
Scientific Computation for Simulations on

Programmable Graphics Hardware

Robert Strzodka a Michael Doggett b Andreas Kolb c

aCaesar Research Center, Bonn

bATI Research

cComputer Graphics Group, University of Siegen

Abstract

Graphics Processor Units (GPUs) have emerged as powerful parallel processors in recent

years. Although floating point computations and high level programming languages are

now available, the efficient use of the enormous computing power of GPUs still requires a

significant amount of graphics specific knowledge.

The paper explains how to use GPUs for scientific computations without graphics spe-

cific terminology. It offers an algorithmic view on GPUs with comparisons to cache aware

and parallel programming of CPUs. Two typical simulation techniques, namely grid based

and particle based methods are discussed.

1 Introduction

Three major factors make the development of graphics hardware based on com-

modity PCs truly outstanding in recent years. First, the computational power of

graphics processing units (GPUs) for commodity PC hardware has grown much

faster than for CPUs. Second, the high performance is available at a very good

cost/performance ratio. Finally, within the last 2-3 years, GPUs have become pro-

grammable by high level languages.

From an abstract point of view, the GPU is a parallel streaming processor, par-

ticularly suitable for the fast processing of large arrays. Thus, many researchers

have started utilizing graphics processors to enhance the performance of their spe-

cific, in many cases, non-graphics applications and simulations. The special field

of “General-Purpose computation on GPU (GPGPU)” has evolved (see GPGPU

(2005)), and Owens et al. (2005) offers a survey of this emerging research area.

Although performance gains depend strongly on the application, one can say that

speedup factors around 5 against algorithms on the CPU are commonly reported.

Article published in Simulation Modelling Practice and Theory 13:8 (2005) 667–681

Instructions

Operands (Data)

M
em

o
ry

C
a
ch

e

M
em

o
ry

Processor

Data

Fig. 1. Instruction stream processing

This introductory paper aims to give an overview on the GPU from a data pro-

cessing perspective. It presents an abstract view on the GPU accessible to anyone

experienced with CPU programming. The focus is on the main concepts that allow

us to determine if a given algorithm or computation can be efficiently performed

on the GPU.

The remainder of this paper is structured as follows. Section 2 discusses conceptual

aspects of GPU programming. Section 3 provides an algorithmic understanding of

the GPU. Section 4 describes examples of GPU-based simulations, and Section

5 discusses developments to be expected in the near future and their impact on

scientific computation.

2 Programming the GPU

This section presents a short discussion of GPU programming, focusing on the

concept of data-stream programming (Section 2.1) and on programming languages

(Section 2.2).

2.1 The Concept of Data Stream Programming on the GPU

Instruction stream programming is the traditional model used in CPU program-

ming. Its data model is based on a von-Neumann architecture, where instructions

and data are stored in the same memory. Instructions refer to the data needed for

execution and potentially, to other instructions in the case of branching. During

processing, the data required for an instruction’s execution is loaded into the cache,

if not already present. This model is very flexible, but has the disadvantage that the

data-sequence is completely driven by the instruction sequence, yielding inefficient

performance for uniform operations on large data blocks.

In data stream processing, on the other hand, the processor is first configured by

the instructions that need to be performed and in the next step a data-stream is

processed. The execution is performed efficiently by many depth-parallel units in

the pipeline. Given sufficient memory bandwidth, and more than one processing-

668

Pipeline

M
em

o
ry

M
em

o
ry

Configuration

Data

Data
Processor

Fig. 2. Data stream processing

pipeline, the execution is also parallelized in breadth by distributing it among sev-

eral pipelines. GPUs currently focus on breadth parallelism using Single Instruc-

tion Multiple Data (SIMD) processing units (4 component vectors), and pipeline

arrangements similar to vector processors (16 pipelines). But they will eventually

have to apply more depth parallelism (pipelining) to reduce the bandwidth require-

ments.

Data stream processing is advantageous when large data blocks undergo the same

operation, because this allows the memory efficient streaming and parallel process-

ing of the data. For a typical example, consider a matrix-matrix addition C = A+B
(assuming proper matrix dimensions). Listing 1 compares the different computing

paradigms. The outer two loops over i,j drive the data access in the instruction

processor, but do not have any effect on the final result. The alternative data-stream

approach simply defines the input and output arrays, and the loop body in a ker-

nel, which is the code used to obtain a single resulting data element. This model

gives the processor the freedom to decide on the order of execution in the outer

loops. This example is stereotypical for general purpose computations on GPUs

and Section 3 further develops the understanding of leveraging GPUs as fast array

processors.

2.2 Programming Languages

For programming the GPU one needs a graphics Application Programming Inter-

face (API), which understands function calls similar to those in Listing 1, and a

graphics language for the kernels that are passed to loadKernel.

// instruction stream

for(i=0; i<NumRows; i++)

for (j=0; j<NumCols; j++)

C[i][j]= A[i][j]+B[i][j];

// data stream

setInputArrays(A, B);

setOutputArrays(C);

loadKernel("return a+b;");

execute();

Listing 1: Two implementations of the matrix-matrix addition. The small letters a, b
used in the kernel program refer to the current elements of the matrices A,B.

669

The two major graphics APIs are OpenGL (2005) and Microsoft’s DirectX (2005).

Implementations of these APIs are available for a variety of languages, e.g. C/C++,

Java, Delphi, Fortran, Perl. But both, OpenGL and DirectX target graphics pro-

gramming and thus one must encapsulate the native API functionality in a library

to make the code look as nicely as in Listing 1.

The kernel programs can be written either in assembly or C-like high level lan-

guages, which are preferred. For OpenGL, the OpenGL Shading Language (GLSL),

for DirectX9 the High Level Shading Language (HLSL) can be used. The third lan-

guage Cg (“C for graphics”) can be used with OpenGL and DirectX, but requires a

compiler to translate the code to the required platform.

Current GPUs contain two programmable stages where kernels can be executed:

the vertex and the fragment processor. Accordingly there are two types of kernel

programs: vertex programs and fragment programs 1 . In array processing vertex

programs typically control the index ranges of the input arrays and fragment pro-

grams contain the operations to be executed on the data. So fragment programs are

usually the most important part of the algorithm as in Listing 1. In this example, no

vertex program needs to be specified because the entire arrays are used.

Recapitulating, one needs several pieces of code to implement an array operation

on the GPU: the data-flow specification written in a common high level language

using the graphics API, the fragment program for the data computation in a graphics

language, and possibly a vertex program for the setting of index ranges.

Several projects try to further simplify this procedure. Buck et al. (2004); McCool

and Toit (2004); McCormick et al. (2004) describe stream programming languages

which extend C to provide simple data-parallel constructs to allow using the GPU

as a streaming coprocessor. They abstract and virtualize many aspects of the under-

lying graphics hardware so that the programmer does not need to understand how

to use the underlying graphics API.

3 An Algorithmic GPU Model

This section discusses basic properties of GPUs which are decisive for the design of

efficient algorithms on this architecture. It focuses on problems that can be solved

by storing data in large arrays and operations that manipulate the array elements.

The efficient implementation of data structures such as stacks, trees or hashes are

much more difficult on GPUs and require a deep insight into the architecture. Con-

sequently, only the similarities and differences of CPUs and GPUs as fast data array

processors are discussed. The focus will lie on efficient manipulation of large arrays

1 historically, these programs are often called vertex shader and fragment or pixel shader

670

Table 1

Algorithmic CPU-GPU comparison

Property CPU GPU

native memory

layout
1D 2D

input arrays
native 1D; higher dimen-

sions with offsets

native 1D, 2D or 3D; higher

dimensions with offsets

output arrays
native 1D, higher dimen-

sions with offsets

native 2D; other dimensions

with offsets

overlap of input

and output regions
allowed not allowed

gathers arbitrary arbitrary

scatters arbitrary global, regular, or emulated

dynamic branching

supported through specula-

tive execution, but still not

desirable in loops

primitive or no support,

should usually be resolved

by subregion processing

highest precision

number format

double (s52e11) or long

double (s63e15)
float (s23e8)

ideal computa-

tional intensity for

floats

≈ 8, (= 3200 MHz · 16 byte

(SSE float4) / FSB800 / 64

bit)

≈ 8 (= 16 pipelines · 500

MHz · 32 byte (2xfloat4) /
DDR
︸ ︷︷ ︸

×2

500 / 256 bit)

or large array regions which allow parallel processing of the array elements.

3.1 Native Memory Layout

The native memory address space for a CPU is 1D. Due to the caching mechanism,

accessing a data element in direct 1D-neighborhood to the one recently used is

fast. Accessing elements farther away, in sense of the 1D distance, is slower. Since

higher dimensional arrays are realized by applying address-offsets, the access is not

equally fast in all spacial directions, e.g. after reading a[i][j] access to a[i][j + 1] or

a[i][j + 2] is fast, while access to a[i + 1][j] is slow.

For GPUs the native memory address space is 2D. Therefore, 2D arrays are native

objects for GPUs and data is commonly organized as a collection of 2D arrays 2 .

Access times are optimal if the 2D distance to the current location is small, e.g.

after a[i][j] access to a[i][j +1] and a[i+1][j] is equally fast. Other dimensions can

2 in graphics terminology, a native 1D, 2D or 3D array is a 1D, 2D or 3D texture

671

last access

1D memory
layout (CPU)

2D memory
layout (GPU)

conceptual 2D array

Fig. 3. Memory layout for the GPU (left), CPU (right); dark gray indicates fast access.

be represented with offsets as for CPUs, but this always includes the costs of offset

computations. Lefohn et al. (2005) discuss such kind of mappings.

GPUs also support native 1D and 3D arrays to some extent, but restrictions con-

cerning their usage apply. Additionally, 1D arrays lack the fast access to vertical

neighbors in 2D, and for 3D the access to neighbors in the z-direction is not always

as optimized as for x and y. Therefore, conceptually one can think of GPUs as fast

2D array processors.

3.2 Array Sizes

The sequential execution engine of a CPU can process any amount of data: large ar-

rays, small arrays and single elements. Depending on the cache size (0.5−4 MiB 3)

a certain array size is ideal for performance, but below that size large sequential

data collections are better than many distributed small ones. For the GPU a similar

reasoning applies but with much higher factors. The limit size beyond which per-

formance starts to degrade significantly is very high (> 64 MiB). But performance

drops dramatically if only small amounts of data are processed sequentially.

Therefore, efficient processing always has to specify an entire array or a sufficiently

large region thereof, say at least 1000 elements. For 2D arrays the regions are typ-

ically rectangles. In general, a polygon, horizontal and vertical line segments, or

even a point cloud can also serve as a region, but this is in the given order less

and less efficient. The performance of GPUs benefits significantly from large and

spatially coherent regions. Therefore, one usually operates on rectangular regions,

even if this leads to unnecessary processing of certain elements.

Currently each array dimension on all GPUs is restricted to 4096. Therefore, 1D

arrays cannot hold many items. On the other hand a 4096 × 4096 float 2D array

already consumes 64 MiB, such that it is fairly easy to utilize the entire memory of

a graphics card (128-512 MiB) with a few 2D arrays.

3 International standard IEC (2000): M= 10
6, Mi= 2

20 and similar for Ki, Gi.

672

3.3 Input and Output Regions

On the CPU it is possible to read and write to any array during an operation. There

are no restrictions on the input and output addresses. This is convenient, but over-

lapping input and output regions causes severe cache synchronization problems and

thus can degrade performance.

The computation on the GPU is organized in processing steps each involving at

least thousands of elements. During a processing step GPUs maintain a clear sep-

aration between the input and output regions (with few special exceptions). This

avoids data synchronization problems and allows massively parallel processing of

the array elements, and long pipelines. The output arrays in GPU operations are

always 2D, while the input arrays may be 1D, 2D or 3D.

There are current restrictions concerning the maximal number of input (32) and

output (4) arrays which can be involved simultaneously in a processing step. But

both numbers are likely to rise significantly in the near future.

3.4 Data Flow

Given several input and output arrays, the steps of an algorithm are mainly a com-

bination of two different types of data flow:

Gather: After specifying the output regions, each element of the output region

is computed by combining the information from various positions of the input

arrays.

Scatter: Having specified an input region, each element of the input region de-

termines both the position and the value of a corresponding output element. In

general, the same output value may be written to several positions or to none.

If several values are written to the same output position, a new value may

either replace the old one or all values may be accumulated.

In the first case the output region is clearly structured and the input elements maybe

chaotically distributed, in the second case it is vice versa. Both types of data flow

are often used simultaneously.

For CPUs there are no restrictions from which positions in the input arrays the data

is gathered, and to which positions in the output arrays it is scattered. For GPUs

there are also no restriction on the gathering, but scattering is highly restricted.

There are four options for scattering:

Global static scatter, i.e. the same index offset is applied to all output positions.

Point cloud scatter, i.e. each output location is processed individually, including

673

possible discards and overwrites of output values. Processing of point clouds is

significantly slower than the processing of rectangular regions.

Scatter reformulated as gather, i.e. a gather operation is performed which pro-

duces the same result as the scatter. This technique can easily deal with multiple

output positions per output value, but for an efficient gather operation the scatter

must have almost the same form for all input positions. Ideally the offsets of the

output positions to the corresponding input position are the same for all input

positions.

Sorted scatter, i.e. initially, data is not scattered but rather the output position is

appended to the output value and the items are sorted according to the output

position in a subsequent step. To reduce sorting requirements a small bound on

the maximal offset of the output position to the corresponding input position is

helpful.

Hence, gather operations are exploited widely on GPUs, while the above scatter

emulations must be applied when complex scatters cannot be avoided in algorithms.

On the other hand it is sometimes advantageous to use global static scatters instead

of gathers (see Section 4.1).

3.5 Conditionals

Within the loop body the CPU may always execute element dependent if-else

branches or even nested loops. This often deteriorates performance and whenever

possible one should move the conditionals before the loops and possibly code dif-

ferent loop bodies for different subsets of the processed region.

The same strategy should be applied more aggressively for GPUs, because the re-

sulting gains are higher. Formally GPUs also allow to use arbitrary conditional

constructs in loop bodies, but high costs are associated with dynamic branches if

they are not spatially coherent. Quickly oscillating branches in a loop prohibit the

pure parallel SIMD processing of the array elements. Therefore, ideally the same

operations should be applied to all elements of the input regions. The problem lies

only with the dynamic branching, i.e. when different code is executed depending

on a condition, e.g. conditional assignments with the ternary C-operator ?: or un-

rollable loops, i.e. loops with a fixed number of iterations, are not a problem.

3.6 Number Formats and Operations

CPUs natively support integer and float operations of different precision. GPUs

currently have no integer formats and offer fixed point and floating point numbers

of different precision. Major representations are 8 bit fixed point numbers and s23e8

single float. Besides the scalar values, GPUs also have native vectors of up to 4

674

components, e.g. float2, float4. Basically all standard mathematical operations (e.g.

+-*/, sin, atan, log, sqrt, pow) are available and most of them can be executed

directly on these native vectors. Therefore, they should be used when the input data

suggests such a grouping, but it is not necessary to formulate the entire code in

float4 operations, e.g. GPUs can process a scalar and a float3 instead of a float4

operation (co-issue).

In scientific computations GPUs usually operate on floats which are four times

larger than the previously used 8 bit fixed point numbers; thus the bandwidth re-

quirement has quadrupled. This leads to a similar situation as on the CPU, that more

operations can be executed in the chip than the memory bus can provide data for in

one clock cycle. Thus current GPUs require a computational intensity of approxi-

matively 8, i.e. 8 operations must be performed on each float read from memory to

keep the processing power and the memory bandwidth in balance.

3.7 Summary

GPUs are fast 2D array processors. They concentrate on the parallel processing

of the array elements and therefore require a relatively large region (e.g. 32x32

elements) in each processing step. During the processing step the corresponding

input and output regions must be distinct. The data flow is primarily controlled by

gathering arbitrary elements of other input arrays while the scattering of output

values must be realized with other methods. Concerning operations all standard

mathematical functions are available but conditionals should be avoided inside of

loops. Table 1 also presents a summary of the main properties.

4 Scientific Computations on the GPU

Data in scientific computations is often represented in arrays and large data regions

undergo the same operations. The GPU is optimized for such processing and can

therefore speedup the solution of various problems. Two popular spatial discretiza-

tion methods for differential equations are discussed, namely grids and particles.

4.1 Grids

Grids discretize a continuous domain by introducing a number of discrete control

nodes in the domain. In these locations the nodes typically represent the value of

the continuous function (Finite Differences), or the integral of this function in the

surrounding Voronoi cell (Finite Volumes), or the integral of this function weighted

675

by a basis function of this node (Finite Elements). In any case the collection of the

nodal values forms a nodal vector V̄ = (V̄i)i∈I , where I is some enumeration of the

nodes. This vector is the discrete representation of the continuous function in the

domain.

On the GPU the nodal vector V̄ is stored in the native 2D or 3D arrays. Given a cer-

tain node one often requires access to its spatial neighbor nodes. For unstructured

grids this is cumbersome on GPUs and the reader is referred to Bolz et al. (2003);

Krueger and Westermann (2003) for possible arrangements. For dynamic adaptive

grids see Lefohn et al. (2005). But for tensor grids the situation is very convenient.

If the nodal vector V̄ of a d-dimensional tensor grid is stored in a d-dimensional

array, then the spatial neighborhood relations are preserved in the array. For ex-

ample, the nodal vector V̄ of a 257 × 257 grid discretizing [0, 1]2 can be stored

in v[257][257], such that the node value (i, j) is stored in v[i][j]. In most GPU ap-

plications the tensor grid is even fixed with node positions (x = j/w, y = i/h).
Note that irrespective of how the vectors are stored, they are always treated as one

dimensional structures in the following linear algebra operations.

When numerically solving a differential equation, the discretization procedures of-

ten result in explicit (e.g. X̄n+1 = AX̄n + F̄ n) or implicit schemes (e.g. AX̄n+1 =
X̄n + F̄ n) with some matrix A = (Ai,j)i,j∈I . Because the matrix usually also de-

pends on some data (e.g. A(X̄n, F̄ n)) there are two main computing tasks: the

assembly of the matrix and the matrix vector product. The assembly of the ma-

trix often involves differential or even integral quantities, and non-linear mappings.

For the implementation on the GPU the required operations are not so important

since all of the standard mathematical functions are available. The main question is

which types of data flow (gathers, scatters) are involved. The matrix vector product

is used to demonstrate the different data flow types.

A matrix vector product can be formulated as a series of gather or a series of scatter

operations. Considering the gathers first, the matrix vector product is a series of

gathers in form of inner products between the matrix rows and the vector:

AV̄ =
(

Āi,· · V̄
)

i∈I
=




∑

j∈I

Ai,jV̄j





i∈I

, Āi,·:= (Ai,j)j∈I (matrix row).

The fragment program implements the inner product
∑

j∈I Ai,jV̄j . Recall that the

outer loop over i is implicit, see Section 2.1. This executes fast on the GPU if the

node values required to compute the new element (AV̄)i are spatially (in the grid)

close to V̄i. Commonly, band matrices are encountered which fulfill this property.

A matrix band is defined as the vector 4

Ãk:= (Ai−k,i)i∈I
, k ∈ I .

4 illegal matrix entries, e.g. A−1,0, are set to zero

676

For example in 2D, if for all i ∈ I the computation of the element (AV̄)i requires

V̄i and its 8 spatial neighbors, then the matrix has 9 bands. The gathers in the matrix

vector product can be executed in parallel very efficiently as they only access 2D

neighbor values of the current input value, which is very fast (see Section 3.1).

Similar to the other vectors, bands are stored as d-dimensional arrays on the GPU.

When the matrix is represented in this form the assembly of the matrix is also easy.

One defines the arrays as output arrays and executes a kernel which assembles the

bands of the matrix in the problem specific manner.

If the matrix vector product requires slow accesses to values far away from the

current input value, a reformulation in terms of global static scatters (see Section

3.4) is advantageous:

AV̄ =
∑

k

Tk

(

Ãk
• V̄

)

,
(

X̄ • Ȳ
)

i
:= X̄i • Ȳi, Tk(X̄) :=

(

X̄i+k

)

i∈I
.

Here, • denotes the component-wise multiplication, and the global static scatter is

represented by the index translation Tk. This version needs two processing steps.

The first step computes the component-wise multiplication for all matrix bands in

a fragment program. The second step executes the sum over the results from the

first step in a new fragment program, and a vertex program performs the index

translations. So the slow access to distant values necessary in the former gather

formulation, is replaced by a series of cheap index translations. But because the

translations are global this scatter reformulation is only applicable to band matrices

or at least matrices with local band structure. See Bolz et al. (2003); Krueger and

Westermann (2003) for totally unstructured sparse matrices.

Unfortunately, there is one more complicating factor concerning linear algebra op-

erations on GPUs. Because of the very low computational intensity, the matrix vec-

tor product cannot exploit the high parallel processing power of GPUs (see Section

3.6) and thus performs very bad. The solution to this problem is the intermingling

of the assembly of the matrix with the matrix vector product. The matrix should

almost never be assembled completely on the GPU. Only few expensive interme-

diate results should be generated. Then, instead of executing the totally inefficient

pure matrix vector product, it is combined with the assembly step which finishes

the generation of the matrix on-the-fly before each product. This increases the op-

eration count but the few intermediate results decrease the bandwidth requirements

and thus dramatically gain performance. Rumpf and Strzodka (2005) give more

details on this technique.

677

(x,y,z)

(x,y,z)

(x,y,z)

(x,y,z)

(x,y,z)

double
buffer

double
buffer

array

array
position

velocity

static info
per particle

(type, time of
birth, ...)

Fig. 4. Data storage concept for particle systems (left) and two depth-maps as parts of a

complex boundary representation of a statue (right).

4.2 Particles

Besides grid-based approaches, particles are often used in simulations, in particular

in Computational Fluid Dynamics (CFD). In general, the particles in a particle sys-

tem can be uncoupled, statically or dynamically coupled. Starting with uncoupled

particles, only the particle motion needs to be computed.

Since the GPU’s native memory layout is 2D (see Section 3.1), the data for a single

particle is naturally stored at a unique 2D array position in several arrays (see Fig-

ure 4, left). Given the position ~xn, the velocity ~vn, some force ~F n and the time-step

width τ in time-step n a particle with mass m is traced

~xn+1:= ~xn + τ~vn , ~vn+1:= ~vn + τ ~F n/m .

Because input and output regions are distinct on GPUs (see Section 3.3) two arrays

for the data of two consecutive time-steps n, n + 1 are needed, and a flip-flop algo-

rithm which exchanges the role of input and output. The above formula describes

first order motion. Applying higher precision integration, possibly more than two

data arrays have to be used in a ring-buffer like manner. More details can be found

in Kipfer et al. (2004) and Kolb et al. (2004).

Correct treatment of boundaries is very important for particle motion. One can

represent the boundary using simple primitives parameterized by a set of static

variables. Alternatively, more complex shaped boundaries can be described using

several 2D distance-maps from different perspectives (see Figure 4 right and Kolb

et al. (2004)). Each distance map represents a specific portion of the boundary as

z-distance values w.r.t. a 2D-plane in an appropriate local coordinate system. Of

course, this approach is restricted in the sense, that local concavities may cause an

erroneous boundary representation.

In uncoupled systems the forces ~F n may be dynamically computed, time-varying

and attracting or repelling point-forces, or static and global 3D-force-fields stored

in 3D arrays. In coupled systems the forces ~F n depend on the position of other a-

678

priori specified particles (static coupling), or all particles in a certain neighborhood

(dynamic coupling).

The above data concept can be easily extended to statically coupled systems using

the gathering technique. The demonstration NVIDIA (2005) shows the principal

approach using simple linear springs.

In dynamically coupled systems usually the n-nearest neighbor problem has to be

solved. Parallel sorting algorithms can be utilized to realize a sorted scatter ap-

proach (see Section 3.4). Algorithmically, parallel sorting is not optimal due to its

runtime complexity, but only these kind of algorithms can be used on GPUs. Kipfer

et al. (2004) use the bitonic merge sort for global particle sorting combined with a

space subdivision technique to approximatively detect particle-particle collisions 5 .

Applying this technique to more complex coupling schemes is rather difficult, e.g.

Smoothed Particle Hydrodynamics (SPH) models fluids based on particle motions

and applies forces to ensure the Navier-Stokes equations (see Gingold and Mon-

aghan (1977)). Here, the neighborhood may include several hundred particles and

approximative neighborhood detection causes problems, i.e. discontinuous forces

over time. Müller et al. (2003) discusses a cache optimized CPU implementation

allowing interactive SPH simulations up to a few thousand particles using a space

subdivision technique. Kolb (2005) gives a concept of implementing dynamic cou-

pled particle systems on the GPU without sorting. The key idea is to accumulate

force contributions of single particles described by the SPH-equations in 3D ar-

rays, which represent a spacial discretization. The resulting forces are modeled as

accumulations of 3D “foot-prints” of the particles.

Using GPUs for particle simulation performs well for uncoupled particle systems.

Up to 1 Mi particles can be interactively simulated and rendered. The high compu-

tational costs for keeping track of the spatial neighborhood for dynamic coupling

reduces the interactivity significantly.

5 Future Developments

The recent trends in increasing processing power are expected to continue as GPUs

continue to drive ever improving graphics for games. A large part of this progress

has been improvements in control flow for the vertex and fragment programs in the

GPUs, including features such as predication, loops and jumps. A recent change

in the graphics pipeline that improves program flexibility is the unified shader ar-

chitecture used in Microsoft’s XBox360 GPU. This architecture unifies what was

separate physical GPU resources in the vertex and fragment programs and creates

5 not all neighboring particles are detected

679

a single large resource for both types of operations. For simulation this can result

in potentially better performance as most computations are performed in the frag-

ment program and the vertex program is often idle. Another feature of the XBox360

GPU is a scatter write. This instruction allows the program to write to several dy-

namically computed addresses in the video memory without the restrictions seen in

current GPUs. Similar functionality is to be expected in future GPUs for PCs.

As kernel programs have become more common place in GPU applications the

length of these programs has grown. At the same time the number of outputs that

can be written to memory in parallel has not increased as rapidly. Future games

will tend to have more instructions per fragment and current and future GPUs will

take advantage of this increased arithmetic intensity by increasing the number of

instructions that can be executed in parallel on the GPU per clock cycle. Recent PC

graphics chips have 16 pipelines while the XBox360 GPU has 48.

Future APIs will look towards an increasing focus on standardized floating point

behavior by using the IEEE standard for 32 bit floats. This will ensure that simu-

lation results from GPUs closer match to those computed by CPUs. During recent

years different generations of GPUs have had varying program sizes and the rapid

change in these variations has made it difficult for users to know the underlying

capabilities of any particular hardware. This has lead to API’s moving towards re-

quiring the hardware to provide virtualization of hardware resources and allowing

the API to present the programmer with a programming model that has unlimited

resources in terms of instructions and registers.

Modern games are using a form of lighting know as High Dynamic Range (HDR),

which typically uses floating point precision to represent light in a scene. As this

becomes common place in most games, GPUs will start to change the previous

focus on low precision number formats such as 8 bit per channel and increasingly

start to optimize for higher precision such as 32 bit floating point. This change in

focus will also improve performance for simulation and computation using GPUs.

Acknowledgments

The authors thank Nehal Desai, Patrick McCormick and Wolfgang Wiechert for

very helpful comments on the paper.

References

Bolz, J., Farmer, I., Grinspun, E., Schröder, P., 2003. Sparse matrix solvers on the GPU:

Conjugate gradients and multigrid. In: ACM Proc. SIGGRAPH.

Buck, I., Foley, T., Horn, D., Sugerman, J., Fatahalian, K., Houston, M., Hanrahan, P., 2004.

680

Brook for GPUs: Stream computing on graphics hardware. In: ACM Proc. SIGGRAPH.

Vol. 23. pp. 777–786.

DirectX, 2005. DirectX: multimedia application programming interfaces. Microsoft,

http://www.microsoft.com/windows/directx/default.aspx.

Gingold, R., Monaghan, J., 1977. Smoothed particle hydrodynamics: theory and applica-

tion to non-spherical stars. Monthly Notices of the Royal Astronomical Society 181,

375–389.

GPGPU, 2005. General-purpose computation using graphics hardware.

www.gpgpu.org.

IEC, Nov. 2000. Letter symbols to be used in electrical technology - Part 2: Telecommuni-

cations and electronics. 2nd Edition.

Kipfer, P., Segal, M., Westermann, R., 2004. Uberflow: A GPU-based particle engine. In:

Proc. Graphics Hardware. ACM/Eurographics, pp. 115–122.

Kolb, A., 2005. Dynamic particle coupling for GPU-based fluid simulation. In: 18th Sym-

posium on Simulation Technique. To appear.

Kolb, A., Latta, L., Rezk-Salama, C., 2004. Hardware-based simulation and collision de-

tection for large particle systems. In: Proc. Graphics Hardware. ACM/Eurographics, pp.

123–131.

Krueger, J., Westermann, R., 2003. Linear algebra operators for GPU implementation of

numerical algorithms. ACM Transactions on Graphics (TOG) 22 (3), 908–916.

Lefohn, A., Kniss, J., Strzodka, R., Sengupta, S., Owens, J. D., Oct. 2005. Glift: An ab-

straction for generic, efficient GPU data structures. ACM Trans. on GraphicsTo appear.

McCool, M., Toit, S. D., 2004. Metaprogramming GPUs with Sh. AK Peters, Ltd.

McCormick, P. S., Inman, J., Ahrens, J. P., Hansen, C., Roth, G., 2004. Scout: A hardware-

accelerated system for quantitatively driven visualization and analysis. In: Proc. IEEE

Visualization. pp. 171–178.

Müller, M., Charypar, D., Gross, M., 2003. Particle-based fluid simulation for interactive

applications. In: Sym. on Comp. Animation. pp. 154–159.

NVIDIA, 2005. Cloth simulation. http://developer.nvidia.com/object/

demo cloth simulation.html.

OpenGL, 2005. OpenGL: graphics application programming interface.

http://www.opengl.org/.

Owens, J. D., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn, A. E., Purcell,

T., Sep. 2005. A survey of general-purpose computation on graphics hardware. In: Eu-

rographics, State of the Art Reports. pp. 21–51.

Rumpf, M., Strzodka, R., 2005. Graphics processor units: New prospects for parallel com-

puting. In: Numerical Solution of Partial Differential Equations on Parallel Computers.

Springer, to appear.

681

