for GPGPU
 - Improved precision and compliance
 - New APIs, new functions
- New technologies such as 65, 55, 45, 32...
- Graphics and gaming keeps on evolving
 - DX-next is already being discussed
 - We are well into next generation and next-next generations

Radeon HD 2900

- Unified shader
 - Vertex, Geometry and Pixel
 - Multiple SIMD
 - 5-way scalar
- Shader cached memory read/write
- Geometry shader on/off chip storage
- 512 bit stacked I/O Memory Interface
- Full DX10 functionality

Questions and Demo

- See more about the tessellator in Course
 28. Advanced Real-Time Rendering in 3D Graphics and Games, Natalya Tatarchuk, Wednesday
- See more about CTM in GPGPU course, Justin Hensley, Tuesday

Thanks to Eric Demers and Mike Mantor