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Abstract

This paper presents a reconfigurable, hardware accelerated, volume rendering system for high quality perspective
ray casting. The volume rendering accelerator performs ray casting by calculating the path of the ray through
the volume using a programmable Xilinx Virtex FPGA which provides fast design changes and low cost devel-
opment. Volume datasets are stored on the card in low profile DIMMs with standard connectors allowing both,
large datasets up to 1 GByte with 32 bit per voxel, and easy upgrades to larger memory capacities. Per-sample
Phong shading and post-classification is performed in hardware, giving immediate feedback to changes in the
visualization of a dataset. Adding new features, such as pre-integrated classification, can be accomplished using
the existing card without expensive and time consuming redesigns. The card can also be used for medical im-
age reconstruction by reconfiguring the FPGA broadening its usefulness for end users. For the first time, users
are able to generate high quality perspective images as required for applications such as virtual endoscopy and
colonoscopy, and stereoscopic image generation.

Categories and Subject Descriptors(according to ACM CCS): I.3.1 [Computer Graphics]: Hardware Architecture-
Graphics processor; I.3.7 [Computer Graphics]: Three-Dimensional Graphics and RealismRaytracing; C.3 [Com-
puter Systems Organization]: Special-Purpose and Application-Based Systems;

1. INTRODUCTION

Visualization of volumetric datasets is driven by the need to
reach a better understanding and insight of measured or com-
puted data. Many scientific and increasingly everyday appli-
cations require this insight, including areas in medicine, geo-
physics, scientific simulations and industry. The user gains
greater insight and understanding with higher accuracy, per-
spective images, and direct control over the image synthesis
process.

Two dimensional images can be generated from three di-
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mensional volume datasets using either indirect or direct
volume rendering. Indirect volume rendering involves trans-
forming the dataset into another representation, such as tri-
angles in the case of the Marching Cubes algorithm11. A
triangle representation can then be easily rendered in real-
time using modern 3D graphics hardware, but only specified
iso-values are represented and a change in these values re-
sults in a non-interactive pre-processing stage. Furthermore,
semi-transparent iso-surfaces are a hard problem at interac-
tive frame-rates since they require depth sorting of all tri-
angles prior to rendering. Direct volume rendering involves
generating final pixel values by compositing together filtered
samples of the original voxel values. In order to achieve in-
teractive frame-rates this approach can be implemented in
software, using readily available graphics hardware, or spe-
cial purpose hardware.

Shear-Warp8 is recognized as the fastest software ren-
derer to date and uses an image and volume encoding. For
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datasets and classifications where the volume can be en-
coded efficiently, interactive frame-rates can be achieved.
However, interpolation is only bilinear, the encoding scheme
requires significant pre-processing time—making interactive
changes to the classification cumbersome—, and for semi-
transparent rendering, the overall performance drops signif-
icantly.

2D and 3D texture mapping hardware can also be used
for volume rendering using a variety of techniques. By re-
sampling a 3D texture map using texture mapped planes
parallel to the view plane2, interactive frame-rates can be
achieved on the SGI Reality Engine1. Texture mapping il-
lumination limitations can be overcome by storing gradi-
ents for iso-surfaces allowing for illumination calculations
to be performed22. While several people extended14 and
improved this approach18, it is generally inaccurate be-
cause the shading is based on the dot product of a non-
normalized interpolated gradient vector. Texture mapping
has also been extended to support shading of iso-surfaces
using pre-integration4 and multi-dimensional transfer func-
tions 6. Despite the excellent results, these techniques ei-
ther require multi-pass or a high sampling frequency, sig-
nificantly reducing the frame-rate.

Several approaches using custom hardware have also
been proposed and implemented and a more general sur-
vey can be found in17: Knittel 7 presented a true ray casting
architecture—named VIZARD—capable of providing a few
frames per second for2563 datasets. The PCI based acceler-
ator uses the host main memory to store the volume data and
utilizes FPGAs. Before rendering, the data is pre-shaded and
compressed in software using a lossy compression scheme.
The system is limited by the inability to change classifica-
tion and shading. This is due to the pre-processing stage and
the use of main memory to store the volume dataset, result-
ing in the performance being severely restricted by the PCI
bus. The VIZARD II architecture proposal, presented in15,
introduces a volume rendering pipeline with on-board mem-
ory and on-the-fly classification and shading. However, the
architecture relies on discretized compressed gradients and
its memory interface limits the overall frame-rate.

VolumePro16 delivers insight and control over the ren-
dering process of a volume dataset unlike any previously
available solution to real-time volume rendering. Volume-
Pro’s performance is due to its architecture and the use of
ASIC technology, providing unprecedented frame-rates. The
scalable parallel pipelines in the VolumePro architecture re-
lies on the availability of neighboring voxels in the pipeline
which means that the generation of perspective images as
well as the use of arbitrary sampling distances is not feasi-
ble or requires multi-pass approaches. Furthermore, repro-
gramming of the feature set, or algorithmic speed-ups are
generally not possible without a costly and time consuming
redesign of the ASIC. Some work has been presented on how
to approximate perspective projection using VolumePro and

a combination of slab based orthographic projections21 but
the images are not free of artifacts and the performance is
significantly reduced.

In this paper, we describe a novel interactive volume ren-
dering system based on a unique hardware accelerator. The
system is realized as a custom designed PCB with off-the-
shelf components, as shown in Figure1. Images are gen-

(a)

(b)

Figure 1: Images of the hardware accelerator from below
(a) and above (b).

erated by casting rays into the dataset from the viewpoint
instead of processing the dataset in its storage order. This is
the major contrast to the VolumePro system which must pro-
cess every voxel in a volume dataset to generate an image.
Image-order processing allows our system to generate per-
spective images easily while taking advantage of optimiza-
tion techniques such as early ray termination. The ability
to customize the rendering process by reprogramming the
FPGA for individual application areas further increases the
possible uses of the system beyond previously available sys-
tems.

This paper is organized as follows. Section2 outlines the
volume rendering algorithm used. Then the ray processing
unit responsible for the main ray casting task is presented
in Section3. The architectural design and implementation
details for the memory architecture as well as the interfaces
are described in Section4and Section5 respectively. Section
6 describes the software part of the system. Image quality
and performance are discussed in Section7.

2. ALGORITHM AND FEATURES

2.1. Ray Casting

The ray casting algorithm is based on the work presented
by Levoy 9. A true image-order algorithm is implemented,
casting an individual ray for each pixel of the image. For
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each ray, the first sample location is determined by intersect-
ing the ray and the volume or — in case the image plane
intersects the volume — by taking the location on the im-
age plane itself. Both, parallel and perspective projection are
supported since we consider them mandatory for medical
applications, especially endoscopic views. Furthermore, non
isotropic datasets, as frequently present when data originates
from CT or MRI scanners, can easily be handled by distort-
ing each component of the ray starting position and the ray
increment by the respective volume spacing.

Sample values and gradients along the ray are generated
using trilinear interpolation of the neighboring grid loca-
tions. The interpolated values are used to obtain color, per-
form illumination, and blend the values to a final pixel value.
While these steps are described in more detail in Section3,
we first present unique features of the system which enable
us to accomplish superior image quality at interactive frame-
rates.

2.2. Complex Gradient Filters

Depending on the dataset, different gradient filters are fa-
vorable for gradient estimation, e.g. the central difference
gradient is frequently used for noisy data because it has a
low-pass behavior. In contrast, the orientation dependent in-
termediate gradient enables detection of fine detail missed
when using central difference. Both gradient filters are not
well suited for boundary enhancement due to their non sym-
metric nature which enhances axis aligned features less than
diagonal structures, as shown in Figure2. When using gradi-

(a) (b) (c)

Figure 2: The effect of different gradient filters when com-
bined with gradient magnitude modulation: (a) Shows the
original rendering without gradient magnitude modulation.
Central difference gradient (b) and Intermediate difference
(c) leave behind edges because they result in a larger gradi-
ent magnitude (> 1) than the cube faces.

ent magnitude modulation, it is best to use the Sobel filter10

because it has an almost symmetric behavior and would not
result in any edge being drawn.

While simple gradient filters can be easily computed on
the fly by designing the memory interface appropriately,
complex high-quality gradient filters put a burden on the
memory interface and can not be accomplished at reason-
able cost. Therefore, we consider the gradient to be a voxel
property — similar to surface graphics where the normal is a

vertex property — and store it together with the volume data.
While this increases the memory requirements, it allows the
use of different gradient operators, including higher qual-
ity gradient estimation schemes, such as the 3D Sobel filter
without affecting the rendering speed.

2.3. Material Properties

A frequently applied technique in surface graphics is the
use of different material properties for polygons representing
different objects made of certain materials. Thus, different
illumination effects can be accomplished. Our system fully
supports this technique for volume rendering. For each voxel
value, material properties can be specified and are used for
illumination. Thus, tissue and bone can be rendered differ-
ently, allowing higher quality images. The system currently
supports ambient, diffuse, and specular material properties
(ka,kd,ks) which are obtained through a simple lookup us-
ing the density value as input. Figure11(a,b) illustrates a
rendering without and with different material properties.

2.4. Pre-integration

Pre-integrated volume rendering refers to a technique that
circumvents the slicing artifacts that occur when using clas-
sification after interpolation and applying a high frequency
transfer function. In this case, the transfer function is applied
on top of the reconstructed samples. Even when following
the Nyquist theorem for reconstructing the volumetric scalar
function, this superimposed function can introduce artifacts.
For binary transfer functions, this commonly results in slic-
ing artifacts, as shown in Figure3a). Pre-integrated volume

(a) (b)

Figure 3: Slicing artifacts due to high frequency transfer
functions (a) can be prevented using pre-integration (b).

rendering was introduced for opacity by Max et al.12. Pre-
integration assumes a certain behaviour of the volumetric
function between samples along a ray, e.g. linear. By pre-
integrating the opacity values of any possible pair of voxel
values, no detail of the transfer function can be missed and
thus, the slicing artifacts can be removed. Engel et al.4 ex-
tended this idea to color and opacity values. Furthermore,
they presented a technique to correctly shade an iso-surface
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when using pre-integration. Unfortunately, the shading tech-
nique is limited to one iso-surface and can not be correctly
applied to multiple iso-surfaces nor semi-transparent ren-
dering. An implementation using 2D texture mapping and a
GeForce3 graphics accelerator accomplishes one frame per
second for a dataset of2563 voxels.

2.5. Pre-integration and Shading

One of the problems of pre-integrated volume rendering is
the integration of shading. While the pre-integrated color
represents the emitted color of an entire ray interval (slab)
— the slab between two subsequent samples along the ray
v0 andv1 — and can be stored in a 2D lookup table, shading
would require a higher dimensional lookup table (previous
gradient, current gradient, light source(s), etc.) which would
prevent interactivity. For a single iso-surface, one can com-
pute the location of the iso-value within the interval and cor-
respondingly perform a linear interpolation of the two gra-
dients to obtain the gradient at iso-surface location4. While
this approach works for a single iso-surface, it fails for mul-
tiple iso-surfaces — due to the ordering issue, which could
be solved for iso-surfaces by always finding the closest iso-
value in each interval — and especially for semi-transparent
rendering. In13, we present an approach to correctly com-
bine interval based classification with a single shading cal-
culation. This is accomplished by pre-integrating a weight
which represents the opacity distribution within the inter-
val. Using this weight, the final gradient for a single shad-
ing evaluation can be interpolated from the two gradients at
sample locationv0 andv1. For constant intervals the weight
is set to one, otherwise it is pre-integrated.

The advantage of this approach is that it results in the
correct gradient for any number of iso-surfaces. For semi-
transparent rendering, the pre-integrated weight allows to
compute a gradient approximating the gradient of the inter-
val. The linear combination of the two sample gradients can
subsequently be used to perform Phong shading. Using the
gradient at previous or at current sample location results in
the wrong illumination effects. In contrast, the linear combi-
nation using the pre-integrated weight is almost identical but
requires no over-sampling to prevent slicing artifacts. Thus,
pre-integration and shading without artifacts can be accom-
plished at much less computational cost than using conven-
tional oversampling. Please note that the ambient and specu-
lar material properties (ka andks) are also pre-integrated and
the diffuse material propertykd is already integrated in the
pre-integration of the color values.

3. THE RAY PROCESSING UNIT

The core of the system is the ray processing unit (RPU). The
RPU calculates color pixel values using the start position and
increment values for a given ray. The architecture of the RPU
is shown in Figure4. The processing units—ray-caster, ad-
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Figure 4: Architecture of the Ray Processing Unit (RPU).

dress calculation, interpolation, classification, illumination,
combiner and compositing—are outlined in black, the input
and output data for each unit is indicated in green. The RPU
uses on-chip memory for FIFOs and lookup tables. Volume
data is stored in 4 DIMMs, with 256 MByte each, connected
to the RPU. The classification tables are stored in two 32 bit
wide SRAMs, with a capacity of 2 Mbit each.

Ray-caster The ray-caster traces rays through the volume,
from a given ray entry positionPentry = Px,Py,Pz, in the di-
rection defined by the increment,I = Ix, Iy, Iz, computing
a new sample location every cycle.Pentry and I are calcu-
lated using floating point operations on a DSP and trans-
ferred to the ray-caster in a fixed point representation. The
ray increment has a 10 bit fractional part, allowing for high
over-sampling rates. The coordinates of the current sample
location are passed on to the address unit, along with a con-
trol vector indicating if the current sample is the first or last
sample in it’s ray. This control information is used by the
compositor to correctly start or terminate a ray. A ray is ter-
minated when it exits the volume or the accumulated opacity
in the compositor exceeds a given threshold (early ray termi-
nation).

The compositor has to accumulate subsequent samples
along a ray, such that the result of this operation is avail-
able in the next cycle. To achieve high image quality, this
blending operation requires a 16-bit fixed point multiply-
accumulate unit, that has to be pipelined in a high speed
design—introducing more than one cycle of latency for the
blending operations. This conflict can be overcome by cast-
ing multiple rays and interleaving the processing of these
rays, such that sample generation cycles over all rays before
generating the subsequent sample along each individual ray.
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A similar approach used to hide memory latency for distance
volume based space leaping was presented in19, but here we
use fewer interleaved rays and do not sort sample positions.
Casting nine rays in parallel completely hides the latency for
compositing the samples, while still preserving memory ac-
cess coherence.

When using early ray termination, each ray in a group
could be replaced immediately once it was terminated. How-
ever, this would result in a significant performance drop of
the memory interface, due to the new ray being in a com-
pletely different part of the memory. As more rays were ter-
minated and added to the group, this effect would worsen.
Instead, the entire group of rays is only terminated once the
opacity of all rays passes a user defined threshold. We call
this early group termination.

Tracing multiple rays in parallel requires a ray number
and a ray group number to be added to the control vector
for each sample. The ray number is used by the compositor
to accumulate the current sample to the correct ray. The ray
group number is sent back to the ray-caster to indicate the
ray group to be terminated when early group termination oc-
curs since the group being processed in the compositor may
not be the same as the one in the ray-caster.

Address Calculation An individual address for each of the
DIMMs is calculated using the integer part of the current
ray’s sample position, with the address calculations pre-
sented in Section4.1. The fractional part of the current ray
position is used as the weighting factor in the tri-linear inter-
polation. To ensure correct timing for the control vector and
the tri-linear interpolation weights, these values pass through
a FIFO while the voxel values are read from the volume
memory.

Interpolation A total of four tri-linear interpolations needs
to be performed (sample and gradient components), mak-
ing this the largest of all units. The tri-linear interpolation is
implemented as three stages of linear interpolations. While
re-phrasing the linear interpolation (Equation1) saves one
multiplier (Equation2), the multiplication can be performed
using only positive values by swappinga andb if b > a.

c = a(1−w)+bw (1)

c = a−w(a−b) (2)

The swapping is already needed due to the memory inter-
leaving where the values alternate depending on odd and
evenX,Y coordinate access values. When the inputs need
to be swapped, a bit is set in the control vector forX andY
interpolation.

Classification The classification unit can run in two differ-
ent modes, necessary to differentiate between the sample
based classification approach and the interval based clas-
sification using pre-integrated values. In the classical ap-
proach, the classification unit reads theR,G,B,α,ka,kd,ks,

andGM (opacity modulation factor based on gradient mag-
nitude) from on-chip SRAM, using the current sample value
as an index. Each of these values are 8 bit wide, except
the opacity value (α) that has 16 bit to ensure high pre-
cision when using oversampling where samples are very
close and the corrected opacity values get very small. When
pre-integration is enabled, the classification unit reads pre-
integratedR,G,B,α,ka, andks from the two larger off-chip
SRAMs, using the previous and the current sample values
as indices. Thekd term is already integrated into theR,G
and B values and needs not to be read from the SRAMs.
Here we use 10 bits for theR,G,B, andα values, and 8 bits
for ka andks. Additionally, an 8-bit interpolation weight is
read. This weight is used to linearly interpolated the gradi-
ent at previous and current sample position. Compared to
the point based classification, we use less precision for the
opacity because pre-integration does not require high over-
sampling factors to remove artifacts, but we use more pre-
cision for the color chanels to accomodate for thekd term
which is included in the pre-integrated color values.

In case maximum intensity projection (MIP) is enabled,
no color classification is performed in both modes, but the
original sample value is simply forwarded.

Illumination Illumination is typically calculated using a
surface normal that must be normalized using a square root
calculation. The implementation of this is costly, non-trivial,
and still requires the evaluation of the illumination model.
Given the constraints on available logic and a reasonable
amount of on-chip SRAM, we use two cube-maps to cal-
culate view point independent Phong shading as presented
in 20. The diffuse cube-map uses the gradient at the current
sample point — or the linearly interpolated gradient in case
pre-integration is enabled — to calculate which face of the
six faces of a cube-map to access and then calculates the four
addresses required to access one face of the cube-map. The
cube-map data is stored in an interleaved fashion as shown in
Figure5, so that the four neighboring values can be accessed

Memory Bank 0

Memory Bank 3

Memory Bank 1

Memory Bank 2

Cube−map Side i

b
i

b
i

b
i

b
i

b
0

b
1

b
2

b
3

d
0

d
1

d
2

d
3

d
4

d
5

d
0

c
05

c
4

c
3

c
2

c
1

cc
0

b
4

b
5

b
0

d
i

c
i

c
i

a
i

a
i

d
i

d
i

d
i

c
i

a
i

a

c
i

a a a a a a a
0543210

i

Figure 5: The interleaving of the entries of one face of the
cube-map to ensure four values are read in one cycle.

in a single cycle, allowing a bilinear interpolation in each cy-
cle. The calculation of the specular component requires the
reflection vector to be calculated from the eye point and then
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the reflection vector is used to access the cube-map contain-
ing the specular component.

Combiner In case shading is enabled, the final color value
for the sample point is calculated by combining the values
of the classification unit with the intensities from the illumi-
nation unit, using the following equation:

C = kaIa +kdIdColor+ksIs, (3)

whereka,kd and ks are material properties for the current
sample,Ia, Id, andIs are the ambient, diffuse, and specular
intensities from the illumination unit, andColor is the color
value read from the classification table for the current sam-
ple value. If shading is disabled, the color values are simply
forwarded.

Compositing The output of the combiner is a stream of
color and opacity values in a front to back order for the
current group of rays. Either the highest sample value along
each ray is stored (MIP) or the values are accumulated along
their respective rays:

Cn+1 = Cn +Csampleαsample(1−αn)

αn+1 = αn +αsample(1−αn).

The accumulated color values as well as the accumulated
opacity are 16 bit values, ensuring high quality images even
for low opacity samples.

Additionally, the compositing unit compares the current
opacity value to a user defined opacity threshold. In case this
threshold is reached for all interleaved rays, an early ray ter-
mination signal is sent to the ray-caster which then ends the
current group and starts a new group of rays in case the ter-
minated group of rays is still being processed. This is tested
by checking a ray-group Id which is part of the control vec-
tor and sent together with the early ray termination signal.
All samples which are still in the pipeline will be further
composed until the end of ray signal arrives in the composit-
ing unit. A nice side-effect of interleaving multiple rays is
the increased efficiency of early ray termination since the
latency of the pipeline is distributed over multiple rays re-
ducing the overall latency costs per ray. Generally, early ray
termination has a significant effect on performance for in-
side views of datasets such as colonoscopy and for viewing
volume datasets with many opaque objects. An advantage of
image-order approaches is that early ray termination can be
integrated easily while it is hard to exploit in object-order
algorithms.

4. VOXEL MEMORY

The voxel memory must meet the size and performance re-
quirements of modern volume rendering without pushing the
cost beyond the realm of standard PC class machines. With
higher modality resolutions becoming increasingly common
place, large volume datasets, up to 1 GByte in size with

voxel widths of 32 bit (up to 256 Mvoxels), are supported. A
memory interface was designed to provide the image-order
ray casting algorithm with virtually random access to voxel
memory while at the same time reducing the stalling effects
caused by SDRAM memory.

Ray casting requires a neighborhood of eight values in a
23 structure, when using tri-linear interpolation. These eight
values (256 bit) must be read from memory in parallel for ev-
ery sample point along a ray. The straight forward approach
to reading eight voxels from voxel memory in parallel is
to use eight custom memory modules, as in19. However,
custom memory modules can not be easily upgraded. We
overcome this limitation using PC100 standard low profile
Dual In-line Memory Modules (DIMMs), similar to the ap-
proach presented in3. DIMMs allow for much larger datasets
and straightforward updates when larger memories become
available. Only four DIMMs are needed because we take ad-
vantage of the wide DIMM data bus and store two voxel
values for each address, the one at the current position and
the next voxel along theZ axis — effectively replicating the
dataset in theZ direction. To allow for parallel access to four
neighboring voxel pairs, the volume dataset is interleaved
between the four DIMMs. Each DIMM has a 64 bit data bus,
resulting in a peak bandwidth of 3.2 GByte/s.

4.1. Sub-cube Memory Organization

The RPU is capable of processing one sample value every
cycle, but when using image order ray casting the process-
ing order of the dataset is arbitrary. Using SDRAM memory,
whenever a new row (A row in an SDRAM is analogous to
an SRAM cache for the SDRAM) is activated, a delay of sev-
eral cycles is required, resulting in lost processing time for
the RPU. To reduce the frequency of these row activates, the
volume dataset is not stored linearly but in sub-cubes, each
stored in one SDRAM row. The DIMMs allow for16×8×8
voxels to be stored in each row. Combining the four inter-
leaved DIMMs, this results in a sub-cube size of163. A 643

dataset thus contains43 sub-cubes, as shown in Figure6. The

Z
Y

X64x64x64 voxels subcube of 16x16x16 voxels

Figure 6: Sub-cube based interleaved memory architecture.

address values for the four DIMMs are calculated using the

c© The Eurographics Association 2002.



Meißner et al / VIZARD II: A Reconfigurable Interactive Volume Rendering System

current sample, taking into account the sub-cube and inter-
leaved memory organization. For a given coordinateCx,y,z,
the four DIMM addressesAD0...D3 are computed by first cal-
culating the address for the current sub-cube (SC) and the
relative address within the sub-cube (RA):

SC = (
Cz

16
·SubCX ·SubCY)+(

Cy

8
·SubCX)+

Cx

8
RA = 64(Cz mod 16)+8(Cy mod 8)+Cx mod 8

whereSubCX,Y is the number of sub-cubes in theX,Y Di-
mensions respectively. The final address is then obtained us-
ing the following formula:

AD0...D3 = SC·SubCS+RA

where the sub-cube sizeSubCS = 8×8×16= 1024repre-
sents the number of voxels in each sub-cube, which is stored
in an SDRAM row. To account for the interleaving of the
memory in theX andY dimensions, the coordinateCx,y,z,
used to calculate each individual DIMM address, is modi-
fied from the current sample coordinate,Px,y,z, according to
the DIMMs relative position using the following formulas:

DIMM 0: Cx,y,z = (
Px

2
+Px mod 2,

Py

2
+Py mod 2,Pz)

DIMM 1: Cx,y,z = (Px,
Py

2
+Py mod 2,Pz)

DIMM 2: Cx,y,z = (
Px

2
+Px mod 2,Py,Pz)

DIMM 3: Cx,y,z = (Px,Py,Pz)

4.2. Independent Memory Access

Peak performance from SDRAMs is achieved when blocks
of memory are read and row activate cycles are hidden be-
hind the time taken to read these blocks. Ray casting pro-
duces a new sample point every cycle, resulting in a new
address for each DIMM. Therefore burst reads are not pos-
sible when using arbitrary viewing and sampling. Further-
more, for each sample point the neighborhood of voxels is
read from the four DIMMs, but due to the interleaving of
data, these unhideable row activates will not occur at the
same time. If each neighborhood is read from memory then
stalling can occur for two subsequent sample values. An ex-
ample of a row change is shown in Figure7, for the two di-
mensional case. Here, all samples up to and including sam-
ple n− 1 are within the same row (sub-cube) and no row
activates are necessary. But for samplen, DIMM 0 and 2
require a new row to be activated. The next sample,n+ 1,
again requires DIMM 1 and 3 to activate a new row, result-
ing in two subsequent pipeline stalls when changing from
one row to a neighboring row.

To reduce this stalling effect, we use FIFOs for the address
and output voxel data to allow the four DIMMs to operate
independently of each other. This allows address generation
to continue while all of the address FIFOs are not full and the
interpolation and subsequent stages of the RPU pipeline can
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Figure 7: Row change resulting in pipeline stalls.

continue while all four output voxel FIFOs are not empty.
Figure 8 illustrates the time required for the row activates
of the scenario shown in Figure7, with (b) and without (a)
independent memory access.
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Figure 8: Number of cycles required for row activation with-
out (a) and with independent memory access using FIFOs
(b).

5. PCI CARD

The PCI card is a custom printed circuit board design, using
off-the-shelf components. Figure9 shows an overview of the
card architecture. The local bus, connecting the PCI inter-
face, DSP and Virtex, shown in red, is used to transfer data
into and out of the Virtex, memories and DSP via the PCI
interface. The PCI interface chip (PLX Technologies PCI
9054.), DSPs (When configured for medical image recon-
struction the board also uses a second DSP and associated
DIMM (shown in Figure9 with dashed lines) which is not
required for volume rendering.), Virtex FPGA and SRAMs
are located on the top side of the board (marked by a box in
Figure9) while the bottom side of the board holds up to six
low profile DIMMs.

Two power converters have been added on the top side of
the board to supply additional power for the board compo-
nents, since the PCI bus cannot supply enough power for all
the DIMMs.
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Figure 9: Architecture of the PCI card. The main data and
address bus is shown in red and the optional DSP and DIMM
are shown using dashed lines.

5.1. DSP

The digital signal processor (DSP) is a SHARC ADSP-
21160, responsible for ray setup calculations and local bus
arbitration on the PCI card. The ray setup consists of calcu-
lating the entry point into the volume (Pentry) and the in-
crement (I ) for each ray. The entry point is calculated using
a modified version of a ray-box intersection algorithm pre-
sented by Woo23. The exit point of the volume is not required
since the ray-caster checks the current sample position of the
ray against volume minimum and maximum values.

5.2. Xilinx Virtex FPGA

The Xilinx Virtex FPGA (fine grid 680 package) contains
the main processing units (RPU, memory interfaces, FIFOs
and required control logic). It is connected to four DIMMs
for storing the volume dataset and two SRAMs for storing
classification tables. The top level architecture of the Virtex
is shown in Figure10. FIFOs, attached to each DIMM mem-
ory controller, are used to improve memory performance as
explained in Section4.2. An additional memory controller
is required for the two SRAMs, which contain the classifica-
tion tables. The look up tables are stored in on-chip Block-
RAM which is dual ported, allowing simultaneous data load-
ing and reading. The RPU accepts ray entry and increment
values and returns a completed pixel value for each ray to
the control unit.

Control Unit The control unit is responsible for the down-
loading of data, setup for rendering and control of the ren-
dering process. Control is handled through a series of com-
mands issued from the software interface and passed through
to the Virtex by the DSP. An instruction decoder inside the
control unit interprets and maintains control of the Virtex
based on these passed instructions. Data required for the vol-
ume rendering pipeline must be downloaded via the Virtex

SRAM
SRAM

Ray Processing Unit (RPU)

DIMM CtrlDIMM Ctrl

FIFOs

DIMM Ctrl

FIFOs FIFOs

DIMM Ctrl

SRAM Ctrl

FIFOs

DIMMDIMM

DIMM DIMM

Virtex

Unit
Control

Local Bus

Tables
Look Up

Figure 10: Architecture implemented on the Xilinx Virtex
FPGA. The data download buses are indicated as dashed
lines. All busses to and from memory are 64 bits wide, the
local bus is 32 bits wide

to appropriate memory modules including: volume data to
the DIMMs; classification tables to the SRAMs; look up ta-
bles to the Virtex BlockRAMs; rendering and dataset setup
data for the RPU; and individual ray data for the ray-caster
in the RPU. Incoming ray data and outgoing pixel values are
both buffered by the control unit in case the local bus is busy.

Logic Usage and Layout The rendering engine imple-
mented on a Xilinx Virtex FPGA occupies around 7350
CLBs (configurable logic blocks). A CLB consists of four
SRAM based lookup tables to implement combinatorial
logic, four storage elements configurable as D-flip-flops or
latches, and dedicated carry and control logic5. FIFOs and
look up tables are implemented using 112 Virtex Block-
RAMs 5, each 4Kbit large, resulting in a total of 56 KBytes
of on-chip SRAM storage. The equivalent ASIC-gate count
of the rendering pipeline is 2.3 million gates, including on-
chip memory.

6. SOFTWARE

The current software system is divided into three different
layers: the hardware abstraction layer, the API layer and the
User Interface.

Hardware abstraction layer The hardware abstraction
layer is currently implemented as a dynamically loadable
driver module for Linux 2.4.x kernels. On startup the driver
scans for available boards in the host system and performs
the low level setup for the on-board PLX 9054 PCI Con-
troller and SDRAM. The feature set of the driver is very
minimalistic to keep complexity away from kernel space and
ease portability to other operating systems. Hence the driver
has only two functions. It is capable of resetting the board
and mapping the on-board memory into the address space
of the host computer. Thus – from a programmers point of
view – accessing the on-board RAM is similar to accessing
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system memory. The driver is also capable of handling mul-
tiple boards in the same PC running in parallel for greater
performance.

API layer The API layer uses a client–server model, where
the server process runs on the on-board DSP. During board
reset, the server code is loaded into the internal DSP mem-
ory. From then on the DSP is ready to accept commands
from the host CPU. At present, the DSP firmware is capable
of calculating the ray setup, transferring the dataset, trans-
mitting shader and classification lookup tables and sending
render commands to the FPGA. Render commands and ren-
dered pixels are transmitted/received via DMA using the
SHARC’s builtin DMA controller. Furthermore, the DSP
firmware allows the upload of FPGA bitstreams and thus the
reconfiguration of the board during runtime.

The client side is represented by a C library, providing an
API to the rendering capabilities of the Board. The library
automatically boots the DSP, uploads the bitstream to the
FPGA and then manages the communication between appli-
cation and hardware.

User Interface Currently, the board is embedded in a Vol-
ume Rendering application, which has been developed by
our group. Amongst many other features, the software pro-
vides ray-casting and splatting algorithms, an isosurface pre-
viewer to arrange camera positions, a utility to create camera
paths, a classification editor and hardware-accelerated vol-
ume rendering using the board presented here.

7. RESULTS

Performance There are a multitude of factors that affect the
frame-rate performance of the PCI card. Image size dictates
the number of rays traced and sampling rate determines the
number of samples processed by the pipeline. Generally, our
memory interface enables us to generate one sample per cy-
cle. The board runs at a stable 50 Mhz, generating a maxi-
mum of 50 Mega samples per second. However, we expect
the next revision to run at 100 Mhz, doubling the amount of
samples per second.

Table1 shows the worst-case and and best-case frame rate
for three different datasets. The worst case frame rate as-
sumes that every ray completely traverses the volume and
each sample contributes to the final pixel. The average frame
rate was determined using a meaningful classification and a
set of arbitrary views. All frame rates were measured with
the ray setup precomputed and stored in on-board SDRAM.
The limit of 16 frames per second is due to the amount of
time it takes to copy the rays to and from the DSP SDRAM,
which is around 60 msec for a2562 image.

The peak rendering performance is currently limited by
the DSP, which cannot compute the ray entry point and in-
crement fast enough to match the speed of the rendering

Dataset
Empty Neghip Hydrogen Skull

Size 643 1283 2563

Fps
(worst)

16 8 5 3

Fps
(best)

16 15 15 7

Table 1: Performance measurements for several datasets.
All frames were rendered with2562 rays. The empty dataset
is a set of rays with zero length to illustrate the performance
of the ray setup.

pipeline. The DSP, running at 80 Mhz, needs 300 cycles to
compute the setup for one ray. For2562 rays, this limits the
frame rate to 4 frames per second. Work is on the way to to
remove this bottleneck by integrating the computation of the
ray setup onto the Virtex FPGA, enabling the setup of a new
ray every five clock cycles.

Extensibility The key feature, besides the high image qual-
ity at interactive frame rates, of our system is the ease of
integrating new features into the rendering pipeline. As an
example, the pre-integrated rendering mode was added to the
fully functional rendering engine in a matter of days, starting
from a working software implementation.

8. CONCLUSIONS

This paper presented the algorithm, significant features, and
architecture of a volume rendering system based on a re-
configurable ray casting implementation. The presented sys-
tems offers tremendous flexibility, high image quality, and
supports perspective projections. The high image quality is
guaranteed by enabling the use of different gradient filters,
pre-integration to avoid common slicing artifacts, and high
precision color and opacity accumulation (16 bit).

The use of an FPGA means that the board can be easily
reprogrammed when new features are required. This allows
the system to be reconfigured and retargeted at other markets
including the reconstruction of medical images from medi-
cal imaging modalities. The board, when outfitted and recon-
figured for reconstruction is being used by Philips Medical
Systems.

While the VolumePro system offers more frames per sec-
ond based on a higher number of samples per second, the
system presented here processes fewer but only relevant
samples (early ray termination) with higher image quality
(pre-integration). To obtain a similar image quality, eight
or more times over-sampling are needed in the VolumePro
system, which reduces its performance to frame-rates sim-
ilar to the ones presented here but only a single rendering
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pipeline is used, in contrast to four in VolumePro. Again, ac-
complishing pre-integration and shading in texture mapping
based volume rendering is in the order of 1 frame per sec-
ond for2563 voxels and is much slower than the presented
system. However, this does not yet include different mate-
rial properties nor the linear gradient interpolation for shad-
ing when using pre-integration. Thus, the system presented
here uses the first uncompromized implementation of a ray
casting algorithm allowing for a new level of flexibility and
algorithmic optimizations previously unseen in volume ren-
dering hardware accelerators.

We expect the reprogrammability of the system to allow
exploration of many interesting future research directions.
By upgrading the FPGA chip as ever increasing numbers of
gates become available on newer FPGA chips, we are able to
include additional features or algorithmic optimizations like
our space leaping approach (already implemented in VHDL)
to further increase the overall performance.
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(a) (b) (c)

(d) (e) (f)

Figure 11: (a,b) Renderings of the neghip data set using global material properties (a) and per voxel material properties (b).
(c) Engine. (d) Tumor in virtual endoscopy. (f) Close-up of an aneurism. (e) Fuel injection simulation with extreme perspective.
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