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I. INTRODUCTION

The texture cache is an essential component of modern
GPUs and plays an important role in achieving real-time
performance when generating realistic images. The texture
cache is a read-only cache that stores image data that is used
for putting images onto triangles, a process called texture
mapping. Figure 1 shows a typical real-time graphics scene
rendered with and without texture mapping which adds color
details to the triangle models that make up the 3D scene. The
texture cache has a high hit rate since there is heavy reuse
between neighboring pixels and is usually located close to
the shader processor so texture data is available with high
throughput and at low read latencies.

Fig. 1. The sponza atrium palace model on the left with colored triangles
and lighting, on the right with texture mapping.

GPUs are large complex systems and the texture cache is
only a small component. An overview of GPUs and their
evolution is presented by Blythe [1]. Blythe points out that
texture mapping was an early requirement for games and was
one of the first features to move from high end research
systems to PC and console gaming. The GPU has evolved in
a competitive market that has seen most companies disappear
from the many that existed in the late 1990s. The last major
GPU vendor, NVIDIA, has expanded beyond just GPU design
and also builds integrated GPU and CPU SOCs for the mobile
market.

GPU architecture is not visible to the programmer and
is hidden under the programming APIs (e.g. OpenGL and
Direct3D) and so architecture, including texture caches, has
changed frequently. A generalized top level architecture dia-
gram of a modern GPU is shown in Figure 2. The texture

cache, L1 cache and L2 cache make up the memory hierarchy
in the GPU.
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Fig. 2. A simplified diagram of the top level architecture of a modern
GPU. The texture cache is highlighted in purple. The thread scheduler collects
workloads for the different stages of the graphics pipeline and loads then
onto a variable number of graphics cores. The graphics cores have some fixed
function graphics logic in the Geometry/Raster unit, which contains geometry
processing and rasterization. Underneath is the shader, it has control logic
(not shown) and a grid of ALU units that process small programs in a SIMD
fashion. The shader makes use of the L1 data and instruction caches, texture
mapping unit and it’s associated texture cache as the programs are executed.
The output of the shader and the connection of the L1s to the L2s goes
via a crossbar The crossbar is connected to a variable number of memory
units, which contain the L2 cache, the ROP (fixed function graphics) and
the memory controller, which is connected to the external memory where the
framebuffer is stored. Most neighboring blocks are connected to each other,
so interconnections between blocks are not shown.

To get more detail about GPU architecture is challenging.
One of the most detailed lower level descriptions of how
the graphics algorithms and units inside a GPU interact with
memory, including the texture cache, is the description of the
Neon GPU architecture by McCormack et al. [3]. But the
technology used is quite dated, so some concepts are no longer
relevant. For more modern GPUs, Wong et al. [4] use extensive
benchmarking to determine the CUDA visible characteristics
of NVIDIA’s GT200 architecture. They determine character-
istics of the processing elements and the memory hierarchy.

On the topic of texture cache design, there is also little
literature. Hakura and Gupta’s seminal paper [2] gives the best
overview of the principles of a texture cache, including the



effects of data locality, texture blocking, and tiled rasterization,
all topics that we will revisit in this article.

To understand the requirements of a texture cache we first
need to look at the units in a GPU that impact the cache
functionality, that is it’s client, texture mapping, and the unit
that determines pixel ordering, rasterization.

II. TEXTURE MAPPING

Texture mapping is the process of taking image data and
placing it onto a surface. The image data is typically two
dimensional (2D), but can also be one and three dimensional
(1D, 3D). At each pixel on the screen the corresponding value
has to be found in the image data, commonly known as the
texture map. The individual elements in the texture map are
called texels (from TEXture ELements) to differentiate them
from the screen pixels. Each vertex of a triangle contains a
2D position on the texture map. These positions are called
texture coordinates and are usually denoted by u, v. Figure 3
shows a pixel in a triangle using its u, v coordinate to look
up the corresponding texel in the texture map which is in
s, t coordinates. The texture map texels are in their frame of
reference, s, t which ranges from 0 to 1 along the s and t
axis. The u and v coordinates typically range from 0 up to the
texture’s width and height, but can also go beyond to allow
effects such as texture wrapping. The texture coordinates are
calculated by interpolating values at each vertex, and then the
coordinates are used to look up the color which is applied
to the current pixel. Looking up a single color based on the
integer coordinates is called nearest filtering and results in
aliasing. To avoid this aliasing, filtering of neighboring pixels
is used. The first type of filtering is bilinear, in which linear
interpolation of neighboring pixels in the X and Y dimensions
is computed. This smooths out the texture mapping, but does
not handle minification of the texture, where many texels
should be averaged into the current pixel.
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Fig. 3. Texture mapping involves finding the corresponding color in a 2D
image map in s, t coordinates using the texture coordinates u, v at the current
pixel in a triangle.

To handle minification a technique called mipmapping [5]
is used. Mipmapping prefilters the texture map into a series
of maps that are half the dimensions in X and Y . The
sequence of maps can be stacked in a pyramid from the
largest map at the bottom to the smallest map at the top.

Figure 4 shows a mipmap stack with the highest resolution
image at the bottom, level 0, and subsequent levels going
up, each half the resolution of the previous level. Trilinear
mipmapping works by finding two neighboring maps in the
pyramid, and performing bilinear filtering on each map and
then a linear interpolation between the two values, resulting
in trilinear filtering. This can be seen in Figure 4 where level
0 and level 1 are selected and a neighborhood of 2× 2 pixels
are found for bilinear filtering on each level. To select the
two neighboring maps, the Level Of Detail (LOD) must be
calculated. The LOD is calculated by taking the difference in
texture coordinates between neighboring pixels in a 2×2 grid.
More complex filtering such as anisotropic filtering [6] is used
in texture mapping, but it is typically done using a sequence
of bilinear filtering operations making its requirements on the
texture cache similar to bilinear filtering.
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Fig. 4. A sequence of images making a mipmap pyramid. Level 0 is the full
resolution image and each subsequent level is a half size averaged version
of the previous level. Texture filtering first calculates the level of detail, d,
which selects two levels of the pyramid and then performs trilinear filtering
between the two layers.

III. RASTERIZATION

Rasterization is the process of breaking up triangles into
screen pixels. Triangles are the basic primitive used by GPUs,
since by limiting the rasterization process to using triangles,
the algorithm can be optimized for implementation in custom
hardware. The simplest order in which to generate pixels from
a triangle is to move down the edges of the triangle and scan
across each horizontal line from one edge to the other. While
this is straight forward, it is not the most optimal and so
the order is changed to improve performance as presented in
Section V.

GPU rasterization also groups pixels into 2 × 2 blocks
of pixels, commonly referred to as a quad. Each pixel
stores it’s u, v coordinates and the texture gradients,
δu/δx, δv/δx, δu/δy, δv/δy, are calculated by taking the dif-
ference of two neighboring pixel’s texture coordinates. These
gradients are then used to calculate the LOD as specified in
the OpenGL specification [7]. If a triangle does not cover the
entire quad, the GPU still pads out the quad with null pixels,
which occupy space in the GPU compute engines. This leads
to single pixel triangles being very inefficient for GPUs, but
solutions to packing these pixels together, when they are part



of a triangle strip/mesh, have been proposed by Fatahalian et
al. [8].

More details on texture mapping and rasterization can be
found in Akenine-Möller et al.’s book [9].

IV. TEXTURE MAP MEMORY

The order of texels accessed in a texture map can have
any orientation with respect to the rasterization order. If the
texels in a texture map are stored in memory in a simple linear
row major ordering, and the texture is mapped horizontally,
then cache lines will store long horizontal lines resulting in
a high hit rate. But if the texture is mapped at a 90 degrees
rotation, then every pixel will miss and require a new cacheline
to be loaded. To avoid this orientation dependency textures
are stored in memory in a tiled, or blocked [2] fashion. Each
texture is broken into a series of n×n tiles and all the texels
in the tile are stored before moving onto the next tile.

Hakura and Gupta [2] found that higher cache hit rates are
achieved when the tile size is equal to cache line size for cache
sizes of 128KB and 256KB and tile sizes of 8×8 and 16×16.

Another important aspect of memory usage is the concept of
working set size. The working set size to render one frame is
proportional to the resolution of the image according to ’The
Principle of Texture Thrift’ [10]. Hakura and Gupta [2] found
that if the working set fits into the cache then miss rates are
further reduced.

Texture caches are read only since the typical usage of a
texture is for it to be placed onto a triangle. But computing
the values that go into a texture map using the GPU has
become common place and is called “render to texture”. So
even though a texture cache is typically read-only and the
memory buffer in the GPU’s main memory is tagged as read-
only, it can also be changed to writeable. If a texture map’s
state is changed to writeable, all on-chip memory references to
that texture must be invalidated and then the GPU can write
to the texture. A simpler brute force method which flushes
all caches in the GPU, can also be used. This invalidation of
caches is required to ensure that the many specialized caches
in the GPU, such as the texture cache, are maintained in a
coherent state.

V. TILED RASTERIZATION

Similarly to tiling for texture maps in memory, tiling also
improves the access order of texture data when used for
rasterization. A simple rasterization process could generate
pixels in a row major order, starting at the left hand side
of a triangle and generating pixels across the row to the
right hand side. For very large triangles a texture cache could
fill up as pixels are generated across a horizontal span and
on returning to the next line find that the texels from the
previous line have been evicted from the cache. This horizontal
rasterization results in texture fetches that vary in terms of
spatial locality across the width of the triangle. To improve
this spatial locality, tiled rasterization is used instead. Tiled
rasterization divides the screen into equally sized rectangles,
typically powers of two, and completes the rasterization within

each tile before moving to the next tile. The order of texture
access can be further improved by using hierarchical orders
such as the Hilbert curve [11] or Z-order.

VI. TEXTURE CACHE ARCHITECTURE

The role of the texture cache has changed with the intro-
duction of read/write L2 caches in GPUs such as NVIDIA’s
Fermi [12] and AMD’s GCN [13]. Hakura and Gupta [2]
presented single level, per pipeline units and considered cache
sizes of 4KB, 32KB and 128KB. In terms of cache size, the
modern GPU texture cache L1 is approaching a similar size,
for example it is 12KB in the NVIDIA Fermi and 16KB for the
AMD GCN. The texture cache changed into a two level cache
as seen in the NVIDIA G80 architecture [14]. The G80 had an
L2 cache distributed to each DRAM channel. The L2 is then
connected to the texture L1 units via a large crossbar as shown
in Figure 2. The per memory controller L2 is now a common
GPU memory architecture design. By placing one unit of the
L2 at the memory controller the GPU can be easily scaled
in terms of memory controllers independent of the number
of L1s and hence shader units. When designing the memory
hierarchy, making this L2 cache a linear memory mapped
cache is better than customizing it for texture. This allows
the L2 cache to have more than just texture as a client and
has made for a more straightforward transition to the modern
read/write L2.

Starting from the top level GPU architecture in Figure 2,
we see that the texture cache is located between the texture
filtering unit and the crossbar. The internal architecture of a
texture cache is shown in Figure 5. Boundaries between blocks
in a GPU are arbitrary, so some of the operations could instead
be placed in a texture filtering unit, but we show them here
to get a better understanding of what could be required of a
texture cache.

The texture cache is designed to connect well with the
texture unit. The texture unit requires 4 texels in parallel
in order to perform one bilinear operation, so most texture
caches are designed to feed these values in parallel in order
to maintain full rate for bilinear filtering. Most GPUs have
multiple texture filtering units running in parallel, and the
texture cache must supply these with texels. To do this the
texture cache uses multiple read ports, or else replicates the
data in the cache.

Texture filtering and texture cache units have to support
every format that is offered by the graphics APIs. Which
formats are supported for custom hardware texture filtering can
vary greatly depending upon a GPU vendor’s best estimate of
what requirements are important for current and future games.
The alternative is to support texture filtering in the shader at
much lower performance. If a format is only supported by
the texture cache, then it could be required to do the final
formatting as the value does not go through the texture filtering
unit. Texture formats can include bit widths from 1 to 32 bits
and number formats including integer and floating point. If
these formats are supported, then final formatting can be done
by the texture cache instead of the texture filtering and the
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Fig. 5. An overview of a texture cache architecture. The texture mapping
unit provides texture coordinates for which a memory address is calculated.
The address is sent to the tag compare to determine if the data is in the cache.
If the data isn’t in the cache, a request is sent via the crossbar to the L2 cache.
Any state associated with the original request is sent into a FIFO to return
to the texture mapping unit with the texel data. Once the data arrives in the
cache, or is already available in the cache, it is returned to the texture mapping
unit. If the data is compressed, it is decompressed and any formatting that is
required is done.

texture cache can include logic to shift bits and convert texels
into the correct formats for the shader.

A. Texture compression

Texture compression [15], [16], [17] is an important com-
ponent of ensuring texturing performance by reducing texture
bandwidth. Since decompression of the texture happens some-
where between reading the compressed texture from memory
and giving texels ready for texture filtering to the texture pipe,
texture compression can sometimes be found within the texture
cache design. Texture decompression is usually after the cache
since storing compressed data in the cache means more texture
data gets cached and the cache is much more effective. For
example, the most popular texture formats S3TC [18] (DXTC
in Direct3D) and ETC [19] (used in OpenGL ES), have a
6:1 compression ratio for RGB textures. Another important
aspect of texture compression is that the logic must be small.
This is necessary as wherever the logic is located it will be
replicated many times making any added complexity very
expensive. This has lead to a very slow change in texture
compression formats with new ones only recently being added
in Microsoft’s Direct 3D 11.

VII. PERFORMANCE

Texture cache design is heavily dictated by performance. It
is important that a texture cache can sustain the full external
memory bandwidth with texture data to the texture unit. An

important design target for the texture unit is to be able to
perform one bilinear filtering operation per clock cycle, which
requires 4 texels. This means that the texture cache must be
able to deliver 4×32 bits per clock to the texture unit. For an
L1 cache with 4 texture unit clients it is 4 times that. Given
a target hit rate determined from a cross section of current
games, an input bandwidth to the L1 can be determined and
a corresponding output bandwidth from the crossbar can be
determined. This output must then be sustained by the L2
cache as well.

When a cache miss occurs and a new cache line must be
read in from off-chip memory, a large latency is incurred.
Igehy et al. [20] propose to hide this latency by precomputing
the addresses required and pre-fetching the cachelines. Any
associated texture filtering state that is needed when the texel
data is returned to the texture filter is FIFOed while it waits
for texel data to be returned from the cache. This means that
texture accesses that hit in the cache must wait in the FIFO
behind others that miss. A FIFO is used because the graphics
pipeline ensures that triangle submission order is maintained,
so allowing some texture fetches to complete early would
not have a large impact on performance. FIFOing the texture
requests leads to long latencies since modern GPUs have
several hundred clock cycle latencies from the time a memory
request is made in the shader pipe until data is returned and
the shader can resume. These long latencies are hidden by the
GPU running many thousands of threads [14], which enable
the GPU to switch to other work immediately and ensure the
computational units of the GPU are kept active while some
threads wait for memory to load. These threads run on the
shader with all register space allocated in shader memories,
so that single cycle thread switching is possible ensuring no
cycles are lost waiting for memory requests.

While the basic principles of cache performance presented
by Hakura and Gupta [2] haven’t changed, many of the
parameters have changed dramatically. For example, they
worked with a total texture size of between 1 and 56 MBs,
compared to modern PC games which could easily use half of
the available memory on PC cards, which range up to 3GB.
Most major games are cross-platform titles and hence limited
by the memory of the consoles, which is around 512MB. A
game could easily use half of that memory for texture. This
leads to higher resolution textures in modern games compared
to what Hakura and Gupta worked with. At the extreme end,
technology such as id Tech 5’s virtual texturing is able to
support 128, 000 × 128, 000, although this technology only
uses a small amount of GPU memory for swapping small
texture tiles in and out. This increase in texture storage leads
to an increase in number, size and resolution of textures.
Textures on mobile platforms have similar limits with high
end smart phones also having 512MB of memory. But mobile
platforms are more impacted by power usage and if a lot of
texture memory is used, the power usage can be increased.
In the future the usage of texture memory will follow the
technology, as memory gets bigger, so will texture usage. For
the mobile platforms a steady growth can be expected. But



for the consoles a new generation is expected soon, and will
bring with it larger memory space for textures, most likely
enabling console games to have more texture than mobile
games. This disparity in available texture memory, which can
occur between different PC graphics cards, can be handled
by using higher resolution textures when more memory is
available.

The amount of repeated texture has decreased over recent
years in games. The test scenes used by Hakura and Gupta
had very large triangles in terms of pixel area (41, 294, 1149,
186 pixels). Most modern games have pixel areas per triangle
of less than 10 pixels, driven in part by modern tessellation
engines such as in NVIDIA’s Fermi [12]. The current limit to
game triangle size is the GPU’s quad, which means that going
below 4 pixels severely impacts GPU shader utilization.

Cache performance is also impacted by associativity.
Hakura and Gupta showed that 2-way set associativity worked
well to reduce cache line conflicts between mip-map layers,
but modern applications often use many textures per pixel, and
higher levels of associativity are required. For example Wong
et al. [4] find the associativities of the GT200 to be 20-way
for the L1 cache and 8-way for the L2 cache.

Modeling the texture cache and the GPU’s memory hier-
archy can help to better understand it’s performance. While
this is difficult, early work shows that this can be done for
applications such as real-time ray tracing [21].

VIII. GENERAL PURPOSE GPU

In recent years, using GPUs for general purpose parallel
computing has become common place [22], and is typically re-
ferred to as GPGPU. Texture mapping is part of the dedicated
hardware designed for graphics rendering, but it can also be
accessed in GPGPU languages such as OpenCL [23] by using
the image and sampler objects. In modern read/write L2 cache
GPU architectures, the texture cache doesn’t offer a great
advantage over the shader load/store L1 cache, except that it
is an additional cache which is otherwise unused. The texture
filtering custom hardware can be put to good use in GPGPU
applications, if a good match for the filtering operations can
be found.

GPGPU is pushing GPU architecture into a more general
direction, as evidenced by the introduction of the read/write
L2 cache. Other features which are not used by graphics are
also improving in GPUs, such as atomics, 64-bit floating point
performance and support for Error Correcting Codes (ECC).
These features while desirable for GPGPU, take up chip area
for graphics, making the GPU more expensive. A solution
to this problem is to make two differently configured GPUs
from the same architecture, one configured for graphics and
one configured for GPGPU.

IX. GPU TRENDS

The consistent economic conditions that existed in the first
decade of the twenty-first century and drove the GPU from
a simple graphics display adaptor into a massively parallel
device, are not expected to continue in the second decade.

With CPU and GPU integration becoming more mainstream,
and with an increase in the graphics performance of portable
devices, the dominant graphics device will be an integrated
one. At the high end the GPU is driven by a small market
for high end graphics and GPGPU. Today neither market is
large enough to fund the research expense required for high
end GPUs. The expense still requires the mid-range graphics
market. So it has been risky to produce chips just for GPGPU,
but this is starting to change with the continuing growth of the
GPGPU market. The console market on the other hand takes a
GPU design and keeps it constant over many years, typically
around 5 years. This allows custom GPUs to be designed
for a particular console without the need for all the GPGPU
features. If the GPGPU market can sustain the development of
a high end device without graphics, then these devices could
be built without texture caches. If texturing performance could
be made to be acceptably close to dedicated hardware, then it’s
possible that texture hardware and the associated texture cache
could be removed from GPUs. But graphics performance is
still an important factor for GPU sales and cannot be neglected
while two strong competitors exist. So even though different
markets require different memory architectures, GPUs will
continue to be built for both markets and a texture cache will
continue to be a necessary unit for high performance.
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