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Figure 1: This paper presents a method for automatically constructing 3D meshes from a single piece of concept artwork. This figure
shows how a typical 2D concept image (a) is separated from the background (b) and how a bent skeleton (c) is generated and used to create
polygonal shells (d). The profile view (e) shows clearly how the shells create a 3D representation of the input image. The final model (f - h)
is mapped with textures based on the initial concept artwork and contains bone and vertex weighting information appropriate for animation.
Details such as the hair and ears are correctly transformed into 3D, and mechanical objects such as the gun and knife have sharp edges.

Abstract

In this paper we present a new method for automatically construct-
ing 3D meshes from a single input image. With the increasing con-
tent demands of modern digital entertainment and the expectation
of involvement from users, automatic artist-free systems are an im-
portant step in allowing user generated content and rapid game pro-
totyping. Our system proposes a novel heuristic for the creation
of a 3D mesh from a single piece of non-occluding 2D concept
art. By extracting a skeleton structure, approximating the 3D ori-
entation and analysing line curvature properties, appropriate cen-
trepoints can be found around which to create the cross-sectional
slices used to build a final triangle mesh. Our results show that a
single 2D input image can be used to generate a rigged 3D low-
polygon model suitable for use in realtime applications.
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1 Introduction

Content creation in modern entertainment is one of the most time
consuming components of a project. Our research aims to reduce
the workload of content creators by providing tools that allow easy
integration of concept and user generated artwork into a game. Our
research deals specifically with low to mid resolution 3D content
that is useful for rapid prototyping or applications such as mobile
games.

The work in this paper focuses on removing the need for user guid-
ance during 3D reconstruction and producing a production-ready
model that includes required standard properties such as UV tex-
ture coordinates and bone influence values. The main contribution
of this paper is an end-to-end system with no user interaction, opti-
mised to produce the best results across a range of input. This pa-
per also demonstrates a shell-based meshing algorithm that allows
for the ability to change the cross-sectional profile of the model
based upon the type of character and even the type of limb in the
model. Additionally, this paper contains a low complexity auto-
matic skeletonization algorithm for raster images, with an optional
user-controlled complexity parameter.

The algorithm converts 2D outlines to 3D meshes using a heuris-
tic that balances the skeletal relevancy of the mesh against reduced
visual artefacts, using line style metrics to influence the 3D style
of the generated mesh. By extracting a skeleton structure, approx-
imating the 3D orientation and analysing line curvature properties,
appropriate centrepoints can be found around which to create cross-
sectional slices and build the final triangle mesh as seen in Figure 2.
To ensure this technique remains widely applicable, only a single
input image is required.

Our results show that a single 2D input image can be used to gen-
erate a rigged 3D low-polygon model suitable for use in realtime
applications.

2 Previous Work

Single-View Modelling has long been a difficult research problem
and has received a lot of attention. Three dimensional forms that
appear obvious to an experienced human observer are difficult to
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Figure 2: Front (b) and side (c) views show the 3D mesh automat-
ically generated by our algorithm using a single piece of concept
character art (a).

process without contextual knowledge, and the breadth of existing
research showcases many different approaches to the problem of
extracting an implied 3D structure.

Two survey papers [Cook and Agah 2009] [Olsen et al. 2009] give
a comprehensive look into the state of the art. Papers are classi-
fied by the type of system, the techniques used, and the tools avail-
able to artists. Practical solutions often aim to augment an artist
by giving them more control over depth while sketching [Grimm
and Joshi 2012] or the ability to create other 3D properties from
a 2D viewport [Yotam Gingold and Zorin 2009]. Other avenues
of research match templated patterns [Yang 2006] or use photos
[Fang and Lee 2012] [Liu and Huang 2000] as a starting point. A
large number of papers cover reconstruction of geometric shapes
such as those found in technical drawings, requiring shapes with
clearly defined planes and polygonal shapes [Suh 2006] [Fang and
Lee 2012] [Naya et al. 2003]. Mitani et al. [2000] attempt to enlarge
the potential application of this by warping constructed surfaces to
better fit non-linear shapes, however use of this technique is lim-
ited in practice and does not suit the concept art style of our input
imagery.

A different approach is shown in the prototying modelling research
by Tai, C. et al. [2004]. Their method uses both the silhouette and a
skeleton to produce an analytical convolution surface with a circular
cross section. The silhouette and skeleton data are also commonly
used by single-view image-based reconstruction techniques such
as Interactive 3D Modelling Using Only One Image by Liu S. &
Huang Z [2000] who produce a surface via Delaunay triangle sub-
division. Wang et al. [2003] use the silhouette to accurately modify
an existing character mesh to match a supplied image for use in re-
tail applications such as virtual clothes fitting. While the mesh re-
sults are considerably better quality than constructed results due to
their origin from a template mesh, this advantage degrades quickly
when the source character does not match the skeleton topology of
the template.

’Smoothsketch’ [2006] is a recent and effective technique that esti-
mates hidden edges for organic geometry and reconstructs the mesh
based upon an inflation algorithm that uses a combination of user
set parameters and the width of the drawn 2D shape. Full 3D char-
acter reconstruction is demonstrated by Mao et al. [2006] with the
aim of speeding up a development workflow, prioritising user speed
over quality.

The majority of similar work is based in artist-driven systems or
interfaces, often based upon sketched lines. Single-View Sketch
Based Modelling [2009] is a recent paper that uses a similar method
to the one we propose, albeit to solve a different problem. Al-
though targeted towards a user-based system, their algorithm uses
only outlines without needing image content. Similarly, Olsen &
Samavati [2010] propose an outline inflation method to good result,
showing that it is possible to create high quality models from a sin-
gle view. Their method also allows artist control over the distance
function, enabling a custom cross-sectional profile. Sketch-based
construction methods such as Teddy [1999] and FibreMesh [2007]
often allow input from multiple views, although Andre & Saito aim
for a single-view approach where the user is not expected or re-
quired to use multiple views during model construction. Each of
these papers take a different approach to surface generation, with
FibreMesh using implicit surfaces, Teddy using skeleton based re-
altime triangulation, Olsen & Samavati use a distance function, a
paper by Nasri, Karam & Samavati [Nasri et al. 2009] uses subdi-
vision surfaces, while Andre & Saito extrude appropriately sized
slices along a curved centreline.

The common feature to these sketch-based interfaces and most of
the aforementioned 3D model creation algorithms is their use of
artistic or user guidance during the creation process. This guidance
ranges from limited manipulation of variables through to specifi-
cally formatted input such as stroke data records, something that is
unavailable for our input images. In this paper we propose a syn-
thesis algorithm that runs automatically without intervention. This
is achieved through additional steps and by optimising parameters
to produce the best results across a range of input

For organic mesh reconstruction, solutions using swept shells gen-
erally met with success despite being susceptible to noise and rely-
ing on the input having a clear primary axis. Swept shells allow the
most influence over the cross section of the model and this approach
was chosen for use in this paper as it best supports our aim of form-
ing the surface appropriately based upon stylistic traits of the input
image. Extending the capabilities shown by Oslen & Samavati, our
system allows for different cross-sections over the whole model.

Our system takes a single view input image and outputs a rigged
and textured mesh. By focusing on characters we can also make
a number of assumptions about the content and produce a higher
quality output than a general solution can achieve.

3 Algorithm Overview

Our core algorithm analyses a single piece of concept artwork and
approximates a skeleton based on the outline. This is then used
to construct a rigged triangle mesh appropriate for use in realtime
graphics applications. Manually creating 3D models from 2D con-
cept art often requires time and technical skill, and much of the
work in this paper focuses upon automatically performing the steps
in this pipeline to allow faster prototyping and better integration of
user generated content.

To generate a 3D mesh our algorithm requires one input image with
the three assumptions that: the background is not heavily textured;
the character is oriented in general toward the front; and there is
minimal self-occlusion or touching between the character’s limbs.

The process begins by extracting the concept image from any sub-
tle background shading by palletising the image and selecting the
largest connected area as the background. Everything else is con-
sidered to be the character, and a polygonal outline is generated
using the potrace vectorization algorithm [2003]. This outline can
be seen in Figure 3 and is used for both skeleton extraction and
mesh creation.



Figure 3: Character outline generation using image palletisation
and vectorization. The generated polygonal outline is shown in red.

A skeletonization process based upon the work of Willcocks &
Li [2012] is applied to the image, balancing two core iterative op-
erators to extract a skeleton with the appropriate complexity and
positioning. We modify the process by adding an extra term based
upon the image content that aligns the generated skeleton better
with respect to the shapes inside the image.

The 3D mesh is created by generating arcs (also known as shells)
from the outline in toward the centre while the ends diverge in the
depth plane. Our method changes the cross-sectional profile based
upon the characteristics of the outline. The positioning and size
of these shells is critical to creating an appropriate mesh. Bone
rigging and skinning for animation is performed on the mesh, and
the original concept image modified and used as a texture.

This process creates a 3D triangle mesh representation of the orig-
inal 2D concept image. The full algorithm is described in the fol-
lowing 3 sections, and the results displayed in section 8.

4 Skeletonization

Our method for creating a 3D mesh relies on access to a skeleton
that represents the underlying image structure as well as possible.
Many skeletonization algorithms exist, and producing the best re-
sult for arbitrarily shaped character images requires selecting the
best approach.

Medial transforms are perhaps the most well established method
for skeletonization, having been proposed in 1967 [Blum 1967] and
tweaked in various different ways up until the present [Montero and
Lang 2012]. Skeletons can also be extracted by joining bi-tangent
circles or maximal discs within a shape [Arcelli and di Baja 1993],
or through the use of Delaunay triangulation to create a chordial
axis [Prasad 1997].

The method used in this paper is a point contraction algorithm
adapted from Feature-varying Skeletonization [Willcocks and Li
2012] and using elements from Skeleton Extraction by Mesh Con-
traction [Au et al. 2008]. Although designed for 3D meshes, this
type of iterative and modularised approach allows easy adaptation
of the algorithm through the addition of extra terms. This is impor-
tant because overlapping components within an image don’t create
an outline, necessitating the addition of extra influence values that
use a gradient field to better align the skeleton with the actual image
contents.

4.1 Soft Skeleton

The first requirement of a character skeletonization algorithm is that
it produces a visually correct topology that imitates the structure
implied by the outline and not just the geometric centre. To achieve
this we adapt the 3D smoothing and merging steps from Willcocks
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Figure 4: Without weighting (a), the extra width of the shoul-
der and clothes causes discontinuities in the contracted polygon.
Weighting the encroachment step by the gradient of the low fre-
quency component of the image (b) causes the skeleton structure to
be influenced not just by the outline but also by the contents of the
image (c). Image (b) shows ∆Gx,y encoded in the red (vertical)
and blue (horizontal) channels.

& Li’s paper to run on 2D polygonal shapes, and then add a third
term that allows image contents to influence the skeleton genera-
tion.

The process starts by creating a polygonal bounding hull of points
P = {p0...pi...pn} based on the image silhouette. A smoothing
step contracts this bounding hull toward its spatial centre remov-
ing local noise at the cost of increased density and reduced fidelity.
The standard operator placed each point at the average of its un-
transformed neighbours, however the increasing point density after
a smoothing step causes convergence issues, as the smoothing step
is dependant on point density while the encroachment step is not.
Therefore we introduce a simplification term into the smoothing
step to create the following density-conserving operator:

{
p′i =

pi−1+pi+1

2
if ||pi−1 − pi+1|| < ω
otherwise pi

(1)

Where ω is a threshould distance calculated as:

ω =

∑n
i=0 pi − p(i+1)modn

n
(2)

and p is a set of consecutive points containing n items.

While Willcocks & Li use an iterative merging operator, we per-
form a single merge pass at the end to create a rigid skeleton. This
is necessary because our mesh creation process relies on extracting
the two-sided curving centerline data before merging but after the
full contraction is complete. To give the same effect, the iterative
merge operator is replaced by an encroachment operator that moves
all points ’inwards’ along their local normal:

p′′ = p′+ ⊥
(
p′i−1 − p′i+1

)
G(p′) (3)
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Figure 5: Alternating between the smooth and encroachment steps
condenses the outline (a) to a two-sided soft skeleton structure. In-
ternal lines (b) show the position of P halfway through the contrac-
tion process. The coloured lines show the division of bone segments
for surface curvature measurement in Section 5.

Figure 6: Examples of the finished skeletonization process, show-
ing data derived from the red outline. The skeleton is drawn in
green, while the nodes are linked in blue

where p is a point in P , the outline polygon, and G is a frequency
term as explained below. If the p′′ lies outside of P , the result for
that point is discarded and the original position used.

This iterative encroachment step reduces spatial density and con-
solidates important geometric features, however it is susceptible to
local noise. The term G is calculated using Equation 4 so that lo-
cal image complexity is used in addition to the image outline to
ameliorate noise and create the skeleton more correctly. Figure 4
shows the difference in skeleton placement when local complexity
is taken into consideration. While not applicable to all input im-
ages, the addition of this step improved results on average by 1.23%
when compared to the basic outline using the evaluation procedure
in Section 7.

k(x) = e
− x2

(2r/3)2

G(x, y) =
∑

−r<x′<r
−r<y′<r

k(x′)k(y′)
[
I(x+ x′, y + y′)− I(x, y)

]
(4)

where r is the radius of the kernel, in our tests chosen to be one
100th of the image diagonal.

Figure 6 shows the results of both skeletonization stages.

5 Mesh Construction

5.1 Establishing Orientation

Concept artwork is often drawn off-centered, such as in three-
quarter view, and therefore we cannot assume a front-facing ortho-
graphic view and need to establish the initial orientation to correctly
build the mesh. This can be done based upon the centerline and the
ratio of the extent of the armature. If the skeleton topology is found
to be symmetrical using symmetry-axis decomposition [Pantuwong
and Sugimoto 2012], we make the assumption that the character it
represents is also symmetrical. This can be verified by comparing
the ratio of extent of each pair of matching limbs. If the charac-
ter is posed, this ratio will be different for each pair. If Equation 5
holds true for the skeleton, the average extents are calculated using
Equation 6 and re-orientation is performed.

ji − (ji)||r
ji′ − (ji′)||r

=
ji+...n − (ji+...n)||r
ji′+...n − (ji′+...n)||r

= ... (5)

a =
1

n

n−1∑
v=0

j(i+v) , b =
1

n

n−1∑
v=0

j(i′+v) (6)

where j is a set of joints in the skeleton, including end points,
and i and i′ represent a pair of topologically symmetrical points
in regards to the centerline r, where r is calculated as the best-fit
line for all j. j||r represents a projection of j onto r, while a and b
are calculated to be the average extents for each side of the skeleton.

For a front-facing image we can estimate the orientation by project-
ing the horizontal offsets back to an implied camera with respect to
the centerline. We select the distance to the camera to be 70cm,
which is the recommended viewing distance from a monitor and a
value we assume to influence the average perspective for digitally
drawn concept artwork. The screen’s internal DPI is used to convert
the pixel based bone lengths into centimetres, which can then be
used to determine the orientation of the drawing using Equation 7.

θ1 = tan−1

(
a′

70

)
, θ2 = tan−1

(
b′

70

)
β = tan−1

(
sin(θ1)sin(θ1 + θ2)

sin(θ2)− sin(θ1)cos(θ1 + θ2)

)
(7)

where a′ and b′ are the average skeleton extents generated using
Equation 6 and converted to centimetres, and β is the calculated
angle of the model.

Determining the orientation with this method fails where a topo-
logically symmetrical character has artificially stunted limbs or if
the artist did not draw in perspective, however the failure case is a
zero orientation (α = 0) and has no negative impact on the surface
generation stage. Error is also introduced by drawing and sketch-
ing inconsistencies, although averaging results for all symmetrical
node pairs reduces the impact of this.

5.2 Surface Generation

Meshes are created using a modified ’lathe’ procedure, where limbs
and body components are constructed by creating appropriately
sized rings around the skeleton. To begin creating a mesh, arcs
are created from the boundary in to their local centre. Equation 8
defines two possible local centres, each with different advantages.



Figure 7: This diagram shows the best and worse case placing
for the arc endpoints k and c given certain points p1..2 on the out-
line (red). p1 shows a good result for k1, whereas c1 would create
overlapping arcs perpendicular to the outline normal. p2 creates
the opposite result where c2 is a useable local centre but k2 would
create arcs that lay outside of the outline.

ci = get closest point on S to pi
ki = intersection of ni and S (8)

where S is the bent skeleton calculated in Section 4, n is a set of
normal vectors calculated from the edges of the outline polygon p.

As can be seen in Figure 7, the difference between the arcs created
by these two methods can be quite significant.

k acts better as a local centre because it creates a more evenly dis-
tributed mesh at corners and looks better visually. Due to the use of
a projected normal small variances in the outline polygon can cause
large discontinuities in k and introduce visual artefacts. The higher
the noise, the less influence k should have over the final solution.
In contrast, c will always provide a point that can be used but intro-
duce banding artefacts by causing groups of consecutive points to
have the same local centre.

The accuracy of k also decreases with distance and in some edge
cases the normal can be almost tangential to the skeleton, creating
intersection points a considerable distance away from the original
point. To offset this, an additional term is created that has no influ-
ence on the balance of the terms when the distances are similar, but
favours c exponentially when the distance increases.

ωd =
||ci − pi||

2 ||ki − pi||
(9)

where pi is the point on the outline.

A similar inaccuracy occurs in cwhen it is offset and causes the cre-
ated slices to diverge too far from the outline normal. Equation 10
sets up a scaling term for this.

ωα = ̂ci − pi · ni (10)

where pi is the point on the outline and the result ωα is clamped in
the range [0 : 1].

The final property that affects the choice of centrepoint is the noisi-
ness of the curve, which is calculated using Equation 11. The more
noise there is in the line, the less accurate properties based upon the
line normal or tangent will be.

e = ni −
i+10∑

k=i−10

nk (11)

Figure 8: This image shows the generated arcs and shells for a ba-
sic skeleton extracted from the image outline. The weighted centre-
point creates segments that are not overlapping and merge correctly
at corners and ends.

where n is a set of normal vectors calculated from the edges of the
outline polygon.

Weighting our choices of centre position, the final slice centrepoint
is calculated using Equation 12.

p′ = ce(1− ωd)ωα + k(1− e)ωd(1− ωα) (12)

After calculating the best centrepoint around which to construct the
slices, the mesh itself is created by extruding a cross-section along
the skeleton. Creating a perfectly round, centred mesh is not always
appropriate, so we need to look at the type of character and char-
acter material implied by the properties of the silhouette. This can
be done on a local level by analysing the separated line segments
as shown in Figure 5. One of the best profile indicators is the line
curvature and the number of sharp corners in parts of the image.
Equation 13 generates points that define the cross-sectional profile
to loft along the skeleton. The terms in the first line create a round
surface, which is blended with the square surface in the second line
according to the line sharpness:

vi=−π→π =
∣∣∣∣p′ − p∣∣∣∣ (cos(i) + sin(i))s (13)

+ (1− |i|
π

)(1− s)

where s is between 0 and 1, and calculated thus:

ct =

n−1∑
w=0

|vw · vw+1| , ρ =
d

40

cµ(w) =

w+ρ−1∑
x=w−ρ

|vx · vx+1|
n

ct
(14)

s =

n−1∑
w=0

|vw · vw+1 − cµ(w)|
ct

(15)

where ct and cµ are the total and average curve calculated using
v, the set of n normal vectors from line segment L. ρ is the point
density calculated using the largest bound of the outline polygon d,
and s is the segment sharpness which is clamped in the range [0 : 1].

Equation 14 calculates the average bend of a line segment. . Be-
cause the curvature is calculated using an average, the size of the



Figure 9: Examples of mesh generation showing cross-sectional
adjustment based upon line curvature and with respect to sharp
corners.

input image affects the result and the density term ρ is used to adjust
for this. The best value for this term was found using the iterative
evaluation in Section 7.

A straight line segment will always generate a value of 0, while a
value of 1 signifies that the line is equal to the average curvature in
the outline. Values higher than one are clamped. Equation 15 cal-
culates the sharpness of a line segment. Sharp lines indicate that the
concept art is non-biological or at least polygonal in nature and the
generated mesh should contain fewer round faces, whereas curved
lines suggest that the generated mesh should be more organic. Fig-
ure 9 shows how this works in practice.

Due to the centrepoint weighting applied in Equation 12, the mesh
slices are unlikely to join seamlessly across centrelines and one
concave polygonal hole will be present on each side. These are
characterised by long thin segments and numerous branches, and
can be filled using any of the standard polygon fill methods such as
monotone polygon decomposition [Mark de Berg and Schwarzkopf
2000] or Las Vegas triangulation [Clarkson et al. 1989]. In our im-
plementation Ear Clipping [Eberly 1998] is used, and can be op-
timised significantly by removing the ear search stage. Sections
adjacent to end points from the skeleton will always be polygonal
ears and can be used to start clipping.

When compared to the worst case performance in Figure 7, shells
created with the weighted centrepoint appear more natural and are
free of artefacts. Figure 8 shows a typical wireframe generated from
skeleton and outline data.

Even with adjusted centrepoints and consideration to line curvature,
there remain situations where the mesh generation will be less than
ideal. When a mesh is generated near corners that have an acute
angle caused by straight or convex lines, the local midpoints may
be distributed a long way apart. This causes the polygonal fill to
create a large flat ’ear’ [Eberly 1998] that will not deform correctly
with skeletal animation. A similar situation occurs at the join be-
tween thin outlines and larger objects they are attached to, where
neighbouring arcs differ greatly in size. Both of these issues could
be solved by inserting extra arcs where needed. However placing
these arcs is a non-trivial task, and due to the fact visible artefacts
are rare it is left unsolved.

6 Rigging and Texturing

In addition to mesh generation, practical use of a 3D model re-
quires an armature and texture coordinates. Numerous studies have
focused upon generating skeletons based upon existing meshes,
and several of these methods [Tagliasacchi et al. 2009] [Pantu-
wong and Sugimoto 2010] [Pantuwong and Sugimoto 2012] [Will-
cocks and Li 2012] extract structures similar to our curved 2D
skeletons. Other automatic skeletonization methods focus specifi-
cally on animation [Baran and Popović 2007] and deformation [Liu
et al. 2003] [Katz and Tal 2003] of the mesh, and even in-

clude skeletonization within the framework of sketch-based inter-
faces [Borosan et al. 2012].

Any of these methods could be used to create a new 3D skeleton
based upon the generated mesh, however we already have a 2D
skeleton generated during the mesh creation step and this can be
used to create the rigged mesh. Additional joints are created by
finding splits, merges, and inflection points in the soft skeleton and
connecting them according to the topology.

Unbent limbs in the source image make it difficult to identify joints
such as knees or elbows. This can be mitigated by looking at basic
contextual information. Long, non-branching, mirrored limbs that
are leaf nodes to the spine (found through symmetry-axis decom-
position in Section 5) are assumed to represent arms or legs and are
split to contain a middle joint. To allow for situations where this
assumption does not hold, a second check can be performed once
animations are transferred to the object. Joints that do not bend sig-
nificantly across any of the animations can be considered spurious
and removed.

The connecting 2D bones are then projected into 3D using the ori-
entation from Equation 7 and the mesh attached to the bone struc-
ture. Two common attachment methods are vertex groups [Ander-
son 2001] and bone envelopes [Foundation 2005]. While our under-
lying structure uses vertex groups so as to be easily used in realtime
applications, these groups are essentially calculated using bone en-
velopes based upon the generated armature. The influence of a bone
over a vertex is based on the distance to the bone and the surface
normal at the vertex, and is calculated in Equation 16.

pi = clamp(v ⊥ Bi)
di = ||v − ci||
αi = |ci − v| ṅ

si =
di∑4
n=0 dn

influencei = siαi (16)

where B[0..3] is a list of the closest 4 bones to the mesh vertex v
with normal n. Four bones are used as this is the influence limit in
many 3D engines.

Simple tests have shown that the projected 3D armature and the
vertex weighting generated by Equation 16 can be used in a range of
motions without significant artefacts. Motion retargeting [Gleicher
1998] [Hecker et al. 2008] can therefore be used to map existing
animations to our generated skeleton. Figure 10 shows an example
of this.

One of the largest underlying problems with this technique is that
creating an accurate skeleton from a single view requires contextual
awareness or image understanding based upon experience. This
results in certain cases that are unlikely to be processed properly by
our algorithm. Even including adjustments made based on image
content by Equation 4, large breaks or features in the image content
may not be reflected correctly in the skeleton because the silhouette
has the largest bearing on the final result. An example is an arm
that sits flush with the side of a body and is not represented by the
outline, and therefore does not contract in a way that would create
the new branches required to represent the arm correctly.

Images conforming to our initial requirements rarely contained
these problems and produced useable skeleton data. Once this in-
formation has been extracted correctly, all of the required data ex-
ists to generate the mesh.



Figure 10: An attack animation is applied to a generated model of a monster. The original positions and rotations are correctly transferred
and scaled to the appropriate lengths of the generated armature. Vertex mapping ensures the mesh follows the bone structure, including axial
rotations such as the twist of the spine.

(a) (b)

Figure 11: Border seam expansion is used to reduce artefacts when
mapping a texture (a) to the model. The red border indicates the
area that is visible on the model but due to antialiasing and the
influence of the background is the wrong colour. Expanding the
border by 10 pixels (b) means that every mapped pixel on the model
is correct.

Texturing a model with only one source image poses numerous
problems, many of which are beyond the scope of this paper. Nu-
merous papers deal with general pattern synthesis based upon small
sections of known texture [Hertzmann et al. 2001] [Cohen et al.
2003] [Paget and Longstaff 1998], or image background synthesis
for photo expansion or foreground removal [Vivek Kwatra and Bo-
bick 2003]. There is however little research into texture synthesis
for occluded projection or character-specific texturing. In lieu of a
better texture, we therefore use the original source image and per-
form a texture border expansion as seen in Figure 11. This removes
the seam mapping artifacts that are usually caused by sketch lines
or background colour creep from antialiasing. The generated detail
gives the model better quality when seen side-on.

7 Parameter Evaluation

Developing an end-to-end system without user interaction necessi-
tates a number of tradeoffs and the selection of ’magic numbers’
such as thresholds and bias needs to be done so as to produce the
best results across as wide a range of input as possible. Changes to
these numbers, as well as changes to the algorithm itself can often
be difficult to evaluate, and therefore a numerical evaluation was
used to determine the best system setup.

The evaluation uses a surface difference metric to compare the gen-
erated results with a number of 3D models created by an artist based
only upon the input image (in select cases, the input image was
generated from the artist-created model). A number of approaches
have been suggested for comparison of 3D models [Cignoni et al.
1998] [N et al. 2002] [Tang et al. 2009] and these share many of the
same ideas. Our evaluation compares both the hausdorff distance
and the averaged surface error metric outlined by Aspert, N et al.
and visible in Figure 12. Parameters such as those in Equation 15
are iterated across a range and the generated results compared for
15 model sets to determine the value that produces the best result
across the largest number of test cases.

(a) (b)

Figure 12: Evaluation of a generated model against a version cre-
ated by a 3D-artist using a surface error metric. Blue shows areas
of high correlation, while red shows areas of low correlation com-
pared to the generated model. In this model the hausdorff distance
is 8.95% of the largest bounding dimension, while the surface error
is 1.36% with σ = 3.2%

Figure 13: The complexity of the model is determined by the num-
ber of sections generated by the algorithm, and can in turn be used
to generate different LOD (Level of Detail) meshes for realtime ap-
plications.

8 Results

Our algorithm was designed to generate a low-resolution
application-ready 3D mesh from a single-view 2D concept artwork.
The processes focuses on front view character artwork and in this
respect it successfully generates useable 3D models that represent
the underlying artwork. The process is entirely automated, an out-
come that is important in contributing to the original goal of reduc-
ing creation time and artist workload. Our implementation is writ-
ten in javascript and the results in this section took approximately
20 seconds to generate from each concept image on a modern lap-
top (Intel Core i7 2.13GHz; 4GB RAM).

The process has been run with success on a number of different
datasets from different artists. Figure 1 shows a typical piece of



(a) (b) (c)

(d) (e)

Figure 14: Several steps illustrating mesh generation from concept
artwork. The concept artwork (a) is analysed and a bent skeleton
(b) used to produce swept shells (c) that form the final model. Per-
spective views from the top (d) and bottom (e) show that the correct
body shape is produced in 3D.

(a) (b) (c) (d) (e)

Figure 15: Comparing the front (d) and side (e) views of a model
show how the original concept art (a) can be stripped of dark bor-
ders and used to map the sides of the generated model. This figure
also shows multiple characters in the input image. While the result-
ing mesh (c) is still a good 3D representation, the lack of segmenta-
tion (b) means that animation and repositioning is unlikely to work
correctly.

character concept art and the resulting generated mesh. This is an
example of the best-case mesh generation, because the concept art
fits all the required criteria and does not contain any unusual shapes
that could cause artefacts. Figure 13 shows how the complexity
of the model can be adjusted to suit the needs of a realtime game
engine. Figure 15 shows a difficult case where the input image con-
tains two overlapping characters. Although they are not segmented
correctly, the 3D result is still a cohesive and useable mesh.

Some unique image details cause issues with mesh generation, such
as large thin cloth areas. Details that are often incorrectly repre-
sented by the model creation process include wings or feet with thin
membranes, cloth such as sails, or metal sheets. Our process does
not analyse image textures and cannot infer context, and therefore
these areas are given depth when they should remain flat. However,

(a) (b) (c) (d) (e)

Figure 16: Two failure cases demonstrating concept images that
produce suboptimal results. Row 1 shows the results of an image
containing self-occlusion and image holes. The outline (b) is only
created around the outermost limbs, and therefore neither the skele-
ton (c) nor the generated mesh (d & e) correctly reflect the narrow
body. Row 2 shows a case where the outline is technically correct
(b), but is not related to the depth of the image (a) and therefore the
generated mesh (d & e) is nonsensical.

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 17: Mesh generation for fabric components produces ac-
ceptable results (a, b & f) if the fabric is not a thin sheet and instead
is given form by the obscured (b & c) or implied (e) underlying ob-
jects. The top (g & i) and bottom (h) views show how the depth is
preserved.

if cloth is wrapped around other objects and still has form, the re-
sulting model is usually correct. Figure 17 shows some examples
of this. Although no mesh data is generated for the implied legs, the
cloth still deforms relatively intuitively during a walk cycle because
the vertices are weighted and linked to multiple leg bones.

More general problems with the input images can result in failed
model generation. One common issue is incorrect background seg-
mentation, where areas of shadow or texture cause incorrect outline
identification and thus the resulting process runs on invalid data.
While this usually occurs with images that don’t conform to the
initial assumptions in Section 3, cases such as images with horizon
lines or gradient backgrounds can also cause problems. Another
common issue is during the mesh generation step when the outline
does not correctly reflect the width or shape of the character. Two
examples of this are shown in Figure 16 where the depth of the final
mesh doesn’t match with expectations.

Figure 14 shows how the slices used in mesh generation produce
the correct depth and form. Perspective views show how the shoul-
ders and chest bulge outwards, while the feet remain small and are



correctly texture mapped. The aim of mesh generation is to create
a model as close to the source image is possible, and given the min-
imal visible differences between the concept art and our generated
models, we consider these results to be a success.

9 Conclusion

This paper proposes an automatic single-view model reconstruc-
tion algorithm that is suitable for use in rapid prototyping or con-
tent generation pipelines with limited format input data. The recon-
struction runs without requiring human judgement and produces ac-
ceptable results for a range of character types and shapes. With the
generation of bone structure and vertexing weighting data, models
are appropriate for use in low-resolution realtime applications such
as video games.

Although the results appear ”correct” at a glance, it is difficult to
evaluate whether the generated mesh is an accurate 3D representa-
tion of the 2D image. Although this is a subjective judgement, a
survey based evaluation of success could allow a comparison be-
tween machine and artist generated results. Alternatively, the sur-
face difference metric used in Section 7 to evaluate parameter and
algorithm selection could be expanded to provide comparison be-
tween multiple mesh construction methods. As outlined in Sec-
tion 8, there are still many problems to be solved even with our
limited input dataset, and an evaluation would be the next step in
identifying the biggest graphical issues.

Creating a mesh from a single image is a complex topic that relies
in no small part upon human perception. The addition of an ex-
tra dimension inherently requires the creation of extra data with an
eye to artistic style and character design. Our algorithm fills the
gap between context-free general meshing algorithms and contex-
tually driven manual creation of character meshes by an artist. It is
an small first step into an area of research that has great potential
benefit to the video games industry.
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