
Efficient Space Leaping for Ray casting Architectures

M. Meißner�, M. Doggett�, J. Hirche�, U. Kanusy, W. Straßer�

Abstract

One of the most severe problems for ray casting architectures is the
waste of computation cycles and I/O bandwidth, due to redundant
sampling of empty space. While several techniques exist for soft-
ware implementations to skip these empty regions, few are suitable
for hardware implementation. The few which have been presented
either require a tremendous amount of logic or are not feasible for
high frequency designs (i.e. running at 100 MHz) where latency is
the one of the biggest issues.

In this paper, we present an efficient space leaping mechanism
which requires only a small amount of SRAM (4 Kbit for a2563

volume) and can be easily integrated into ray casting architectures.
For each sub-cube of the volume, a bit is stored in an occupancy
map, which can be generated in real-time, using the VIZARD II
architecture. Hence, space leaping can be classification dependent
achieving yet another significant speed-up over skipping only the
empty space (voxel= 0). Using a set of real-world datasets, we
show that frame-rates well above 15 frames per second can be ac-
complished for the VIZARD II architecture.

Keywords: Graphics hardware, volume rendering accelerator,
ray casting, space leaping.

1 INTRODUCTION

Ray casting is one of the most popular volume visualization tech-
niques. Generally, samples along cast rays are interpolated, clas-
sified, shaded, and composited. The two main problems involved
with ray casting are the computational complexity and the memory
I/O.

The shear-warp algorithm [9] reduces memory I/O to an abso-
lute minimum by visiting each voxel, at a maximum, only once per
frame. Furthermore, by using three run length encoded datasets and
processing data only on the given slices, almost interactive frame-
rates are achieved. However, the generation of the run-length en-
coded volume is classification dependent and requires significant
pre-processing time. Furthermore, for datasets where most vox-
els contribute, the frame-time is dominated by the computations
needed for each voxel and is in the order of many seconds for a
2563 volume. Hence, for a large number of contributing samples,
hardware acceleration is mandatory to provide interactivity for real-
time frame-rates.

The VolumePro board [11] uses a similar approach to the shear-
warp algorithm. Projecting data onto a base-plane, memory I/O is
reduced to a minimum by visiting each voxel exactly once. The sys-
tem is fully pipelined and therefore, delivers classification indepen-
dent real-time frame-rates. However, no algorithmic optimizations
are integrated and hence, for many datasets most of the cycles are
wasted sampling empty space which could potentially be used to

�WSI/GRIS (Wilhelm Schickard Institut f¨ur Informatik,
Graphisch Interaktive Systeme, University of T¨ubingen, Auf
der Morgenstelle 10/C9, D-72076 T¨ubingen, Germany, E-
mail:fmeissner,miked,jhirche,strasserg@gris.uni-tuebingen.de

yDD&T GmbH (”Digital Design & Technology”), Krämerstraße 13, D-
72764 Reutlingen, Germany, E-mail: urs@dd-t.com

accomplish even higher frame-rates or potentially real-time frame-
rates for larger volumes. Furthermore, only parallel projections are
supported.

Knittel [8] presented a true ray-casting architecture capable of
providing almost interactive frame-rates for2563 datasets. The
PCI based accelerator uses the main memory to store the volume
data. Before rendering, the data is pre-shaded and compressed in
software using a lossy compression scheme. Each ray is then pro-
cessed by adding the ray increment and fetching the corresponding
voxel package. An octant based distance coding scheme, stored in
the empty voxel blocks, is used to skip empty octants by storing
a factor to multiply the increment vector with [7]. Generally, due
to the ray casting process, voxels are accessed multiple times but
the access latency of the PCI bus is reduced by using an on-board
SRAM cache.

The successor of this architecture, VIZARD II [10], has dedi-
cated volume memory providing a much higher memory bandwidth
than [8]. This architecture uses a prefetching scheme presented in
[3] which overlays the prefetch time of the different memory mod-
ules and reduces memory access time to a minimum. Using this
memory scheme, a higher frame-rate can be delivered than in [8].
However, no space leaping has been integrated and voxel values are
again fetched multiple times.

Vettermann et al. [14] proposed a ray casting architecture which
can integrate algorithmic optimizations such as early ray termina-
tion and space leaping, hiding most of the latency. In this architec-
ture, an additional distance volume is used to store the Euclidean
distance to the closest contributing voxel. Since the distance vol-
ume is stored in SDRAM, latency is high. This is circumvented by
interleaving the processing of multiple rays. However, this signifi-
cantly aggravates the task of coordinating the memory accesses and
requires a significant amount of logic for implementation. Further-
more, once a certain threshold of remaining rays is reached, stall
cycles are introduced. Nevertheless, the presented space leaping
mechanism works effectively to solve the associated latency prob-
lem.

The proposed RACE architecture [12] exploits early ray termina-
tion and estimates real-time frame-rates for parallel and perspective
projection. Space leaping capabilities have not yet been integrated
but the authors state that succeeding architectures will include this
and an acceleration of a factor of two is expected [12].

Overall, the architectures mentioned so far either do not provide
space leaping functionality [11, 10, 3, 12] or require an entire dis-
tance volume to be pre-computed [8] and stored [14]. Generally,
the generation of distance volumes has been widely investigated
for CSG [1], volume rendering [13, 16], haptics in volume render-
ing [4], iso-surface extraction [6] and others. However, the compu-
tational costs are not neglectable and for 8 bit distance and voxel
values, the memory requirements are doubled which is impractical
for larger volumes.

There have also been numerous publications on approaches
which do not require distance volumes but make use of volume
animation [5, 15]. Here, in addition to storing the color image, a
depth image is generated. This depth image is warped and used to
determine valid starting points within the volume. Yagel et al. [15]
state that their technique does not suffer from image degradation.
However, ray-casting as used in the above architectures is purely
sampling based and can miss fine detail – unless infinite sampling

frequency is used – which results in an invalid depth image. There-
fore, for ray-casting driven architectures, such an approach cannot
be used without potential image degradation.

In contrast, our new space leaping mechanism does not require
an entire distance volume nor does it suffer from image degradation.
It is extremely well suited for hardware implementation, because it
only uses a small occupancy map. Since the occupancy map can be
computed in real-time, it can be classification dependent, yielding
much better results than coding empty voxels only (voxel= 0).
Compared to [14], our approach takes more cycles to jump over
empty space extending over several sub-cubes, it introduces much
less latency – even for a 100 MHz design – since the occupancy
map is very small (4 Kbit for a2563 volume) and can be stored in
an on-chip SRAM separately from the main voxel memory. This
facilitates any ray queuing scheme since only a few rays need to
be processed simultaneously and only a small amount of logic is
needed to coordinate the memory access of these few rays within
the SDRAM pages.

In the following section, we will describe our space leaping
mechanism using an occupancy map. In Section 3, the integra-
tion of this method into the VIZARD II architecture is demon-
strated. However, occupancy maps can easily be integrated into
other ray casting architectures, i.e. [14] and possibly [11]. Finally,
we present an analysis of the achievable frame-rates using a set of
real-world datasets and conclude our paper in Section 5.

2 SPACE LEAPING ALGORITHM

Ray casting using space leaping is performed by advancing the ray
to the next sample point of interest instead of incrementing the ray’s
current sample position by a small increment. We propose to only
skip sub-cubes of empty space, thus reducing the complexity of
precomputation significantly. Our algorithm also calculates an es-
timated conservative distance to the next sample point within the
next sub-cube, if the current sub-cube is empty.

2.1 Basic Algorithm

Initially, we map the sub-cubes of interest within the dataset by
calculating a small occupancy map containing a single bit per sub-
cube of the volume dataset. The bit indicates whether a sub-cube
is empty or contains data requiring sampling. This leads to a very
space efficient discretized representation of the volume, i.e. for a
2563 volume and sub-cubes of163 voxels, a total of 4 Kbits of
memory is required. In Figure 1, a simple example of an occupancy
map is given for the two dimensional case.

Figure 1: The Space-Leap-Volume for the 2D case.

For each sample along the ray, the corresponding bit in the oc-
cupancy map is checked using the upper address bits of the sam-
ple position. If the entry in the occupancy map indicates a non-
empty sub-cube, sampling along the ray is simply continued. Oth-
erwise, this sub-cube will be skipped by a distance, conservatively

approximated to the first sample within the subsequent sub-cube by
adding the increment vector multiplied by the amount of samples
to be skipped. The numberns of samples the ray may skip can be

n n+1x

x

y

y

n

n+1

s

skipped samples (n
)

I

x

y

X XPos

D

Pos

D

Y

Y

x

Ray ste
ps

Ray

subcube boundary
y

V

V

Figure 2: Calculation of the skipping

calculated by dividing the distance from the actual ray position to
the intersection point(Ix; Iy; Iz) of the ray with the next sub-cube
boundary by the length of one ray increment:

ns =

"p
(Ix � Px)2 + (Iy � Py)2 + (Iz � Pz)2p

V 2
x + V 2

y + V 2
z

#

with (Px; Py; Pz) being the actual ray position andVx; Vy andVz
the ray increment in the corresponding direction, as shown in Fig-
ure 2 for thex coordinate. Since this involves the calculation of
two Euclidean distances, which would be extremely expensive, a
simpler approach was chosen for implementation.

The same result can be obtained if the relative distance to the
boundaries in each directionnis (i 2 fx; y; zg) is calculated. The
minimum value determines the amount of steps that have to be
taken to reach into the next sub-cube.

nis =

�
1 , if Vi = 0�
Di

Vi

�
, else

ns = min(1; nis)

In order to increase the space leaping efficiency even further, a sec-
ond level of hierarchy can be added. The entries of eight neighbor-
ing sub-cubes (2� 2� 2) can be grouped into an eight bit entry in
the occupancy map. When all eight entries are zero (the entire byte
is zero), the whole group of sub-cubes may be skipped, achieving a
higher space leaping efficiency since more samples can be skipped
in less cycles.

Generally, using the above described space leaping algorithm
does not require any voxel to be accessed as long as samples along
the ray are “taken” in empty sub-cubes. Thus, frequent swapping of
memory pages due to rays stepping once in a sub-cube and skipping
to the next sub-cube, is prevented increasing the overall memory
utilization significantly.

3 HARDWARE IMPLICATIONS

The additional costs in terms of computational hardware to imple-
ment our space leaping algorithm are quite modest. In this section,
we will present the hardware units required to calculate the incre-
ment when skipping a sub-cube and introduce ray queuing into the
ray casting pipeline to handle the latency of the increment calcula-
tions.

2

3.1 Space Leaping Hardware

To avoid calculating the exact distance in 3D space, we only cal-
culate the relative distance along each axis as described in the pre-
vious section. The pipeline for computing the new increment used
if a sub-cube is skipped is shown in Figure 3. The first operation

min x, y, z

*

4
8

sub

*

4 4

4 8

12X Y Z

Dx

Pos x

Pos y

Pos z

Vx

n s

Sizesubcube

1/Vx

Vy Vz

Vx Vy Vz
’ ’ ’

Figure 3: Pipeline for the skip calculator.

in the pipeline involves finding the integer distance to the next sub-
cube. If we use163 sub-cubes, a four bit subtraction is necessary
to calculate each ofDx; Dy andDz.

The second operation is to divideDx; Dy andDz by the ray in-
crementsVx; Vy andVz. To reduce the complexity of this division,
we can pre-calculate the inverse of theVx; Vy andVz values once
per ray and store the values, or store a larger adaptive division Ta-
ble covering the entire range of possible ray increment values. The
division is then calculated by multiplyingDx; Dy andDz by the
pre-calculated1=Vx; 1=Vy and1=Vz value. This multiplier does
not require a very high precision since we only compare its result
with the results from the other relative directional increments to de-
termine the minimum number of samples the ray may skipns. As
long as the value is rounded down to the nearest integer, we might
step a slightly shorter number of steps, slowing the overall ray cast-
ing marginally but reducing the size and latency of this multiplier.

The results from each component are then compared to deter-
mine the minimum number of stepsns, which is then multiplied by
the actual incrementV along the ray. This second multiplier must
have at least the same precision as the increment value, or rounding
errors and possible image artifacts will result. We have found that
with increment values with only 6-bit precision, image artifacts are
present, so at least an 8-bit precision for the increment value is re-
quired. The newly calculated increment value is then added to the
current address.

At the same time as the new increment value is calculated, the
decision whether to skip the data is looked up from a small SRAM
containing the occupancy map. If the sub-cube is to be skipped,
then a mux selects the newly calculated increment value or the orig-
inal increment value and sends it to the Ray Queue.

The occupancy map can be easily recalculated by the VIZARD
II ray casting architecture by scanning over the entire volume. The

VIZARD II architecture provides an extremely high memory band-
width capable of scanning a2563 dataset in 20 ms1, allowing in-
teractive control of transfers functions to work with the space leap-
ing hardware. Scanning for voxels= 0 can be performed during
down-load of the volume, as the data will pass through the Xil-
inx FPGA, which can compute the occupancy mask as the down-
load proceeds. A possible extension is to store multiple occupancy
maps, one based on skipping voxels= 0 and others based on dif-
ferent classifications.

The logic to implement the skip calculator described above re-
quires 124 CLB slices of a Xilinx Virtex XCV1000 FPGA, utilizing
1 % of the FPGA logic, not counting the required memory2. The
clock frequency of the resulting pipeline is well above 100 Mhz and
adds 8 cycles of latency to the address computation. Therefore, the
processing of eight or more rays will be sufficient to accommodate
latency.

3.2 Multiple Rays

The latency introduced by calculating the new skip increment
means that if only one ray is processed the pipeline will stall, wait-
ing for the calculation of the new skip distance to complete. To
avoid this latency and maintain a full ray casting pipeline, we trace
the path of more than one ray at a time. An example of four rays and
their location relative to the memory banks used in the VIZARD II
architecture is shown in Figure 4. A sample point taken along one

X

Y

Z

M3

M2

M1
M2

M2M2

M1

Sample Point

M3

4 Rays

M0M1 M1 M0

M0

M3

M3

M0

Figure 4: Four rays and associated voxels showing relevant memo-
ries.

ray is marked by an� and the closest eight voxels making up its
voxel neighborhood are emphasized as black filled circles. This
voxel neighborhood must be read from memory and trilinearly in-
terpolated to calculate the new value, called the sample, at that sam-
ple point. The complete memory system of the VIZARD II board is
described in [3] and is only treated briefly in this paper. In Figure 4,
the memory modules that the voxels will be read from are indicated
by Mn, wheren is the memory module number. The volume is
stored in four memories, each providing two susequent voxel val-
ues inZ. When tracing multiple rays it is important to keep the
current sample along each ray within close proximity of the current
samples on the other rays to ensure memory addresses are similar.

1The memory of the VIZARD II architecture is eight times interleaved.
Hence, a volume dataset of 16 Msamples read from 100MHz SDRAM can
be scanned 50 times per second.

2The occupancy map can be implemented using some of the 131 Kbits
of on-chip Block SRAM of the Xilinx Virtex XCV1000 FPGA.

3

If one ray advances beyond the other rays then every time voxels
are read from memory for the advanced ray a page fault will oc-
cur and the ray casting will stall during memory row activation and
precharge time.

The main pipeline stages required for ray casting are shown in
Figure 5(a). To this pipeline, we add aRay Queueand theSkip
Calculator, as described above. In Figure 5, we also add stages for
Address Calculation and SDRAM Control, as required to interface
to the memory. Also an additional Address FIFO and Voxel FIFO
are added to improve memory performance by allowing different
memories to change pages at different times as described in [3].

Ray Incrementor

Memory

Trilinear Interpol.

Compositing

Final Pixel

Shading

Address Calculation

Address FIFO

SDRAM Controller

Voxel FIFO

Ray Incrementor

Memory

Shading

Compositing

Final Pixel

Overtaking FIFO

Ray Incrementor

Address Calculation

Address FIFO

SDRAM Controller

Memory

Voxel FIFO

Trilinear Interpol.

Compositing

Final Pixel

Shading

Trilinear Interpol.

Ray Setup

Ray Queue

Ray Setup Ray Setup

Ray Queue

Skip Calculator Skip Calculator

Compositing Buffer

(a) (b) (c)

Figure 5: The stages in a ray casting pipeline. (a) Standard pipeline
stages, (b) Extra units required for multiple rays and improved
memory performance, (c) Further improving memory performance
by sorting rays.

To minimize the memory stalling effects when using several
rays, anOvertaking FIFOis introduced as shown in Figure 5(c) and
presented earlier in [2]. The Overtaking FIFO reorders the memory
addresses in order to minimize page changes in the memory. A
Compositing Bufferis also introduced to correctly sort the samples
for use in the Shading and Compositing stages.

4 RESULTS

We have implemented a software simulation (C++) of the above
described algorithm to measure the quantitative performance gains
by counting the number of cycles needed per frame. Rather than
using the software simulation of the VIZARDII architecture, we
could have recorded measurements using our VHDL simulation of
our ray casting pipeline. However, our hardware simulation takes
36 hours to render a2563 dataset, making the decision for how to
calculate results straight forward.

For the evaluation of the described space leaping approach, we
carefully selected a set of five different real-world datasets which
are described in Table 1. The first two datasets are both simulation

Dataset Size Source Occupied voxels

fuel 643 simulation 5.24 %
neghip 643 simulation 46.38 %
foot 2563 CT-anio 28.94 %
skull 2563 CT 88.42 %
vessel 2563 CT-anio 1.01 %

Table 1: Set of datasets which have been used to evaluate the space
leaping approach. Occupied voxels are voxels with value> 0.

data, but the number of occupied voxels varies significantly. The
other three are scanned datasets. The skull is a very compact block
of occupied voxels and due to noise, only a few unoccupied voxels
– further-on referred to as empty voxels – exist. In contrast, the
vessel dataset contains narrow structures which are present across
the entire dataset but a large number of voxels is empty since there
is almost no noise present. Finally, the foot dataset is a relatively
compact block of occupied voxels with a moderate amount of noise.
Figure 8 presents images of these datasets; for each dataset, there
is one image showing all data present and another image where a
classification revealing the important content has been applied.

4.1 Dataset characteristics

The percentage of empty voxels is given in Table 1, but does not
reveal any estimate of the potential gain that can be expected from
the presented space leaping mechanism. The potential benefit de-
pends on the distribution of the empty voxels within sub-cubes. We
therefore measured the amount of skipable sub-cubes, using differ-
ent sub-cube sizes ranging from23 to 643 for each dataset. The
results of these measurements are shown in Figure 6. Obviously,

0

20

40

60

80

100

2 4 8 16 32 64

S
ub

-c
ub

es
 (

pe
rc

en
ta

ge
)

Sub-cube size (voxel^3)

Skipping zero only

neghip
fuel

vessels
skull
foot

Figure 6: Percentage of skipable sub-cubes. Only empty voxels
have been exploited.

the smaller the sub-cubes, the higher the percentage of skipable sub-
cubes. For the fuel datasets, no gain is achieved for sub-cubes of
323 and larger, since the fuel stream is concentric and symmetric
such that all323 sub-cubes always contain occupied voxels. For
the neghip dataset, this already applies for sub-cubes of163 and
larger since the data is much more distributed over the entire grid.
Not surprisingly, for the skull dataset the percentage of skipable
sub-cubes is close to zero. This is due to the present noise which
prevents any classification independent space leaping mechanism.
On the other hand, the foot dataset is noisy as well, but the noise
is mostly around the tissue of the foot itself, which leaves many
sub-cubes empty. Finally, the vessel dataset has a large amount

4

of skipable sub-cubes, despite the fact that the arteries are present
across the entire volume. The larger the sub-cubes, the lower the
percentage of non-contributing sub-cubes. However, for each sub-
cube at least one sample needs to be processed. Therefore, space
leaping performance is not necessarily better for smaller sub-cube
sizes.

Generally, classification is used to remove noise – if possible –
and other structures which are not of interest. We therefore used
transfer functions visualizing the important content in each dataset.
Images resulting from these transfer functions are given in Figure 8.
Furthermore, Figure 7 illustrates the percentage of skipable voxels
making use of these transfer functions. For the fuel and the neghip

0

20

40

60

80

100

2 4 8 16 32 64

S
ub

-c
ub

es
 (

pe
rc

en
ta

ge
)

Sub-cube size (voxel^3)

Skipping applying classification

neghip
fuel

vessels
skull
foot

Figure 7: Percentage of skipable sub-cubes exploiting the given
classification.

dataset, the percentage of non-skipable sub-cubes can be further
reduced by 50%. Additionally, for the neghip 25% of sub-cubes
of size163 can now be skipped. The foot and the skull are the two
datasets gaining the most; the percentage of non-skipable sub-cubes
drops by a factor of2 to 5. Overall, while for sub-cubes of size23

more than 85% of all sub-cubes are empty, this does not translate
into the best space leaping efficiency, which will be elaborated in
the next section.

As mentioned earlier, the occupancy map is stored in an on-chip
storage (SRAM), to keep latency during the space leaping process
as small as possible. Unfortunately, the capacity of this type of
memory is limited, which puts an upper bound on the size of the
feasible occupancy map. Table 2 illustrates the amount of mem-
ory needed for different dataset and sub-cube sizes. For the se-

Volume size/ 643 1283 2563

Sub-cube size [256 KBytes] [2 MBytes] [16 MBytes]
23 32 Kbits 256 Kbits 2 Mbits
43 4 Kbits 32 Kbits 256 Kbits
83 512 bits 4 Kbits 32 Kbits
163 64 bits 512 bits 4 Kbits
323 8 bits 64 bits 512 bits

Table 2: Storage needed for the space leap map.

lected datasets, 4 Kbits offer a good percentage of skipable sub-
cubes compared to the memory size. However, this may change for
larger datasets (5123), where one might achieve better results using
32 Kbit, which is still feasible.

4.2 Experiments and Discussion

The percentage of skipable sub-cubes does not exhibit the actual
performance gains. What determines the optimal sub-cube size is
given by the compactness of the structure(s) contained in the dataset
and how much skipable space is around. Performance gains are
generally limited to those parts of rays, which pass through empty
sub-cubes. For a thorough analysis, we generated animations of 72
frames for all five datasets rotating around the center of the dataset
starting with the views given in Figure 8. For each frame, we accu-
rately measured the number of cycles needed for image generation.
These measurements include cycles for:

1. Taking all samples along all rays.

2. Applying early ray termination (ERT)

3. Applying space leaping additional to ERT, using sub-cube
sizes ranging from43 to 323.

The results are shown in Figure 9 where the graphs illustrate the
view and classification dependent performance. To better compre-
hend the information of Figure 9, we translated it into frame-rates
using the average memory access time of 12.5 nsecs per voxel, as
described in [3]. The results are shown in Table 3. Generally, early

Acceleration none ERT 43 83 163 323

‘0’ 16.1 16.4 27.3 41.9 45.8 16.4fuel
class 16.1 16.3 28.4 47.3 45.2 16.3
‘0’ 18.6 23.7 28.1 27.9 23.7 23.7neghip
class 18.6 23.3 36.2 46.2 31.5 23.3
‘0’ 4.4 5.3 7.3 7.7 7.1 6.5foot
class 4.4 5.3 9.0 14.4 19.1 16.8
‘0’ 4.3 8.2 8.2 8.2 8.2 8.2skull
class 4.3 7.8 12.9 17.3 16.0 10.8
‘0’ 4.3 4.7 7.8 10.4 10.7 8.3vessel
class 4.3 4.6 8.0 13.3 17.3 12.0

Table 3: Frame-rates for the five datasets skipping empty voxels
only (‘0’) and exploiting the given classification (class). The frame-
rates are averaged over 72 frames (see Figure 9). Accelerationnone
stands for processing all samples along all rays andERTstands for
early ray termination.

ray termination is not a very efficient acceleration technique, unless
the viewpoint is close to an highly opaque object covering large ar-
eas of the screen-space. For the presented views, performance gains
vary from almost zero for the fuel dataset to 25% for the neghip
dataset. The only exception is the skull dataset, where a 90% per-
formance is gained due to the opaque skull.

Space leaping based on skipping empty sub-cubes, only gives
poor speed-ups for datasets with a high percentage of occupied vox-
els. This is illustrated with the skull dataset where 88% of all vox-
els are occupied (see Table 1). A similar observation can be made
for the foot dataset. Only for the fuel dataset performance gains
of 280% can be observed which are due to the large areas of non-
occupied voxels surrounding the compact union of occupied voxels.

Generally, much higher frame-rates can be achieved exploit-
ing the given classification, resulting in performance gains ranging
from 200% for the neghip dataset to 375% for the vessel dataset
(additional to early ray termination). The performance gain for the
neghip is only 200%, since a large number of samples still con-
tribute to the final image. Overall, for the presented datasets of
2563 voxels, we achieve frame-rates well above 15 frames per sec-
ond.

While achieving good speed-ups additional to early ray termina-
tion, the selection of the appropriate sub-cube size is dataset and

5

classification dependent. As a rule of thumb, a sub-cube size of83

is suited for the smaller datasets (643) and sub-cubes of163 for the
larger datasets (2563), even though for a few cases slightly higher
frame-rates can be achieved for the next smaller or larger sub-cube
size. Finding heuristics for the best suited sub-cube size is still sub-
ject to further research.

The reported frame-rates will be even higher by skipping larger
sub-cubes exploiting the given two-level hierarchy, as described in
Section 2. In case all eight at even boundary addresses aligned
neighboring sub-cubes are empty, a much larger distance can be
skipped within a single cycle. Furthermore, for samples taken in
empty sub-cubes, no memory request needs to be sent down the
pipeline and hence, the overall memory efficiency will increase due
to less page reloads. This is not yet incorporated in the numbers
presented in Figure 9 and Table 3, since this requires a full simula-
tion of the entire pipeline.

5 CONCLUSIONS

We presented a new space leaping mechanism using an occupancy
mask instead of an entire distance volume. With only4Kbit of
SRAM, we were able to significantly reduce the latency caused by
reading distance volumes from the voxel memory. The latency due
to the calculation of the new skipping value can be accommodated
by processing eight rays, even in an FPGA design running at 100
MHz. The amount of extra logic required for the presented space
leaping mechanism is less than 1% (130 CLBs) of an Xilinx Virtex
XCV1000 FPGA.

Furthermore, we have shown that for the VIZARD II archi-
tecture, the occupancy map can be classification dependent, since
VIZARD II provides a sufficient memory bandwidth to update the
occupancy map 50 times per second. Using a set of real-world
datasets, we demonstrated the efficiency of the occupancy map in
the VIZARD II architecture. We achieved frame-rates well above
15 frames per second for datasets of2563 voxels, providing paral-
lel and perspective projections, as well as arbitrary sampling rates
in all three dimensions.

Our future work will include exploiting the natural two-level hi-
erarchy given by an occupancy map stored in eight bit entries fur-
ther increasing the space leaping efficiency. Furthermore, we will
investigate heuristics for determining the “ideal” sub-cube size for
given datasets.

Acknowledgements

This work has been funded by the SFB grant 382 of the Ger-
man Research Council (DFG). The vessel dataset is courtesy of
Philips Research, Hamburg, Germany, the skull dataset is courtesy
of Siemens Medical Systems, Forchheim, Germany, and the fuel
injection dataset is courtesy of SFB 382 of the German Research
Council (DFG).

%small

References

[1] D. E. Breen, S. Mauch, and R. T. Whitaker. 3D Scan Conver-
sion of CSG Models into Distance Volumes. InSymposium
on Volume Visualization, pages 7–14, Research Triangle Park,
NC, October 1998.

[2] Michael Doggett. A ray queueing and sorting design for real
time ray casting. InInternational Symposium on Circuits and
Systems. IEEE, May 2000.

[3] Michael Doggett, Michael Meißner, and Urs Kanus. A low-
cost memory architecture for pci-based interactive ray casting.
In Eurographics/SIGGRAPH Workshop on Graphics Hard-
ware, pages 7–14, August 1999.

[4] S. Gibson. Using Distance Maps for Accurate Surface Rep-
resentation in Sampled Volumes. InSymposium on Volume
Visualization, pages 23–30, Research Triangle Park, NC, Oc-
tober 1998.

[5] B. Gudmundsson and M. Randen. Incremental generation
of projections of CT-volumes. InProc. of the First Confer-
ence on Visualization in Biomedical Computing, pages 27–34,
Atlanta, GA, May 1990. IEEE Computer Society Press, Los
Alamitos, California.

[6] R. Klein, A. Schilling, and W. Straßer. Reconstruction and
simplification of surfaces from contours. In Bob Werner, ed-
itor, Proc. of the Seventh Pacific Conference on Computer
Graphics and Applications, pages 198–207, Seoul, Korea,
October 1999.

[7] G. Knittel. A pci-based volume rendering accelerator. In
Proc. of Eurographics/SIGGRAPH Workshop on Graphics
Hardware, pages 73–82, Maastricht, The Netherlands, Au-
gust 1995.

[8] G. Knittel and W. Straßer. Vizard - visualization accelerator
for realtime display. InProc. of Eurographics/SIGGRAPH
Workshop on Graphics Hardware, pages 139–146, Los Ange-
les, USA, August 1997.

[9] P. Lacroute and M. Levoy. Fast Volume Rendering Using a
Shear-Warp factorization of the Viewing Transform. InCom-
puter Graphics, Proc. of ACM SIGGRAPH, pages 451–457,
July 1994.

[10] M. Meißner, U. Kanus, and W. Straßer. VIZARD II, A PCI-
Card for Real-Time Volume Rendering. InProc. Eurograph-
ics/SIGGRAPH Workshop on Graphics Hardware, pages 61–
68, Lisboa, Portugal, August 1998.

[11] H. Pfister, J. Hardenbergh, J. Knittel, H. Lauer, and L. Seiler.
The volumepro real-time ray-casting system. InComputer
Graphics, Proc. of ACM SIGGRAPH, pages 251–260, Au-
gust 1999.

[12] H. Ray and D. Silver. A Memory Efficient Architecture for
Real-Time Parallel and Perspective Direct Volume Rendering.
Technical Report CAIP-TR-237, Department of Computer
Aids for Industrial Productivity, Rutgers University, 1999.

[13] M. Sramek. Fast Surface Rendering from Raster Data by
Voxel Traversal Using Chessboard Distance. InProc. of
IEEE Visualization, pages 188–195, Washington, D.C., Oc-
tober 1994.

[14] B. Vettermann, J. Hesser, and R. M¨anner. Solving the Haz-
ard Problem for Algorithmically Optimized Real-Time Vol-
ume Rendering. Proc. of 1st Workshop on Volume Graphics,
March 1999.

[15] R. Yagel and Z. Shi. Accelerating volume animation by space-
leaping. InProc. of IEEE Visualization, pages 62–69, San
José, CA, October 1993.

[16] K. Z. Zuiderveld, A. H. J. Koning, and M. A. Viergever. Ac-
celeration of ray catsing using 3D distance transform. In R. A.
Robb, editor,Proc. of Visualization in Biomedical Computing,
pages 324–335, Chapel Hill, NC, October 1992. SPIE, Vol.
1808.

6

(a) (b)

(c) (d)

(e) (f) (g)

(h) (i) (j)

Figure 8: Test datasets: (a,b) and (e-g) have been rendered visualizing all occupied voxels. The other images were rendered applying the
transfer functions used throughout the paper.

7

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

8e+06

10 20 30 40 50 60 70

cy
cl

es
frame

Fuel dataset

all
early ray termination

space leaping 4^3
space leaping 8^3

space leaping 16^3
space leaping 32^3

shaded

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

8e+06

10 20 30 40 50 60 70

cy
cl

es

frame

Fuel dataset

all
early ray termination

space leaping 4^3
space leaping 8^3

space leaping 16^3
space leaping 32^3

shaded

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

10 20 30 40 50 60 70

cy
cl

es

frame

Neghip dataset

all
early ray termination

space leaping 4^3
space leaping 8^3

space leaping 16^3
space leaping 32^3

shaded

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

10 20 30 40 50 60 70

cy
cl

es

frame

Neghip dataset

all
early ray termination

space leaping 4^3
space leaping 8^3

space leaping 16^3
space leaping 32^3

shaded

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

10 20 30 40 50 60 70

cy
cl

es

frame

Foot dataset

all
early ray termination

space leaping 4^3
space leaping 8^3

space leaping 16^3
space leaping 32^3

shaded

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

10 20 30 40 50 60 70

cy
cl

es

frame

Foot dataset

all
early ray termination

space leaping 4^3
space leaping 8^3

space leaping 16^3
space leaping 32^3

shaded

0

5e+06

1e+07

1.5e+07

2e+07

10 20 30 40 50 60 70

cy
cl

es

frame

Skull dataset

all
early ray termination

space leaping 4^2
space leaping 8^2

space leaping 16^2
space leaping 32^2

shaded

0

5e+06

1e+07

1.5e+07

2e+07

10 20 30 40 50 60 70

cy
cl

es

frame

Skull dataset

all
early ray termination

space leaping 4^3
space leaping 8^3

space leaping 16^3
space leaping 32^3

shaded

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

10 20 30 40 50 60 70

cy
cl

es

frame

Vessel dataset

all
early ray termination

space leaping 4^3
space leaping 8^3

space leaping 16^3
space leaping 32^3

shaded

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

10 20 30 40 50 60 70

cy
cl

es

frame

Vessel dataset

all
early ray termination

space leaping 4^3
space leaping 8^3

space leaping 16^3
space leaping 32^3

shaded

Figure 9: Cycles per frame, with (left column) and without applying classification (right column).

8

