
Structural Vectorization of Raster Images

Philip Buchanan
University of Canterbury

University Drive, Ilam 8041
Christchurch, New Zealand

philip.buchanan@
pg.canterbury.ac.nz

Michael Doggett
Lunds Universitet
Box 117, 221 00
Lund, Sweden

mike@cs.lth.se

R. Mukundan
University of Canterbury

University Drive, Ilam 8041
Christchurch, New Zealand

mukundan@canterbury.ac.nz

ABSTRACT
This paper presents a new automatic algorithm for extract-
ing vector information from raster images. The algorithm
extracts structural information from the lines that is for-
matted to allow easy processing and evaluation of the image
structure. Vectorization results are comparable with com-
monly used algorithms, however the outlined method differs
from prior work by providing information in a more acces-
sible form. This algorithm provides topological information
at the cost of visual fidelity. Properties such as line topol-
ogy and width are important for image processing, includ-
ing object decomposition, author recognition and line style
modification.

Categories and Subject Descriptors
I.3.3 [Picture/Image Generation]: Line and curve gen-
eration

General Terms
Algorithms

Keywords
Vectorization; Image Structure; Skeletonization

1. INTRODUCTION
Traditionally, image analysis is performed on raster im-

ages based upon global or local features. However some
types of algorithm such as style and stroke analysis [8] [9]
perform better or must be performed on vector data. Vec-
tor data always contains a line topology made from line po-
sition and connectivity data, and may also include width,
color, and border properties. While modern tools allow
rapid drawing directly into vector formats, many artists and
studios still use raster images for cartoon work. Addition-
ally, older artwork only exists in raster format, which must
be vectorized before it can be used. Storing image data in a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IVCNZ ’12, November 26 - 28 2012, Dunedin, New Zealand
Copyright 2012 ACM 978-1-4503-1473-2/12/11 ...$15.00.

(a) (b) (c)

(d) (e)

Figure 1: Comparison between Structural Vector-
ization and a polygon based vectorization tech-
nique [18], both taken from the same source im-
age (a) [6]. Polygon based vectorization produces
images with high visual fidelity (c), but results in
complex topography (b). Structural vectorization
extracts dominant strokes (d), and line width infor-
mation. While not as visually accurate as polygon
vectorization, strokes and widths are nevertheless
able to represent the source image (e), and are of
more use in image processing.

vector format has the added benefit that it is highly efficient
in comparison to the source image.

Current algorithms that vectorize images while preserv-
ing visual quality often do so at the cost of either stroke
or topological information. This paper outlines a vector-
ization algorithm that extracts line data in a format that
allows for easy access and use in further analysis. Fig-
ures 1, 3 and fig:structureComparison show the advantages
over edge vectorization and morphological skeletonization
respectively.

Our algorithm vectorizes an image in three main stages.
A resolution independent gradient map is generated for the
image, containing vectors orthogonal to the lines; the line

(a) (b) (c)

Figure 3: Morphological skletonization operators
such as the medial axis transform provide a geo-
metric decomposition (b) of a shape that even when
thinned does not always represent the human recog-
nised structure our algorithm extracts (c).

centers are found with subpixel accuracy by analysing cross
sections aligned to the gradient field; and the vectors are
created using a weighted nearest-neighbour algorithm to join
the centres. Section 4 shows the output from this process
and compares it to existing methods.

2. PRIOR RESEARCH
Vectorization is a common analysis problem, and many

solutions exist. Two algorithms that extract line data are
proposed by Elliman [7] and Dori et al. [4], however both
are suited to technical drawings with straight lines and ex-
hibit problems with irregular shapes. Research specific to
cartoon drawings has recently gained a higher profile, with
Chenga [15] and Zhang [19] releasing vectorization papers
that deal with irregular shapes. Chenga et al. [15] provide
the better algorithm due to their accurate stroke segmen-
tation and image complexity reduction. However, both pa-
pers require even line widths and must be tuned for specific
line profiles. Hand-drawn cartoon input rarely has even line
widths, and so any vectorization algorithm must cope with
width variation, as the structural vectorization algorithm
presented here does.

Recent research released by Huang et al. [10] presents a
stroke extraction algorithm that does not rely on even line
widths. They provide a robust stroke extraction algorithm
but unfortunately stop short of vectorization. Our focus
upon cartoon imagery means that source imagery already
has clearly defined strokes, and unless the range of input
images is extended, stroke extraction is unnecessary.

Once an image has been reduced to black and white strokes,
a common vectorization method is the Potrace algorithm by
Selinger [18]. This method produces graphically accurate
representations of an image by treating it as a series of ge-
ometric shapes. This is useful for preserving fidelity, but
makes structural processing difficult due to the lack of line
centre and width information.

In addition to stoke extraction and recognition, many
morphological and topological skeletonization algorithms ex-
ist that produce outputs ranging from unconnected point
clouds [5] to β-skeletons [2] that contain the topology in a
connected graph. Our algorithm reaches a compromise that
allows for disconnected elements but strives to join line ver-
tices when possible.

Medial transforms are perhaps the most well established
method for skeletonization, having been proposed in 1967 [3]
and tweaked in various different ways up until the present [16]
to solve problems such as the influence of surface noise on
branching. Another method with the same result but a dif-
ferent approach is joining the centers of bi-tangent circles
or maximal disks within a shape [1]. The medial transform

(a) (b)

Figure 4: Subpixel accuracy can be obtained by tak-
ing advantage of cues such as feathering. Image (a)
shows centrepoint placement for a monochrome im-
age, while (b) shows this extended to antialiased pix-
els. Grey points represent pixel centres, with the
white dots and square outlines indicating the pixel
being evaluated. The blue slice line has been placed
based upon the image gradient from Equation 3

produces geometric skeletons, however as can be seen in Fig-
ure 3 even simple shapes can produce a skeleton that does
not correspond logically to the underlying structure.

This problem arises even when different approaches are
taken [14], while papers that retrieve a clean structural topol-
ogy do so by limiting images to a specific domain such as
handwriting recognition [11]. In addition, Lam, Lee & Suen
found that most skeletonization algorithms do not store width
or colour data [13].

Line topology and width are two of the most important
properties when attempting image analysis on vector images.
Access to these properties can help when analysing object
composition and make it easier to decompose objects into
sections. Line data can be used to change the drawing style
of an image by modifying the brush stroke properties, and
analysis of artistic style can be carried out by looking at
properties such as line length and camber. Storing image
data in a vector format is also highly efficient in comparison
to the source image.

The method outlined in this paper is computationally ex-
pensive, but extracts line centres even if the line has an
irregular profile or the image has unusual topology.

3. STRUCTURAL VECTORIZATION
The vectorization algorithm is composed of several stages

as shown in Figure 2. It preserves structural information and
is able to process complex images such as the one shown in
Figure 1(a), where relevant lines may not be obvious.

The process begins by identifying line centers. Several
recent vectorization algorithms proposed a thinning step,
including Olsen et al. [17] who use erosion as a core step to
identify line centers. However if lines within the image have
different widths, using an erosion step can lead to distorted
or entirely incorrect identification of line centres.

To avoid this issue, our algorithm finds midpoints between
matching edges. Edges are considered to be sharp changes

(a) (b) (c) (d) (e) (f) (g)

Figure 2: Raster images are vectorised to preserve structural information about line centres and widths at
the cost of visual fidelity. A vector field (a) is calculated for the source image, and used to slice the shortest
path from each pixel to the nearest edge (b). When values are taken from the greyscale image, these slices
(c) measure the value profile (d) and are subsequently used to place control points at the local maxima
(e) which represents the line centre. Joining these with a nearest-neighbour algorithm creates a structural
representation of the image (f) that together with line width information is enough to store a representation
of the input image. (g)

in intensity, and for a line to be detected it must have two
opposing edges. These are detected by creating slices based
upon the gradient of the image at each pixel. The gradient at
a point is calculated using the difference of intensity within
a given radius, with the radius being varied across a range
and results averaged to produce a scale independent gradient
map. Intensities are also weighted based upon distance from
the sample area, using a standard 2d gaussian kernel K:

K(x, y, δ) = exp

(
− x2

2δ2
− y2

2δ2

)
(1)

where δ is the spread of the gaussian kernel.
This gaussian kernel is then convoluted with the image

across a range of different δ and averaged:

I ′(x,y) = 1
l

∑
0<δ<l I(x,y) �K((x−w

2
),(y−h

2
),δ)

where l =

√
w2+h2

4
(2)

where I is the original 2D image with width w and height
h.

Using a large maximum sample area introduces low-frequency
directional artifacts in the empty area surrounding an image,
but provides the important tangent information at larger
distances from lines; similarly, smaller areas limit the maxi-
mum detection width for thick lines in the image but result
in better fidelity close to line borders. The ideal maximum
size for our dataset was found to be a quarter of the image
diagonal.

The gradient at a given point on the image, across the
entire range of gaussian kernels, is generated by Equation 3.
Ĝ gives a 2D vector at (x, y) orthogonal to the closest line
or edge structure in the raster image:

Ĝ(x, y) =
∑

0<−δ<l
−δ<x′<δ
−δ<y′<δ

(
−−−−−−−−−→
x+ x′, y + y′)·

I ′(x+ x′, y + y′) ·K(x′, y′, δ) (3)

(a) (b) (c)

Figure 5: Disconnects can be caused in detected
lines (b) by light pixel values, noise, or patterns in
the source bitmap (a). Short pieces of line with
co-linear ends are therefore joined so as to better
represent the source image (c).

The kernel size is based on the image size, so that the
resulting gradient field will preserve the sharp changes in
gradient at edges, while still registering a gradient for flat
colours that occur at a distance from edges. This 2D gradi-
ent field provides more information than the computation-
ally faster single-convolution operators such as the Lapla-
cian, Prewitt, Canny and Sobel. The gradient field is shown
in Figure 2(a), with the x and y components of the vector
field represented by the red and blue channels respectively.
The resulting vector field makes it possible to determine the
direction to the closest edge from any pixel and the tan-
gent and normal vectors for a line before it is vectorized.
This allows the centre of the line to be found with sub-pixel
accuracy.

The centre of the line in the raster image is found by
searching each pixel within the same colour block. The gra-
dient map approximates the line normal, and is used to
place a cross-sectional cut, or slice, across the line, as in
Figures 2(c) and 4(a). This allows accurate measurement of
the line width and centre at that point, as shown with the
line profile in Figure 2(d).

In cases where the image antialiased and the profile does
not change sharply between black to white, the relative in-

tensity values of the neighbouring pixels are used to adjust
the centrepoint. For each non-white pixel at the edge of the
line, the centrepoint is moved by intensity

2
units along the

slice as shown in Figure 4(b).
A control point is then created at the centre of the line,

and the process repeated for the next pixel. Figure 2(e)
shows the result after all pixels have been processed, with
green dots representing the control points. Important lines
in an image tend to be isolated or wide and therefore receive
the thickest control point clusters, while noise, detail and in-
significant lines receive few points. These control points are
joined using a nearest-neighbour algorithm that attempts to
match points along a curve as shown in Equation 4,

a = ln − ln−10

b = vx − ln

lx+1 =

N∑
0

{
vx if (â · b̂ > −

√
2

2
) and (‖b‖ < 1.5)

0 otherwise
(4)

where lx are the vertices in a line segment with n vertices,
and vx are a pointcloud of size N .

Any points remaining after the lines have been created
are considered outliers and culled. Points lying within the
same pixel are considered to be duplicate vertices and are
also removed. Figure 2(f) shows the result of point joining
and culling. Line widths at each vertex are calculated based
upon the previously measured line profile and stored per
vertex. The distance threshold value of 1.5 units was chosen
because datapoints are spaced on average 1 unit apart in
the tangent direction. Small differences can be caused due
to antialiasing, but the total value of antialiased pixels will
never exceed 1 and therefore the maximum distance a point
can be dislodged is 0.5 units. The angle threshold value is
not as easy to calculate, and the best value depends upon
image complexity. 45◦ was found to work best across our
sample dataset, as higher values produce disconnects at in-
tersections and smaller values cause disconnects at corners.
This value could be adjusted by the user if necessary.

Lines are smoothed and jitter removed by removing un-
necessary control points. Reducing the number of control
points also simplifies the data for processing after vector-
ization. This is performed on a point-by-point basis by it-
eratively removing control points until the new segment no
longer approximates the correct shape sufficiently well. The
error between the simplified line and the original line is mea-
sured using Equation 5,

A = v(0)− v(x)

B = v(x)− v(n)

t = ‖A‖
‖A+B‖

error =
n∑
x=0

s(t)− v(x) (5)

where v is the set of vertices of size n and s(t) is the section
of line currently being simplified.

The simplification process continues until the error rises
over a user-specified threshold, after which the end vertices
are fixed and the process run on the next segment of the
line.

In the case of thick lines or shapes, it is possible that two
orthogonal centrelines are found and an extra culling step
must be performed. All intersecting lines are compared for

(a) (b) (c)

Figure 7: The topology generated by our algorithm
(b) differs from typical morphological algorithms
that produce geometric centers (c). Note how the
side of the table is represented by fewer lines in our
model.

overlap and culled according to Equation 6,

ws =

n∑
x=0

vs(x)

n

wl =

ws+tl∑
x=ws−tl

vl(x)

2ws

cull vs if ‖ws(n)− ws(0)‖ < wl (6)

where vl is the set of vertices in the shorter line , vs vertices
in the longer, and tl is the intersection point on the longer
line.

Likewise, extremely short lines are culled to reduce noise.
A user-defined threshold is used, and can be adjusted based
upon the image being vectorized. The default value is de-
fined to be the average line width in the image, and lines
with lengths falling under this threshold are often able to be
removed without impacting the overall results.

The remaining lines follow the centre of the rasterised con-
tours correctly, with one vectorized line per contour. How-
ever in many cases, the lines are short and therefore not
representative of the image structure. Figure 5(b) shows an
example of this. To provide more coherent data, lines are
therefore joined in the cases where they terminate near to
each other and the ends are co-linear. The effect of this can
be seen in Figure 5(c).

While the result in Figure 2(g) is not a perfect reconstruc-
tion of the image, the underlying line-based vector structure
provides more accessible information than polygon based de-
construction.

4. RESULTS
Figure 6 shows the input and output stages of the Struc-

tural Vectorization process performed on a complex object.
The underlying structure of the image is extracted without
significant distortion or interference, and without overlap-
ping lines. Given the structure and the line widths, the
original image can be reconstructed without the need for
polygon outline information.

Structural Vectorization provides a different set of infor-
mation to other common vectorization techniques. Figure 1
uses a typical cartoon image to illustrate the trade-off be-
tween visual quality and the underlying data, while Fig-
ure 8 shows the algorithms performance on typical structural
data. Figure 7 shows how our generated topology differs
from morphological algorithms.

(a) (b) (c)

Figure 6: Structural Vectorization performed on a low-resolution complex object (a) [12]. Significant lines
are extracted from the image (b) along with line width information. This combination allows easy processing
for image analysis or modification, while still retaining sufficient data (c) to represent the original image.

(a) (b)

(d) (e)

Figure 8: Principally designed for organic and car-
toon images, structural vectorization can also be
applied to architectural or engineering drawings
(a). Compared with a basic line-based vectoriza-
tion method (b) [4], structural vectorization pro-
duces comparable structural data (c), and performs
better on curved lines (d).

Complex images also provide vectorization challenges that
would require context awareness to solve. Specifically, the
algorithm has difficulty distinguishing independent shapes
that are obscured by objects of the same colour. In Figure 6,
this causes the middle section of the tail to become joined
to the shadow. Note that the tip of the tail is sufficiently
unique to be extracted as a separate stroke.

There is no single correct solution for the vectorization
of strokes in a cartoon image, and therefore our algorithm
attempts to provide a general solution that results in usable
data across a range of input images. User tunable param-
eters also provide additional control over results. Tuned
correctly, the output line data is useful for a range of appli-
cations. Analysis of line properties such as line length and
camber can be used to identify and classify the author of an
image, and vector graphics using line centres provides better
time-stability than polygons when working with animation.
In analysing hand drawn cartoon images, the topological
line data produced by the algorithm shows that line based

structural vectorization does not need to be limited to fixed-
width strokes or technical drawings.

5. ACKNOWLEDGMENTS
To the New Zealand Government Foundation for Research

Science and Technology, Stickmen Studios, ELLIIT and In-
tel Visual Computing Institiute, Saarbruecken, Germany for
funding. Copyright of original images belong to the respec-
tive authors and are reproduced here with permission. Some
images are creative commons.

6. REFERENCES
[1] C. Arcelli and G. S. di Baja. Euclidean skeleton via

centre-of-maximal-disc extraction. Image and Vision
Computing, 11(3):163 – 173, 1993.

[2] X. Bai, L. Latecki, and W.-Y. Liu. Skeleton pruning
by contour partitioning with discrete curve evolution.
Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 29(3):449 –462, march 2007.

[3] H. Blum. A Transformation for Extracting New
Descriptors of Shape. Models for the Perception of
Speech and Visual Form, pages 362–380, 1967.

[4] D. Dori and W. Liu. Sparse Pixel Vectorization: An
Algorithm and Its Performance Evaluation. IEEE
Trans. Pattern Anal. Mach. Intell., 21:202–215, March
1999.

[5] E. Dougherty. An introduction to morphological image
processing. Tutorial texts in optical engineering. SPIE
Optical Engineering Press, 1992.

[6] C. Eliopoulos. Misery Loves Sherman.
http://www.miserylovessherman.com, 2010.

[7] D. Elliman. A really useful vectorization algorithm. In
Selected Papers from the Third International
Workshop on Graphics Recognition, Recent Advances,
GREC ’99, pages 19–27, 2000.

[8] W. T. Freeman, J. B. Tenenbaum, and E. C. Pasztor.
Learning style translation for the lines of a drawing.
ACM Trans. Graph., 22, January 2003.

[9] A. Hertzmann, N. Oliver, B. Curless, and S. M. Seitz.
Curve analogies. In Proceedings of the 13th

Eurographics workshop on Rendering, pages 233–246,
2002.

[10] M. Huang, M. Yang, F. Liu, and E.-H. Wu. Stroke
extraction in cartoon images using edge-enhanced
isotropic nonlinear filter. In Proceedings of the 9th
ACM SIGGRAPH Conference on Virtual-Reality
Continuum and its Applications in Industry, VRCAI
’10, pages 33–38, 2010.

[11] B. Kegl and A. Krzyzak. Piecewise linear
skeletonization using principal curves. In Pattern
Recognition, 2000. Proceedings. 15th International
Conference on, volume 3, pages 131 –134 vol.3, 2000.

[12] O. Knörzer and P. Andini. Sandra and Woo.
http://www.sandraandwoo.com, 2010.

[13] L. Lam, S.-W. Lee, and C. Y. Suen. Thinning
methodologies-a comprehensive survey. IEEE Trans.
Pattern Anal. Mach. Intell., 14(9):869–885, Sept. 1992.

[14] N. Mayya and V. Rajan. Voronoi diagrams of
polygons: A framework for shape representation.
Journal of Mathematical Imaging and Vision,
6:355–378, 1996.

[15] S.-m. H. Ming-ming Cheng. Curve structure
extraction for cartoon images. Technical Report
TR-081201, Tsinghua University, Beijing, China, 2008.

[16] A. S. Montero and J. Lang. Skeleton pruning by
contour approximation and the integer medial axis
transform. Computers & Graphics, 36(5):477 – 487,
2012. Shape Modeling International (SMI) Conference
2012.

[17] L. Olsen and F. F. Samavati. Stroke extraction and
classification for mesh inflation. In Proceedings of the
Seventh Sketch-Based Interfaces and Modeling
Symposium, SBIM ’10, pages 9–16, Aire-la-Ville,
Switzerland, Switzerland, 2010. Eurographics
Association.

[18] P. Selinger. Potrace: a polygon-based tracing
algorithm. 2003.

[19] S.-H. Zhang, T. Chen, Y.-F. Zhang, S.-M. Hu, and
R. R. Martin. Vectorizing Cartoon Animations. IEEE
Transactions on Visualization and Computer
Graphics, 2009.

