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Abstract

Advanced manufacturing technologies and programmable machines such

as industrial robots are used to increase productivity and quality for com­

petitiveness on a global market. Development of increasingly flexible man­

ufacturing systems has resulted in an increasing importance of software

aspects, both on a system level and for efficient interaction with human op­

erators. Trends toward providing customized products increase the need

for flexibility, which implies a need to build modular systems that are

flexible enough to handle frequent changes in production operations and

product designs.

The objective of the research presented in this thesis is to improve the

flexibility of industrial robot software when used as a component in flexi­

ble and reconfigurable industrial automation solutions. Contributions are

made in four areas; First, high performance industrial motion control is

enhanced to utilize arbitrary sensors in task definition and execution. Re­

sults include an extensible task programming language, allowing for flex­

ible integration of sensor motion in established robot languages. Second,

flexibility of the robot structure itself is studied, with an emphasis on soft­

ware tool configuration support for a highly modular parallel kinematic

robot featuring stiff motions and large workspace. Third, several operator

interaction techniques are evaluted for fast and easy robot setup. Novel

interaction devices and use of sensors bring new opportunities to improve

robot setup procedures. Finally, and also pointing out future research di­

rections, semantic web techniques are explored for use within automatic

generation of user interfaces from product and process data and for more

efficient integration of off­line engineering tools in the workflow for online

task generation.

The findings are based on a variety of industrial prototypes and case

studies, with novel software solutions ranging from low­level device in­

terfaces to high­level semantic integration. The experienced resulting en­

hancements of flexibility, usability and modularity are encouraging.
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Preface

My interest in computers started when I was nine years old and got my

first computer. Actually it belonged to my father, but I soon adopted it

for myself. It was the beginning of the 80s when the personal computer

first appeared and was offered at reasonable prices in shops. There was

no networking, almost no available software and programming was per­

formed on built­in interpreters/editors. My first computer, a Sinclair ZX

Spectrum, taught me to write programs very quickly through its excel­

lent programming interface. It was especially interesting to try to create

graphics demos, even though the competitor, the Commodore 64 was a

better performer. Since this moment, programmable entities have always

fascinated me.

I did not get into contact with robotics until much later, after being

recruited for teaching computer graphics at the department. Here I came

in contact with robotics research for the first time. I discovered that pro­

grammable machines were at least as fascinating as computers. Of partic­

ular interest were the human­robot interfaces, since it was painstakingly

time consuming to produce robot programs. This opened up my interest

to the human and engineering aspects of robotics, which I have tried to

pursue during the years I have worked with the thesis.

Applied industrial robotics is a very experimental field, driven forward

by prototypes performing in industrial contexts. Prototype development is

usually a large team effort with many engineering hours spent and many

parties involved before any results are visible. A particular challenge has

been to extract and identify scientific issues and contributions within the

torrent of engineering work surrounding prototypes. I have done my best

to this end. Looking back at the chosen path as it turned out, I am quite

happy with what I have done.
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Introduction

Industrial robots in manufacturing have traditionally been seen as general­

purpose positioning devices, shaped by automation needs in long­batch

production lines for several decades. They excel with high performance

and consistent high quality in a number of industrial tasks such as weld­

ing, painting and material handling. They are typically used in well­

known environments with little or no variability in task and workpieces.

Commissioning is a long process involving many hours of planning, simu­

lation, programming, configuration, testing and tuning, to make sure the

robot will perform as expected when installation is completed.

Today the traditional view of the manufacturing robot is changing;

the robot is becoming a more versatile tool. New emerging automation

stakeholders promote the robot as a workshop tool that the operator can

use to perform tasks. Shorter batches require robots that quickly and

frequently can be re­commissioned. Less structured environments demand

resilience toward variations in environments, tasks and products. Sensors

are increasingly relied upon to cope with those variations. Much research

is currently devoted to re­molding the traditional industrial robot into

a more “intelligent” and flexible tool for the future. The challenges for

moving forward today are in the robot software.

A central theme in this thesis is the notion of “skilled motion”. Most

of the projects I have worked with are approaching this concept in one

way or another. The concept attempts to cover a paradigm shift that is

currently happening in the expression of industrial motions. Knowledge­

able motion primitives incorporate information about the environment to

adjust and solve tasks on­the­fly, providing a much better flexibility and

motion abstraction level than before. However, flexibility comes at the

cost of complexity and the skilled motion is far more complex than earlier

primitive motions. Throughout the presented research, the support for

skilled motion in tools and methods has been a central problem. This is

crucial to study, if robots are ever going to be simple to use and productive.

The thesis is divided into four parts, each with its topics and contri­

butions, as shown in Figure 1.1.
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Figure 1.1 Four parts comprise the thesis. The thread shows the chronological

order of publications.
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1. Introduction

I Sensor­based robot motions need system­level support for im­

plementation. The first part of the thesis starts with developing a

vision­based sensor­feedback motion on a research controller system.

This is followed by presenting a sensor interface for “fast” sensor in­

put in an ABB robot controller. The sensor influence is specified

graphically using an engineering tool and supported at the system­

level programming language. The interface is evaluated by indus­

trial applications in low­value (foundry) and high­value (aircraft)
product segments using force feedback to replace manual operations

and improve accuracy of machining operations.

II Configurable modular equipment, here exemplified with a sup­

port structure and a parallel­kinematic robot concept, offers pow­

erful structural customization properties. The second part presents

the modular support structure and robot concept and continues to

present methods to support the initial structural dimensioning and

task analysis of the robot structure in engineering tools. The method

is evaluated by supporting the development of an industrial appli­

cation in the foundry industry.

III Human­robot interfaces are crucial for configuring complex tasks

and motions. This area is huge and the third part presents three

dives into the field. The first dive allows limited CAD functional­

ity in shop­floor operator interfaces to make configuration easier.

Enabling technologies are investigated. The idea is further visited

as part of the welding demonstrator described in part IV, where a

configuration support tool uses simulation imagery to create cus­

tom shop­floor setup dialogues. The second dive uses small task do­

main vocabularies to provide domain­specific programming support.

A voice activated robot jogging and programming interface is eval­

uated. Finally, in the last dive, digital paper is presented as a new

human­robot interaction medium for programming robots via pen

and paper; direct CAD­annotation and form­based configuration are

evaluated.

IV Semantic robot interfaces automate human­robot configuration

and programming tasks. By increasing the level of machine­under­

standable information in the robot system, it may be possible to re­

duce both time for configuration and lower the risk for introduction

of faults during setup. The fourth part presents two experiments.

The first utilizes semantic information to automatically synthesize

robot configuration dialogues for several modalities, optionally exe­

cuting in parallel. The second experiment automatically integrates

and configures a task planner, a cell configuration tool and product

knowledge to deploy and execute a task.
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1.1 Outline and Contributions

1.1 Outline and Contributions

This section contains a brief outline of each part in the rest of the the­

sis, with a description of contents, contributions and related publications.

Included chapters are condensed, merged and/or updated versions of the

content of the published papers.

Part I: Sensor-based Robot Motions

Improving the connection to the environment is crucial for handling un­

certainties and variations, and can even enable whole new ranges of tasks.

Sensors have been included in robot cells for a long time, such as laser

sensors for weld seam tracking and camera sensors for picking, but for

certain classes of tasks the performance offered by current controllers is

not enough, e.g. contact tasks in stiff environments. The question is how

to cope with high­performance sensing in robot controllers so that flexi­

bility, safety and robustness is kept. This research has been governed by

the following questions:

• Is it technically feasible from an embedded systems point of view

to permit third parties to extend the real­time motion control of

industrial (high­performance) robots?

• If so, how can such increased motion capabilities be incorporated in

the robot task specification?

• If such systems prove to be valuable (e.g. by improved productivity

or robustness) in important robot applications, what should then the

engineering support look like for efficient usage of new sensor­based

robot applications?

The approach described provides an unique blend between an industrially

feasible solution and flexibility through access to low level control.

Publications

The first paper presents a vision­based sensor­feedback motion on a re­

search controller system. The next paper describes a sensor interface for

“fast” sensor input to an ABB robot controller. The sensor influence is

specified graphically using an engineering tool and supported by a system­

level programming language. In the third paper a machining task within

the foundry industry is automated using force feedback to evaluate the

interface. The fourth paper evaluates the interface further by improving

another machining operation for a product within a different (high­value)
product segment.

4



1. Introduction

[P1] Bengtsson, J., Haage, M. and Johansson, R. “Variable Time Delays

in Visual Servoing and Task Execution Control.” Mechatronic systems

2002: A proceedings volume from the 2nd IFAC Conference. 2002.

[P2] Blomdell, A., Bolmsjö, G., Brogårdh, T., Cederberg, P., Isaksson, M.,

Johansson, R., Haage, M., Nilsson, K., Olsson, M., Olsson, T., Roberts­

son, A. and Wang, J. J. “Extending an industrial robot controller.” IEEE

Robotics and Automation Magazine. 2005.

[P3] Robertsson, A., Olsson, T., Johansson, R., Blomdell, A., Nilsson, K.,

Haage, M., Lauwers, B. and de Baerdemaeker, H. “Implementation of

industrial robot force control case study: High power stub grinding and

deburring.” 2006 IEEE/RSJ International Conference on Intelligent

Robots and Systems. 2006.

[P4] Olsson, T., Haage, M., Kihlman, H., Johansson, R., Nilsson, K., Roberts­

son, A., Björkman, M., Isaksson, R., Ossbahr, G. and Brogårdh, T.

“Cost­efficient drilling using industrial robots with high­bandwidth

force feedback.” Robotics and Computer­Integrated Manufacturing. 2009.

The second and third paper have been condensed into one chapter.

Contributions

The author has mostly tackled the second and third question. In the first

paper the author participated in development of the experiment and con­

tributed with experimental design and the vision­based approach. In the

second to fourth paper the author participated in the experiment design

and development and contributed with the system­level language exten­

sion that allowed sensor­based control to be integrated within the normal

task specification. In the fourth paper a language extension was used

based on modular compiler­compiler tools that allowed for a declarative

description of the extension.

Findings

From the results presented in the papers, several conclusions were drawn:

◊ Properly designed (in terms of modularity, efficiency and safety) con­

trol system interfaces, together with matching external control func­

tions (including state machines and an appropriate interplay with

the task execution), permits high­performance motion control to be

extended via customer add­ons.
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1.1 Outline and Contributions

◊ Based on a modular view on robot languages, supported by a highly

modular compiler toolkit, the add­ons on the motion control level

can be reflected on a user level in a powerful and convenient way

that promotes engineering efficiency.

◊ From an engineering point of view, standard available software tools

can be easily extended such that they apply on a motion­control level

and in the corresponding way standard CAM tools can be extended

to connect the increased robot capabilities to CAD­based robot pro­

gramming.

Each of these items, as well as their integration into complete systems

according to the presented prototypes, represent contributions beyond ex­

isting solutions within sensor based robot motions. Contributions in the

second and third articles received the 2005 EURON Technology Trans­

fer Award. Contributors of the fourth article were awarded third place in

2008.

Part II: Configurable Modular Equipment

Configurable modular equipment offers powerful customization proper­

ties, but engineering tool support is necessary to efficiently explore and

make decisions in the available customization space. This part presents

a modular support structure and robot concept, and continues to present

engineering tool methods to explore initial structural dimensioning prob­

lems and perform task analysis of the robot structure. This research has

been governed by the following questions:

• Is it feasible (from mechanic, kinematic and dynamic viewpoints)
to utilize the modularity of subcomponents for parallel­kinematic

manipulators for more configurable manufacturing systems?

• If so, can typical end­user requirements for setup, calibration and

task programming be met?

• If such components prove to be useful (e.g. by flexibility or cost­

effectiveness) in automation systems, how should engineering sup­

port look like for efficiently using robot subcomponents to develop

automation applications?

The approach described uniquely combines industrially feasible modular

support structures and novel robot concepts.
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1. Introduction

Publications

The first paper presents a parallel­kinematic manipulator that provides

stiffness and a large workspace, built from modular parts. The robot is

evaluated through several prototype builds, including an installation in

a foundry workshop. Engineering tools are used for the initial kinematic

dimensioning of the robot for the foundry cell. The second paper presents

results from later stages of prototyping.

[P5] Dressler, I., Haage, M., Nilsson, K., Johansson, R., Robertsson, A.

and Brogårdh, T. “Configuration support and kinematics for a reconfig­

urable gantry­tau manipulator.” Proceedings 2007 IEEE International

Conference on Robotics and Automation. 2007.

[P6] Haage, M., Dressler, I., Robertsson, A., Nilsson, K., Brogårdh, T. and

Johansson, R. “Reconfigurable parallel kinematic manipulator for flex­

ible manufacturing.” Preprints of the 13th IFAC Symposium on Infor­

mation Control Problems in Manufacturing. 2009.

The two papers have been condensed into one chapter. The second paper

won best paper award.

Contributions

The author participated in prototyping of the table­sized manipulators.

The author contributed in the early planning phase of the full­scale foundry

prototype with development of methods allowing for task­dependent di­

mensioning and structure­invariant task programming of the robot struc­

ture in simulation tools.

Findings

The conclusions drawn are:

◊ Prototype development of a new parallel­kinematic structure (called

Gantry­Tau) combined with a new modular support structure (called

BoxJoint) demonstrate new opportunities for the utilization of par­

allel robots in automation toolboxes.

◊ Engineering tool support by means of properly parameterized tem­

plate models (in terms of support and robot modules) offering kine­

matic structure­invariant programming features can efficiently sup­

port early structural design decisions.

Each of these items and their integration into complete systems according

to the presented prototypes, represents novel contributions within modu­

lar industrial robotics.
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1.1 Outline and Contributions

Part III: Human-Robot Interfaces

Human­robot interfaces are vital for configuring complex tasks and mo­

tions in order to minimize setup time and reduce errors in the robot cell.

As the trend moves toward more frequent operator interaction, new meth­

ods and devices for robot setup and programming need to be evaluated.

The research presented has been driven by the following questions:

• What classes (depending on input data type, involved parties, sen­

sors and devices) of user interfaces will be important in future robot

application scenarios?

• What classes of user interface technologies are feasible to provide

functionality for robot operators given available devices, sensors,

and software tools?

• Are there any best solutions that are applicable to many use cases?

Publications

The area of human­robot interaction is huge, and the third part only

presents three dives into the field. The first paper investigates visualiza­

tion platforms that could allow limited CAD functionality in shop­floor

operator interfaces. An evaluation of visualization technologies is pre­

sented (current at paper publishing date). In part four this is exemplified

in a configuration support tool that uses simulation imagery to create cus­

tomized shop­floor setup dialogues. The second paper uses small task do­

main vocabularies to provide domain­specific programming support. Voice

is used as a complimentary input channel configurable for specific tasks.

A voice­activated robot jogging and programming interface is evaluated.

The third paper evaluates digital paper as a new human­robot interaction

device. Direct annotation of CAD drawings is developed. Also, the first pa­

per in part four investigates form­based configuration of door signs in a

wood milling cell.

[P7] Haage, M. and Nilsson, K. “On the scalability of visualization in man­

ufacturing.” 7th IEEE International Conference on Emerging Technolo­

gies and Factory Automation. 1999.

[P8] Haage, M., Schötz, S. and Nugues, P. “A prototype speech robotic in­

terface with multimodal feedback.” 11th IEEE International Workshop

on Robot and Human Interactive Communication. 2002.
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[P9] Pires, N. J., Godinho, T., Nilsson, K., Haage, M. and Meyer, C. “Pro­

gramming industrial robots using advanced input­output devices: Test­

case example using a CAD package and a digital pen based on the

Anoto technology.” International Journal of Online Engineering. 2007.

Contributions

In the first paper the author contributed with ideas and prototype imple­

mentation. One of the ideas is revisited in the patent­pending deployment

wizard described in part four. In the second paper the author contributed

with ideas and experimental setup. In the third paper the author con­

tributed with application analysis and experimental setup for direct CAD

input and form­based input.

Findings

Three classes of user interfaces were evaluated in prototype instances;

complimentary and redundant interfaces, interfaces using data and/or

functionality from engineering tools, and configuration interfaces. This

led to the following findings:

◊ Each evaluation instance indicates niche potential, but it is hard to

draw any conclusions regarding best solutions. This indicates that

an open architecture for handling many input devices and input

methods in a robust fashion appears to be the the most suitable

approach for future systems and research.

◊ The digital paper works well as a modality for form­based input. The

evaluation prototypes show that configuration interfaces are useful

for task programming and cell re­configuration, given an appropri­

ate support architecture for managing and exposing configuration

options.

The interface technologies presented, together with their integration into

prototype systems, represent contributions toward finding new interface

technologies supporting future robot application scenarios.

Part IV: Semantic Robot Interfaces

Semantic robot interfaces aim at assisting the operator in configuring and

programming complex robot tasks. This is done by increasing the level of

machine­understandable knowledge about involved entities such as prod­

uct, process, equipment and planning tools, thereby enabling reasoning

mechanisms to provide the desired support. The research has been driven

by the following questions:

9
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• Is it technically feasible to automate some of the engineering oper­

ations that normally require human intervention? If so, what infor­

mation structures and architectures are needed?

• Can typical end­user tasks for setup and task programming be sig­

nificantly improved (time spent and error reduction)? What and

where are the limitations?

The two experiments described present novel approaches toward industri­

ally feasible setups and programming architectures for industrial robots.

Publications

Each experiment is presented in a separate paper. The first paper covers

generation of system­initiative user interface dialogues from product and

process knowledge. The evaluation prototype synthesizes robot configu­

ration dialogues for several modalities, including digital paper, voice and

web interfaces. The second paper presents a semantic service architecture

for automatic integration and invocation of task planners and other CAD

software with product, process and cell knowledge. The evaluation proto­

type performs goal­based task planning of a welding task, simplifying use

and configuration of the involved engineering tools.

[P10] Haage, M., Nilsson, A. and Nugues, P. “Toward ontologies and ser­

vices for assisting industrial robot setup and instruction.” 5th Interna­

tional Conference on Informatics in Control, Automation and Robotics.

2008.

[P11] Bolmsjö, G., Haage, M., Søhald, S., Kjærbo, M. and Gustafsson, M.

“Service Oriented Architecture for Automatic Planning and Program­

ming of Industrial Robots.” 20th International Conference on Flexible

Automation and Intelligent Manufacturing. 2010.

Each paper is presented in a separate chapter. The second paper is ex­

tended with further material related to the experimental setup. The ex­

tended material is not peer­reviewed.

Contributions

In the first paper the author participated in the application analysis and

in performing the experiments. In the second paper the author provided

the idea, participated in the experimental design and setup of the robot

test bed incorporating a commercial welding task planner.
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Findings

Whereas the two experiments indicate good results in small contexts, fur­

ther investigation is needed concerning the applicability in general. Devel­

opment of common bodies of machine­understandable knowledge within

the manufacturing domain is then necessary; without available knowl­

edge, reasoning techniques do not apply. More specifically, of value for

further research, it can be concluded that:

◊ Methodologies for capturing and incorporating manufacturing con­

cepts into working knowledge bodies need to be developed, such that

information structures (e.g. in terms of ontologies) can be inferred

gradually. For instance, even more or less standardized information

entities, such as geometries for work pieces, need to embody context­

specific requirements from third parties, relating the geometric parts

to the intended manufacturing requirements. Rather than the more

fixed approaches provided by CAD systems, these requirements need

to be captured and incorporated into a working body of knowledge

including semantic information.

◊ Production engineering is often rather complex, with workflows in­

volving a variety of software tools and equipment, such as sensors

and end­effectors that need to be selected, configured and used ap­

propriately. The existing workflows are not really suited for use in

small manufacturing facilities where it is not feasible to have the

needed software/equipment specialists. This hampers wide­spread

use of robots as targeted by the SMErobot initiative. Useful seman­

tic models, for well­defined domains such as arc welding or small

parts assembly, would allow engineering knowledge to be stored for

reuse and then applied (semi­)automatically across involved tools

and equipment. As the prototype implementation shows, reasoning

then fits as dedicated components that can ease the configuration

and robot programming. Thereby, usage of robots directly on the

shop­floor, by nonexpert operators, appears to be tractable.

These items can also be interpreted in terms of scalability, with improve­

ments downwards to small­scale usage of robots and upwards to more

complex application requiring skilled (sensor­based) robot motions. The

findings in all parts together are believed to contribute to the applicability

of robots in present and future industrial applications.
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2

Variable Time Delays in

Visual Servoing and

Task Execution Control

Goal: Reaction from visual data over existing networks and in presence

of occlusion

2.1 Introduction

Network delays arises when closing vision feedback loops over nondedi­

cated networks with nondeterministic computational nodes. To build on

existing networking, our system is implemented on a TCP/UDP intranet

with vision and control processing performed on a workstation and a PC

running soft real­time operating systems. Such setups give rise to commu­

nication and computational time delays. The delays are usually varying

to a degree which give rise to degraded control robustness in the system,

with resulting lack of performance or even instability. Another problem

is noise introduced into the system due to erroneous information and loss

of information. For instance, a source of erroneous information is image

measurement errors, and a source of information loss is occlusion. Noise

may result in significant loss of system performance.

We examine an image plane linear prediction strategy for compensat­

ing for delays and noise in an image based visual servoing loop (henceforth

referred to as IBVS). The IBVS loop in consideration is illustrated in Fig.

2.1. The purpose is to use uncalibrated cameras to control image plane

motion [1]. IBVS control loops are typically used for positioning tasks.

The use of uncalibrated cameras makes the IBVS loop attractive in an

industrial context.
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2.2 Delay and Noise in Feedback Control Loop

Figure 2.1 Distributed digital control system with induced delays, τ cv
k

, τ vc
k

and

τ ca
k

. The computational delay in the vision node is τ v
k
, the controller node τ c

k
and the

digital camera node τ d
k
.

The problems considered in the studied visual servoing loop are:

• Presence of variable time delays arising from network communica­

tion and image processing in one computational node.

• Asynchronous data flows from two digital cameras giving rise to

unknown time delays.

• Noisy data from extraction of object feature points in the camera

image space.

• Losing track of the object. The image analysis algorithms start send­

ing the wrong data. Typically we have lost track and the feature

point has “jumped” to another object.

• The object is missing in the image, typically due to occlusion.

In this paper, we implement image plane linear prediction using a

Kalman filter with nonuniform updating intervals. We verify experimen­

tally that errors caused by variable time delays and noise can be suf­

ficiently compensated for by satisfactorily performing an object pursuit­

and­capture experiment. Prediction errors are measured and presented.

2.2 Delay and Noise in Feedback Control Loop

In order to compensate for time delays, occlusion and failed tracking, a

dynamic model of the object of pursuit is used. The control is performed

in image space. Hence, we need to identify the dynamics of the object in

the image space. The movement of the object in the workspace may be
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linear, but the movement in the image plane will be nonlinear since the

transformation between Cartesian space and image space is nonlinear.

Even so, a linear model combined with a Kalman filter can be used for

our purposes, since the experimental result shows that the upper bound

on the nonlinearity is small.

In order to identify the dynamics, we use time stamped data. The con­

troller runs with a fixed sampling rate and we want to identify the dynam­

ics of the object in image space with the same sampling rate. Therefore,

the feature points are resampled to the sampling rate of the controller:

x̂robot
image(k) → x̃robot

image(k) (2.1)

ŷrobot
image(k) → ỹrobot

image(k)

x̂
object
image(k) → x̃

object
image(k)

ŷ
object
image(k) → ỹ

object
image(k)

where {x̂, ŷ} is a time­varying step, {x̃, ỹ} is the corresponding position

after the resampling and k is the sample index.

Identification method A linear discrete­time time invariant system

in state­space realization is used. The innovation model is:

xk+1 = Axk + Buk + Kwk (2.2)

yk = Cxk + Duk + wk

where wk is noise. An object undergoing linear movement with con­

stant acceleration can be estimated as a second order state­space model.

Assuming the experimental data from the vision system is delayed less

than one sample, it is enough to use a one­step Kalman filter predictor.

The one­step predictor is given by:

x̂k+1 = Ax̂k + Buk + K (yk − ŷk) (2.3)

ŷk = Cx̂k + Duk

In order to use this Kalman filter based on fixed sampling time, the

resampled data is used.

Nonuniform updating of Kalman filters Tracking and extraction

of feature points of an object in presence of delays and noise are difficult

17



2.2 Delay and Noise in Feedback Control Loop

tasks. Prediction using a dynamic object model and a Kalman filter could

be used to improve tracking. In cases when we loose track and are follow­

ing spurious objects, a fixed updating Kalman filter is not sufficient. We

therefore propose that the Kalman filter should be updated only when a

new measurement is close to the result from the model running in open

loop. Otherwise, we use the prediction of the model running in open loop.

Estimation of prediction error

In our application context, we know that the object performs a linear

motion and can therefore calculate the prediction by estimating the real

trajectory in image space. This can be done by fitting a physical model of

the object trajectory in world space to our measured data. In order to do

this task, it is necessary to use calibrated cameras.

For a stereo rig with two asynchronously working cameras, it is neces­

sary to resample the obtained data to a common sampling period in order

to use triangulation for depth estimation:

(x̂1, t̂1)(x̂2, t̂2) → (x̃1, x̃2, t̃) (2.4)

where x̂1, x̂2 are the sampled image space coordinates from cameras 1

and 2, t̂1, t̂2 are the corresponding sampling times, x̃1, x̃2 are the resampled

image space coordinates from camera 1 and 2 and t̃ is the corresponding

resampling time.

3D reconstruction is done by using triangulation:

λ̄ i

[

x̄1

x̄2

]

=

[

P1

P2

]

X i (2.5)

where λ̄ i is the scale factor for each sample, x̄1, x̄2 are the correspond­

ing image coordinates, P1, P2 are the camera matrices for cameras 1 and

2, respectively and X i is the vector of world coordinates for the sample.

Using Eq. 2.5, world coordinates and scale factors are calculated for

the trajectory. Assuming linear movement with constant acceleration, a

trajectory is identified:

[

C

c

]





t̃2

t̃

1





i

=

[

X

λ̄

]

i

(2.6)

λ i = c





t̃2

t̃

1





i

(2.7)
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(xk)i = PkC





t̃2

t̃

1





i

λ−1
i (2.8)

where C ∈ R
4x3 contains the coefficients of the trajectory, c ∈ R

1x3

contains the coefficients for a linearization of the scale factor, λ i is the

linearized scale factor for each sample, (xk)i are the estimated real image

coordinates for each sample, k ∈ {1, 2} is the camera, and i is the image

sample. The prediction error is:

(ek)i = (xk)i − (x̂k)i (2.9)

2.3 Pursuit-and-Capture Experiment

The experimental setup is illustrated in Fig. 2.2. A stereo rig is looking

down onto a ramp in an end­closed­loop configuration1 . The robot task is to

pursue and catch an object moving along the ramp using visual feedback.

Visual servoing is made both in the depth direction and in the image

plane. Figure 2.3 illustrates a typical experiment run. The experimental

setup has been designed to avoid occlusion, and it uses tracking to locate

feature points.

Hardware An ABB IRB 2000 industrial 6­DOF robot is used as ma­

nipulator. The robot is configured to accept pregenerated trajectories as

move commands. As for end­effectors, the robot is equipped with a grip

tool with variable grip pressure. Two off­the­shelf Sony DFW­v300 digital

cameras are mounted in a stereo rig configuration. The cameras deliver

320x240 resolution images at 30 Hz in a 16 bit YUV422 color format.

The images are sent asynchronously through an IEEE­1394 (FireWire)
network. A 450 MHz PC is used as receiver for camera images and for

performing image processing. Feature points from the image processing

are sent through TCP/IP to a Sun workstation. The visual servoing con­

troller is run on a 2x450 MHz Sun Ultra 60 workstation with the controller

implemented as a Simulink model in Matlab. The controller sends pre­

generated trajectory move commands to an embedded PowerPC controller

board which executes a customized trajectory receiver in an open robot

controller [2].

1Fixed­in­workspace cameras which observe both the object and the end­effector of the

robot.
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Figure 2.2 The experimental setup consists of a stereo rig looking down a ramp

with an IRB 2000 robot as end­effector forming a visual feedback loop.

Vision processing Images received from each camera are processed to

find specific image feature points. These feature points identify the robot

end­effector and the target object, in this experiment a rolling ball. The

following operations are used to find the feature points in each image [3],
[4]:

• Pixel­wise color thresholding into a binary image, followed by 4­con­

nected segmentation. This is used to locate a marker positioned on

the robot end­effector. Tracking is performed by locating the closest

region having approximately the same size in consecutive images.

• Pixel­wise image difference combined with color thresholding and

followed by 4­connected segmentation. This is used to locate the ball

moving along the ramp. Tracking of the ball is performed by locating

a region­of­interest marked by region size and position.

The difference in corresponding feature point displacements between

the robot end­effector and the ball is used for control in the stereo rig

depth direction.

The camera matrices used for the calculation of the estimated real

image ball trajectory were retrieved using methods presented by [5].

Control If the prediction error is small it is possible to apply the sep­

aration principle [6], which allows the design of the controller and the
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Figure 2.3 (top) To the right is the stereo rig looking at the robot hand. The object

has just been released and is speeding towards the hand. Object speed at gripping

point will be approximately 350 mm/s. (left) The robot gripper is pursuing the object

and tries to stay a bit ahead to avoid occlusion. (middle) The object is occluded by the

robot hand and the grip is performed using predicted data. (right) The robot hand

has successfully caught the object and is performing a pre­programmed break­away

movement.
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predictor to be separated. Assuming the separation principle to be ap­

plicable, we design a PI­controller without time­delay to implement the

IBVS control approach.

The inputs to the controller are the predicted robot end­effector and

ball feature points obtained from the vision system. Each feature point

is expressed as 2D coordinates in the image plane of each camera on the

stereo rig. The PI­controller is set to minimize the differences between

the robot and the ball feature points for movements in the image plane,

and the difference between displacement between corresponding feature

points for movement in depth. The output from the controller is a series of

move commands, defining trajectories consisting of joint values and joint

velocities. We have used this since most industrial robots have interfaces

for accepting trajectory move commands.

Time stamping Time stamping is performed on each image from the

cameras when they are received on the PC over the FireWire network.

This introduces an error of approximately 6 ms, τ d
k + τ cv

k (Fig. 2.1). We

consider the error to be systematic since the FireWire network is dedi­

cated to each single camera and the network utilization is 18%. It can be

compensated for by adding 6 ms to each time stamp.

2.4 Results

The system integration and control proved to be sufficient to solve the

pursuit­and­capture task in a satisfactory way.

Fig. 2.4 shows the τ v
k + τ vc

k delays for cameras 1 and 2 in the visual

servoing loop. We notice that the delays follow a two point distribution,

shifting between 14 ms and 28 ms for camera 1, and between 16 ms and

34 ms for camera 2. Fig. 2.5 shows the prediction error for the x image

coordinates in camera 2 and the distribution of the prediction error. The

error variance is 0.68 pixels. Images from the experiment are shown in

Fig. 2.3. In Fig. 2.6 the real, predicted and measured image coordinates

for the camera 2 x­axis are shown. The influence of visual disturbances in

the measured data has been removed almost. The predicted data closely

follow the estimated real trajectory. At the time between 21.5­22 s, we

temporarily lose track of the ball and therefore stop updating the Kalman

filter and run the model in open loop. This method works successfully,

and we are able to follow the ball. The ball velocity at the gripping point

is estimated to 350 mm/s and the average velocity to 200 mm/s.
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Figure 2.4 Histogram distribution of computational and network delay for cam­

eras 1 and 2.

Figure 2.5 Upper figure: Prediction error (solid). Measurement error (dashed),
both errors shown for x­axis of camera 2. Lower figure: Histogram distribution of

prediction error for x­axis of camera 2.

2.5 Discussion

As to distributed control over communication networks, several interest­

ing theoretical problems arise. Time delays may give rise to decreased

control robustness, lack of perfomance and even instability. An advantage

of using time stamping with prediction is that the separation principle

applies [6] – i.e., the design of the controller and the predictor is sepa­
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Figure 2.6 Image plane ball trajectory. Estimated trajectory (solid). Predicted tra­

jectory (dashed). Measured trajectory (dash­dotted). Shown for x­axis of camera 2.

rated. This allows the use of controller design principles that apply to

systems with no time delays, as long as the prediction error distribution

is taken into account. One approach is to measure this error off­line (or

online with some delay, forming an outer adaptive loop) and then use this

to estimate a noise model, which in turn can be used in the estimation.

Our Kalman filter design problem may be viewed as a special case of a

very fundamental problem in distributed sensing, computation and con­

trol, i.e., the sensor fusion problem. In our case, we deal with feedback

data incompatible in time delays.

In the experiment, an ordinary PI­controller based on the predicted

error was used successfully. It proved to be robust enough to compensate

for our prediction error without taking the prediction error distribution

into explicit account in the controller design process.

An error was introduced because of the thread scheduling policy of the

win32 environment in the PC, where each thread executes in time slots of

approximately 20 ms. By careful use of the native sleep function, we have

managed to suppress the worst­case time stamp error to approximately

5 ms. The worst case will occur rarely, since the time stamping threads

run with the highest possible priority.

The asynchronously received camera images in the win32 system is

the main origin for the two point time delay distribution. The points that

deviate from the two point distribution appear to be affected by threads

running in the system, for example, the GUI thread and the communica­

tion thread. It can be seen that both cameras are affected equally.
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Improvements

In this paper, we have worked with a fixed Kalman filter. It would be

relevant to exploit adaptive Kalman filters. It would also be interesting

to try out different noise models.

Phenomena of illumination such as reflections, shadows, time of day

and room lamps affected the visual servoing loop noticeably. Further at­

tempts to increase robustness of the loop properties should take lighting

changes into consideration.

Currently, the experiment uses visual servoing feedback on linear

movement only. It would be interesting to test the loop against other

movements and a wider object speed range, such as a thrown ball.

By increasing the sample rate in the loop even further, the one­step

Kalman predictor will not be valid because the time delays introduced

will possibly be more than one sample. Therefore, it could be interesting

to try out various n­step prediction methods.

More room for improvement might be offered by hidden Markov models

and Kalman filters based on more sophisticated models or other observers

exploiting properties of finite­state machines and dynamics.

2.6 Conclusions

Time stamping with nonuniform Kalman prediction can be used to com­

pensate for varying time delay errors and image noise errors. It was pre­

sented how overall system performance was improved. The prediction er­

ror variation was found to be 0.68 pixels. The identified time delay distri­

bution was found to be a two point distribution.

We have experimentally verified this scheme on a visual servoing sys­

tem running partly on a soft real­time operating system and using nonded­

icated network communication to control a robotic gripping operation of

a moving object along straight paths.
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Extending an Industrial

Robot Controller

Goal: Enable networked sensor­based motions

3.1 Introduction

Many promising robotics research results were obtained during the late

1970s and early 1980s. Some examples include Cartesian force control

and advanced motion planning. Now, 20 years and many research projects

later, many technologies still have not reached industrial usage. An im­

portant question to consider is how this situation can be improved for

future deployment of necessary technologies.

Today, modern robot control systems used in industry provide highly

optimized motion control that works well in a variety of standard appli­

cations. To this end, computationally intensive model­based robot motion

control techniques have become standard during the last decade. While

the principles employed have been known for many years, deployment in

products require affordable computing power, efficient engineering tools,

customer needs for productivity/performance and improved end­user com­

petence in the utilization of performance features.

However, applications that are considered nonstandard today moti­

vate a variety of research efforts and system development to package

results in a usable form. Actually, robots are not useful for many man­

ufacturing tasks today, in particular those found in small and medium

enterprises (SMEs). Reasons include complex configuration, nonintuitive

(for the shop floor) programming and difficulties instructing robots to deal

with variations in their environment. The latter challenge includes both

task definitions and definition of motion control utilizing external sensors.

The key word here is flexibility, and flexible motion control is particularly
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Figure 3.1 High­bandwidth, force­controlled grinding using an ABB IRB 2400

industrial robot with the extended ABB S4CPlus control system.

difficult since the user or system integrator needs to influence the core

real­time software functions that are critical for the performance and safe

operation of the system. We must find techniques that permit real­time

motion controllers to be extended for new, demanding application areas.

Open Control

Most robot control systems today support some type of user inputs/outputs

(I/Os) connected on local networks or buses. A crucial issue is the achiev­

able bandwidth for the control loops with the external feedback. For many

applications, the effect of the bandwidth limitations only shows up at

longer duty cycles, whereas for some applications (like contact­force con­

trol between the robot and the environment/workpiece; see Figure 3.1),
stability problems and severe performance degradation may result [7], [8],
[9].

Viewing robotics research from a control perspective, direct access to

the driving torques of the manipulator and fast feedback are very valu­

able, or even crucial, for algorithm evaluation and implementation of high­

performance control schemes. This made early robot systems like PUMA

560 popular. Unfortunately, this kind of low­level access is not present in

the commercial robot control systems of today. The difference is that to­

day we should not only be able to close fast feedback loops at a low­level,

we also need to do so in a consistent manner, supporting supervision and

coordination with the application­oriented programming on higher hierar­

chical levels. Therefore, alternative ways to obtain high­bandwidth control
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based on external sensors, which maintain the existing supervision and

coordination functionality, are necessary.

An examination of five major European robot brands (ABB, Comau,

Kuka, Reis and Stäubli) shows that they all, to some extent, provide sup­

port for application­specific motion control. Some controllers are fully open

but only if all original safety and programming features are disabled. In

the project considered in this article, we have used the ABB S4CPlus

controller as an example. Whereas S4CPlus is not an open system, its

internal design provides some features for development of open control.

Similar results have been reported for other systems, for example [10].

Open Issues

Developments up to the current state of the art raise fundamental ques­

tions that form the motivation of this article.

• Today, industrial robot controllers provide highly optimized, model­

based motion control that claims to be fully programmable and con­

figurable. Still, when new autonomous or service robot systems are

developed, systems developed for industrial manipulation are hardly

ever used. Instead, manipulator control is redeveloped but without

the full performance and system robustness that would be possible

if results/systems from industrial control were used. Can current

industrial controllers be useful as components in future advanced

robot systems?

• Twenty years ago, proceeding from a textbook algorithm to a func­

tional implementation required extensive engineering efforts. Today,

we have engineering tools and code generation from specifications,

descriptions and simulations of control principles. Comparing exper­

imental work within the academic community with industrial robot

development, engineering tools such as MATLAB, Maple and the

like are quite similar, whereas the code generation and deployment

of controllers/components appear to be quite different. Deployment

in a product requires substantially more verification, optimization

and tailoring to the system at hand. Then, the question is this: Could

commercial/optimized systems be structured to permit flexible ex­

tensions, even on a hard, real­time level?

Objectives

We try to answer these questions by confronting theoretical and exper­

imental laboratory results with actual industrial reality. A most chal­

lenging case, also representing the 20­year lag between experiment and

product, is high­performance, 6­DOF control of the contact forces between
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the robot and its environment. As a part of the off­line automated fettling

and finishing (AUTOFETT) project, where the main objective was to de­

velop flexible support and handling devices for castings, force­controlled

grinding was accomplished and brought to industrial tests; this will serve

as our primary example.

We will consider different aspects of incorporating a fast “sensor inter­

face” into an industrial robot controller system, where the ABB S4CPlus

system will be taken as the primary example. The term sensor interface

may be a bit restrictive, because, in practice, the interface not only al­

lows for feedback from external sensor data, but also allows for code and

algorithms to be downloaded and dynamically linked to the robot control

system (Figure 3.2).

3.2 Considerations and Design of System Extensions

The architecture of the ABB S4CPlus control system and its extensions

are shown in Figure 3.2. Task descriptions, as given by the robot program­

ming language RAPID, are passed through the trajectory generation and

turned into references for the low­level servo controllers. Extensions to

the system, based on present and future applications requiring the use

of external sensor­based control, could be made by modifying references

on any level (task, Cartesian, joint, or motor currents level). We will dis­

cuss the underlying design considerations and our implementation of the

platform.

On a high level, the present ABB S4CPlus (and earlier) systems al­

ready feature the ability to read sensors via customer I/O to influence the

robot task as expressed in programs written in the ABB RAPID language.

The RAPID program reading sensor information via the I/O system can

be referred to as a pull protocol, which requires no external computing.

The sensor reading/handling, however, must be expressed in the user pro­

gram. Today, it is also possible to change programmed motion targets via

remote procedure calls (RPC) during robot motion, which can be referred

to as a push protocol. This requires external computing but less RAPID

programming since the logic of how sensor data should influence motions

is expressed in external software. Both these alternatives are of great

value and should be maintained, but there are also two major problems

that must be resolved in future systems.

• Performance: Restricting the use of external sensors to the RAPID

level only implies that new types of high performance motions can­

not be introduced with a reasonable engineering effort. Some simple

cases have been solved, such as the control of external welding equip­
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3. Extending an Industrial Robot Controller

Figure 3.2 The extension of an industrial robot controller with sensor interface

and support for external computations and synchronization. The configuration uses

a Motorola PPC­G4 PrPMC­800 processor board mounted on a Alpha­Data PMC­to­

PCI carrier board with a local PCI bus.
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ment, but the fundamental support for motion sensing is missing.

Whereas force control is much needed within several application ar­

eas, such as foundry and assembly, it is currently quite difficult to

accomplish in the robot workcell.

• Flexibility: The use of port­based I/O data without self description

leads to less flexible application programs that require manual con­

figuration, limiting development of high­level application program

packages.

Therefore, today we have high­level (user level) usage of low­level

(primitive) sensors. To overcome the two aforementioned problems, we

also need low­level (motion control) usage of high­level (force, vision, etc.)
sensors. As a first step, interfacing with force sensors should be supported.

This is both a technically demanding case and a desired one from a cus­

tomer point of view.

With this overall goal, some specific topics will now be covered.

Hardware and I/O Protocol

The most promising hardware interfacing possibilities (from a cost and

performance point of view) are shared memory access via the peripheral

connection interface (PCI) system bus and standard high­speed Ether­

net communication. To some extent, these techniques are already used in

S4CPlus.

Shared Memory Obtaining sensor data directly in shared memory

simplifies system development since the system programming model is

unchanged. Shared memory is assumed to be provided via the PCI bus.

S4CPlus already supports installation of PCI plug­in boards, although

this feature is not made available to customers.

Presently, most sensors do not come with a PCI interface, even if some

simple sensors can be connected to PCI­based I/O boards. However, some

advanced sensors, such as the JR3 force­torque sensor, provide a PCI­

based interface. The trend is that more and more PCI­based sensors are

becoming available. This method of interfacing external sensors also al­

lows for adding “intelligent sensors” (sensor fusion or sensors with addi­

tional computational power).

Networked Sensor interfaces can also be networked based on field

buses, which are available on the user level for all modern controllers and

on the servo level for some controllers. However, it appears that field­bus

interfaces and communication introduce delays and limited performance

compared to the shared memory interface.
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As an alternative, our experiences with Ethernet communication us­

ing raw scheduled Ethernet or UDP/IP show promising results [11]. The

bandwidth is comparable to that of the PCI bus and the standard network­

order of data bytes simplifies interfacing. Also, with proper network/inter­

rupt handling, the latency can be very short, showing great potential for

future applications utilizing distributed sensors.

Safety and Quality Issues

Open systems require careful engineering to avoid exhibiting unpredictable

or even unsafe behavior when confronted with inexperienced users and

extended with novel features at the customer site. One significant chal­

lenge in the development of open systems is the complexity in the systems

engineering, where several difficulties, which are discussed below, must

be addressed.

Hardware Reliability Installing third­party hardware means there

is an additional risk for system failures, despite the high and ensured

quality of the basic robot system.

The added hardware may fail without affecting the robot hardware,

but it can still lead to system failure from an application point of view if

the application was made dependent on the added hardware. Also, third­

party modules may severely interfere with the communication on the data

buses used by the control computers. Such a failure can be due to faulty

added hardware, to bad configuration, or to incorrect access of the bus

interface of the added hardware.

To avoid these problems, customers or in­house application developers

should write the application software in such a way that functionality

can be tested based on some dummy sensor data without using the ac­

tual hardware. This can also be accomplished by running the application

with a virtual controller. Hence, guides for developing sensor­based appli­

cations could and should be supported within graphical robot simulation

and programming tools.

Sensor failures are inevitable and have long since been an important

obstacle in real applications. In cost­efficient production, it is not as simple

as saying that there should be redundant sensors; this configuration is

costly and increases the risk of system overload/failure. A combination of

system structure, proper interface design, testing methodology (including

simulation support) and well­defined fall­back control is needed.

Data Integrity A serious problem, from a safety point of view, is the

risk of external software damaging important robot system control data

(for instance, due to bad pointers or bad array indices in the external
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software). Therefore, common data areas should normally be located on

the added board and then accessed by the robot controller.

Classified System Properties The definition of shared data (control

signals and other internal states) could be achieved by providing avail­

able header files. However, using the ordinary header files would expose

potentially classified motion control techniques in too much detail. There­

fore, there should be a neutral definition of (possibly) exposed variables,

preferably based on information from textbooks or articles and possibly

suggested as an open standard.

Robot Safety Even with hardware and software functioning as in­

tended (as described in previous sections), in a strict technical sense,

there is a potential risk that the external logic interacts with the control

logic in an unforeseen manner. That is, even if the externally added soft­

ware does what the program states, it can potentially still compromise

robot safety functions.

To overcome this difficulty, the states exposed to external software

should be copies of the internal true state and external states need to be

cross­checked before influencing the modes of the standard robot control.

Updating can be periodic in some cases, whereas other states (such as

run­mode and brake states) should be updated in an event­driven fashion

in order to improve consistency between internal and external states,

including generation of interrupts to the external software.

Perhaps the most important part of safety is the ability to keep the

internal safety functions activated (possibly with adjusted tolerances),
even during sensor­based motions. While this problem has been solved,

the remaining challenge is to combine safety with performance.

Performance

For industrial robots, control performance means productivity. Specific

force control algorithms (inside the Force Controller block in Figure 3.3)
are outside the scope of this article, but the imposed requirements on the

open system deserve some attention.

Sampling and Bandwidth Considerations As an example, force

control in a noncompliant environment typically requires fast sampling

since excessive contact forces may build up very quickly, for instance,

during the impact phase. It is also well known from control theory that

feedback from a sampled signal decreases the stability margin, thereby

decreasing the robustness to varying operating conditions.

In the architecture of the ABB S4CPlus system, there are a number of

levels in which external control actions can enter the system. First, high­

level feedback using the high­level ABB RAPID language to modify the
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Figure 3.3 The force controller block structure. The force control algorithm is

implemented inside the block labeled Force Controller.
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generated trajectories gives a sampling time of h = 0.1 s. The interface to

the builtin arm servo control has a higher sampling frequency, h = 4 ms.

Finally, h = 0.125 ms gives the maximum internal sampling frequency

of the JR3 force/torque sensor. The 4 ms level has been determined to

be a good trade­off in many force control applications, considering also

the limited available computational power. However, in some applications,

such as force control in extremely stiff environments or applications where

high approach velocities are required, a sampling rate higher than 4 ms

may be desired.

User and System Aspects

Open controllers need ways of expressing the usage of sensors. The RAPID

language of the S4CPlus controller supports sensor feedback through a

RAPID concept called correction generator. This language mechanism al­

lows the robot program to correct the robot path during operation with

information typically derived from a sensor.

Unfortunately, the built­in RAPID mechanism is not applicable for use

by force sensor feedback, primarily for two reasons. The correction gen­

erators only support position­based path correction, while force feedback

may require torque­based path correction. Second, the update bandwidth

supported is much too low to apply to most force control applications.

Whereas some servo­level extension is needed to accommodate the band­

width requirements, the user programming level requires extensions for

force control.

Language Extensions The specification of desired force control should

be available on the user level, where the rest of the robot application is

specified. The solution was to introduce two new language scopes into the

RAPID language, integrating handling of sensor­influenced trajectories

into the language itself. In order to be backwards compatible with stan­

dard RAPID, the new code was encoded as XML scopes and tags within

RAPID comments (Figure 3.4). The processing of the XML comments is

conducted in a new master PC module acting as a robot proxy (see Mas­

ter PC in Figure 3.2), which then communicates both with the original

program server of the S4CPlus controller and with the added low­level

control on the added PCI board.

System Connections The communication between the master PC and

the S4CPlus controller is over the Ethernet using TCP/IP and UDP/IP.

This is not within the force control loop as such; its purpose is to synchro­

nize the robot program execution with the low­level force control along

the programmed path. This was accomplished by the following design

elements:
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Figure 3.4 A sample ExtRAPID program. The extended language constructs are

located in RAPID comments and are modeled as XML tags in order to be easily

modifiable.

• The force scopes in the ExtRAPID program are replaced by calls to

a generic motion­server, which is written in RAPID and downloaded

with the rest of the application. The force­controlled MoveL instruc­

tions are kept in the master PC (see Figure 3.2) and fed to the

program server of the S4C controller via the ABB Robot Application

Protocol (RAP).

• The embedded motion server carries out the motions by executing

TriggL instructions (instead of the original MoveL) with extra argu­

ments that form a subscription of an I/O byte output. Later, when

the S4C servo actually performs the motion, that output (the sync

signal from servo to master PC in Figure 3.2) forms the lower byte

of the integer value of a system­wide path coordinate.

• The master PC uses the received path coordinate as the basis for

the 4 ms advancement along the path, maintaining the overall path
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coordinate and computing force control set points and parameters

accordingly.

Due to the limitations on buffering according to the first design ele­

ment and since an external set point in real­time can influence the set

points to the force control loop (Figure 3.2), any external sensors con­

nected to or communicating with the master PC in real­time can be used

for instant feedback to the motion control. Note that the ABB controller

is then kept aware on the top level of the robot’s commanded target.

External Motion Control With language extensions and system con­

nections in place, the implementation of the actual external controller (to
the S4C) can be accomplished. This is the force control in Figure 3.2. To

accomplish hard, interrupt­driven, real­time execution with shared mem­

ory communication, the force controller is run as a Linux kernel module.

Such a module can be replaced without rebooting the system, but program­

ming for kernel mode is a complication. However, all parts of the force

controller (including the shared memory interfaces) were implemented in

C as Simulink blocks, which (apart from being used for simulating the

system) were cross­compiled to the target computer and incrementally

linked to form a Linux kernel module. The porting of the Linux kernel to

the specific computing and I/O hardware was carried out in our labora­

tory as was the tailoring of the build procedure for making Linux kernel

modules for sensor feedback.

The host computer version of the Simulink blocks are first translated

for embedding by using MathWorks Real­Time Workshop, then compiled

and linked with external libraries. In the resulting system, the control

engineer can graphically edit the force control block diagram and then

build and deploy it in the robot controller.

Simulation

Apart from simulating the force control as such, it is also highly desirable

to be able to simulate sensor­based robot control from an application point

of view.

Simulation of Low­Level Control Designing the controllers using

MATLAB/Simulink (which as described above also gives the implemen­

tation) means that the Simulink models can also be connected directly to

existing models of the robot; furthermore, models of the environment and

sensors can be used for simulation. Tools such as Modelica and Dymola

were used and proved to be very effective for the modeling and simulation

of many types of dynamical systems, including industrial robots [12], [13],
[14] and [15].
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Figure 3.5 force­controlled stub grinding, as carried out by an ABB IRB 6400

industrial robot with an extended ABB S4CPlus control system.

External Sensing in the Digital Factory Traditional off­line pro­

gramming does not use the full potential of virtual models and simula­

tion systems in industrial robot applications. The interface between the

off­line programming system and the robot controller is today restricted

to program transfer. Considerable improvements have been made in the

accuracy of programs created off­line, especially since the introduction

of technologies such as RRS1. However, extensive problems remain. For

instance, when high­level sensors such as vision, force and laser scan­

ning are used, no mechanism is available to relate the sensor information

to prior knowledge actually existing in the model created in the off­line

system.

If the virtual model could be accessed during the execution of the robot

task, intelligent decisions could be made despite changes in the state of

the robot workcell that were not anticipated when the robot task was

planned. Instead of using a simple feedback loop to the robot movement,

the virtual model is continuously updated, allowing new information and

previous knowledge to be accumulated in a common format. High­level

replanning of the robot task can then be automatically performed. Typ­

1Realistic Robot Simulation, http://www.realistic-robot-simulation.org

39



3.3 High Power Stub Grinding

ical limitations of robot systems that are hard to handle online include

collisions due to obstacles unknown to the robot program and deviations

of the setup and kinematic singularities during linear movements. Suc­

cessful implementation and experiments have been made in the present

case project.

3.3 High Power Stub Grinding

Applications such as stub grinding and deburring represent good exam­

ples of common tasks which would be desired to automate. Not only are

manual fettling and finishing major cost elements in the production pro­

cess (representing up to 40% of total costs) which often lead to incon­

sistency in quality and delivery delays, there are also severe health as­

pects related to this process in today’s foundry industry. In these types

of material removal applications there are two important issues, accurate

control of the force between the tool and the work object and starting and

ending the material removal process without lowering the quality of the

machining. In order for an industrial robot to be able to satisfy these re­

quirements, functionality for high­bandwidth contact­force control needs

to be implemented in current industrial robot systems.

force control structures and application requirements

During the tasks considered, only the motion perpendicular to the surface

of the workpiece was required to be force controlled and therefore a hybrid

force/position control strategy [16] was employed. In this type of structure

one or several degrees of freedom become force­controlled, while ordinary

position control is used in the other directions. The force­controlled direc­

tion is perpendicular to the surface as required, while the motion tangent

to the surface and the orientation are typically controlled using position

control. The directions which should be force­controlled are selected using

a diagonal selection matrix, which is set as a part of the high­level task

specification. The block structure for the controller is shown in Fig. 3.6.

The controller creates Cartesian trajectory corrections by filtering the con­

tact force through a MIMO linear transfer function matrix G(s)−1G I(s),
where

G I(s) = (Ms2 + Ds + K )−1 (3.1)

is a second order impedance relation and G(s) is a decoupled linear

MIMO first­order approximation of the robot dynamics from position ref­

erences to position in closed loop, chosen to compensate for the robot

dynamics by decreasing the phase lag. The parameters in the impedance
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Figure 3.6 Block structure of a general hybrid force/position­ or impedance con­

troller. The controller calculates a Cartesian reference correction ∆x by filtering the

contact force through the MIMO linear transfer function matrix G(s)−1GI (s), where

GI (s) = (Ms2 + Ds + K )−1 and G(s) is a linear MIMO first­order approximation

of the closed­loop robot dynamics. A dynamic feed­forward torque signal ∆τ f f w can

be computed based on a nonlinear dynamic model of the robot. The corresponding

control code is generated from Simulink/Real­Time workshop and downloaded to a

co­processor added to the robot controller.

relation G I(s) will depend on the active directions in the selection matrix,

with infinite stiffness in nonactive directions.

Development of an end-effector for stub grinding

The development of a hydraulically driven end­effector tool for the stub­

grinding process was carried out with the understanding that the same

tool will be used for surface finishing operations. A “cup” type of disc was

selected for the stub grinding fettling operation, which reduced the effect

of wheel wear to essentially one direction and allowed a greater wheel

force to be applied during metal removal.

The main components of the end­effector are the hydraulic motor in­

cluding the grinding stone and the force sensor consisting of a displace­

ment sensor and a spring (Fig. 3.7). The stiffness of the springs was set

to 60 N/mm but could be increased by a simple replacement of the spring,

the stroke being 20 mm. The system’s own stiffness was sufficient to re­

act on irregularities of the casting product and surface roughness, which

pass at high frequency. Bigger burrs and changes of the contour at lower

frequency were handled by the force control system.

Off-line programming

For the machining of complex parts (e.g., stub­grinding of castings) in

low series, traditional teach­in programming is not feasible. As done for
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Figure 3.7 The developed compliant grinding tool (left) and cup stone (right) for

stub­grinding application.

classical multi­axis milling machines, CAD/CAM programming has been

proposed for off­line programming. Here, a more advanced scheme was

worked out as shown in Fig. 3.8. Based on the CAD­model, the CAM sys­

tem generates the tool trajectory, described by a series of tool postures

expressed in a workpiece coordinate system. Although CAM systems with

specific grinding functionality are not commercially available, similari­

ties with classical profiling and surface contouring operations (milling)
exist. Therefore, the different tool paths for stub­grinding and finishing

operations were initially generated using existing tool path generation al­

gorithms for milling. An "add­on" feature was developed and implemented

to generate specific information related to the force controlled robot oper­

ation.

Within this research work, an advanced post­processor with integrated

robot simulation and collision avoidance functionality was developed, based

on an existing off­line robot programming system developed by KPS/Rinas.

This concept has been developed earlier, see for example [17]. Each post­

processed position was directly checked for collision and if it occurs, a

collision avoidance algorithm based on the redundancy of the robot sys­

tem was applied. This means that the post­processor looks for another

collision free robot configuration giving the same coordinates.

Grinding strategy

A robust strategy for force control was developed and implemented, us­

ing a combined strategy of force and position control. A strategy based

on force control can only give problems during entry and exit of the op­

eration. Therefore, the programmed path can contain different sections.

Each sections can be characterised by different values for speed, change

of speed, force and change of force can be defined on different sections of

the programmed path. Entry and exit are examples of such sections and
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Figure 3.8 Structure for off­line programming, based on CAD/CAM.

Figure 3.9 Grinding path with combination of force and position control.

make a smooth transition of noncutting to cutting movements possible.

More specifically, the grinding task is broken down into five phases called

approach, force build­up, process, decline and withdraw (Fig. 3.9).
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Figure 3.10 Stub­grinding (left) and finishing on a propeller blade (right).

Applications and Experiments

Final experiments were done in a specially developed fettling cell. The cell

consisted of the robot (with end­effector), a flexible clamping unit and

a control system. Images from stub­grinding experiments and finishing

grinding experiments on a propeller blade are shown in Fig. 3.10. The

resulting contact force from a stub grinding experiment with reference

Fr = 160 N is shown in Fig. 3.11.

3.4 Discussion

The fact that robots today handle fully structured and specified tasks

in industry very well and the lack of experience/knowledge from small­

scale manufacturing within the research community, have created the

misconception that “industrial robotics is solved”. In future manufactur­

ing, however, the increased need for industrial robots that (typically in

small enterprises) understand human instructions and are able to handle

larger task/work­piece variations is apparent.

Force control can be carried out on two levels:

• Forces are controlled by a separate external tool: This means that

the adaptation of the force occurs without intervention of the robot.

The robot executes a preprogrammed path and the changes in the

tool position to achieve a constant force, are carried out by the end­

effector integrated with some additional external axis.

• Forces are controlled by using the robot, which was our chosen so­

lution described in this paper.
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Figure 3.11 Contact force during grinding experiment with reference 160 N.

The advantages of the robot with integrated force control include the

possibility of obtaining higher stiffness at a considerably lower weight, as

well as increased flexibility in mounting and accessibility due to the six

degrees of freedom.

The close cooperation and technology transfer between industry and

academia have been instrumental during the development of the platform,

since control and software need to be tightly integrated for performance

and applicability. Robotics is multidisciplinary and researchers from many

fields and different university departments have been active in the devel­

opment of the field.

The accomplished sensor interface, we believe, is unique due to the

combination of

1. A shared memory interface to the built­in motion control, enabling

fast interaction with external sensors;

2. Integration of high­level and low­level control in such a way that

low­level instant compensation (within the tolerances of system su­

pervision limits) propagates to higher levels of execution and control,

providing state and path coordinate consistency;

3. The external sensing and control is built on top of a standard indus­

trial controller with (due to the previous item) the built­in system
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and safety supervision enabled, making it possible for the end­user

to use all the features (language, IO, etc.) of the original system;

4. The add­ons to the original controller can be engineered (designed

and deployed) by using standard and state­of­the­art engineering

tools, thereby bridging the gap between research and industrial de­

ployment of new algorithms;

A relevant issue would be to compare different systems and what feed­

back control performance they provide in a programmable and applicable

manner. To our knowledge, there are no other systems that provide the

same high sampling rate and low input­output latency (within a factor

of ten) together with all the user­programming features and supervisory

functions. Therefore, comparisons with other systems are not meaningful

within the scope of this paper and the focus here is on the application

needs and how they were satisfied. Experiences from the fully developed

prototype and its industrial usage confirm the appropriateness of the de­

sign choices, thereby also confirming the fact that control and software

need to be tightly integrated.

The new sensor platform may be used for prototyping and development

of a wide variety of new applications. It also offers an open experimental

platform for robotics research explored on many hierarchical levels (from

control algorithms with high bandwidth to robot programming and task

modeling with online sensor information). The preserved high­level sup­

port and the integration with the supervision and safety system of the

standard industrial robot system constitute a major difference to most

“Open Robot systems” previously reported, although many robotics labs

have reported activity on open control systems which satisfy the need for

the above mentioned aspect on evaluation and implementation [18], [19].

3.5 Conclusions

This paper describes the design and implementation of a platform for

fast external sensor integration into an industrial robot control system

(ABB S4CPlus). An easily reconfigurable control structure was achieved,

which is able to control contact forces with a sampling bandwidth of an

order of magnitude higher than for conventional robot control systems.

As motivating examples of industrial applications, the implementation of

force­controlled grinding and deburring are described. Additionally, a new

end­effector was developed and integrated with the robot control system.

Furthermore, experiences from this project has lead to the industrial­

ization of force control for assembly, grinding and deburring applications

at ABB.
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4

Programming Accurate

Force-Controlled Robot

Motions

Goal: Improved robot applicability by substantially improved accuracy in

manufacturing of high­value products

4.1 Introduction

The traditional application areas for industrial robots involve highly repet­

itive operations such as spot welding. Hence, robotic development has

been focused on high precision (repeatability) in repetitive operations.

For example, a standard ABB IRB 4400 robot for 60 kg payload has a

repetitive accuracy of ±0.05 mm. If, however, the same robot is given a

new coordinate that it has never visited before, the accuracy is in general

around ±3 mm, which is 60 times the size of the repetitive accuracy. To­

day it is possible to buy the same robot with an option pack that includes

calibration for high accuracy. This will improve accuracy to become within

±0.5 mm, which is still 10 times the repetitive accuracy. In addition, this

accuracy is only guaranteed under the condition that no unmodeled ex­

ternal forces act on the robot, i.e., only during motion in free space. For

contact tasks such as polishing, drilling and riveting, the effects of the

limited mechanical stiffness of the robot must be taken into account in

order to maintain the positioning accuracy, which is not feasible unless a

detailed model of the particular robot specimen is available.

Systems for automatic drilling have a long history both in industry

and the research community. In particular, the use of industrial robots

for drilling is interesting due to their flexible programming and the com­
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paratively low cost of industrial robot systems. However, robot drilling is

a very challenging task due to the comparatively low mechanical stiffness

of the typical serial industrial robots in use today. In general, clamp­up is

necessary in robotic drilling to avoid vibration during the drilling process

as the drill tool generates vertical, horizontal and axial forces during the

cutting process. The compliance makes the robot deflect, sometimes up to

several millimeters, due to the externally applied forces during clamp­up

and drilling. Due to the bending of the robot links and the elasticity in

the gears, the local deflection at the contact point does not necessarily oc­

cur in the (axial) direction of the applied force, but may have tangential

components which are on the same order of magnitude as the axial deflec­

tion. This tangential deformation results in poor hole quality and inac­

curate positioning. In contrast, aerospace tolerances require drilled holes

to be accurate within ±0.2 mm [20]. A drilling process involves moving a

drilling end­effector to the correct position of the hole. Prior to drilling, a

pressure foot is used to press the parts together in order to avoid burrs

entering in between the plates. In addition, the pressure foot assures that

the drilling machine is kept stable throughout the drilling cycle. A self­

feeding mechanism is normally used to feed the drill through the stack of

materials. Automated drilling in the aerospace industry today uses large

robots for two major purposes: to handle the large assemblies and to accu­

rately counter balance the drilling forces involved in the drilling process.

There are many different ways to overcome forces in drilling and fasten­

ing using industrial robots. One approach is to divide the process in two

steps, where in the first step the robot stiffness is mapped by applying

forces to the robot TCP and measuring its deflection, while in the second

step the robot is adjusted back to the nominal position under load. These

compensation values are then applied as a filter to program the robot dur­

ing process execution [21]. Mapping the robot stiffness in this way can,

however, be extremely time consuming. Other methods to solve the skat­

ing problem have been tested by using metrology systems to supervise the

robot, see for example [20], [22], [23] and [24]. In such methods, a metrol­

ogy system is connected to the robot controller via an external feedback

loop to update the nominal position of the robot with measurements in

real­time. However, using metrology is not a straightforward solution, as

the robot will deflect as the pressure foot is engaged.

Common to the traditional approaches is the lack of high performance

sensor feedback to the robot, whereby the robot cannot be updated fast

enough to cope with the dynamic process that drilling involve. Robot con­

trol systems are traditionally closed, a circumstance which has hampered

system integration of manipulators, sensors and other equipment, and

such system integration has often been made at an unsuitably high hier­

archical level. As a more cost­effective solution, high bandwidth feedback
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techniques can be used to control the properties of the drilling process.

Research and development on force­controlled drilling has not received

as much attention as many other applications of industrial force control,

such as assembly, deburring, milling or polishing. The reason is probably

the difficulties involved in robotic drilling and the lack of available indus­

trial robot systems with capacity for high­bandwidth force control. Some

results on force control for special drilling machines have been reported

in [25]. Experimental systems for force controlled robot drilling have been

presented in [26], where a force controller with inner position control was

used for the drilling thrust force control and in [27], where an application

to bone drilling in orthopedic surgery was presented.

While there exist commercially available products for force control

from for instance ABB Robotics [28], none of the available packages in­

clude the particular features and/or level of flexibility required for the

drilling application, i.e. the ability to redesign the inner­loop servo con­

trol for improved disturbance rejection.

Problem Formulation

The purpose of this work is a fully developed industrial prototype of robotic

drilling, based on the use of high­performance force/torque control and

supporting CAD­based software. The idea presented in this paper is based

on applying a dynamically controlled pressure against the workpiece with

a tripod attached to the drilling tool, while a self feeding mechanism is

used to feed the drill. This setup is as shown in Fig. 4.1. When used

together with a metrology system for absolute accuracy in the initial po­

sitioning, the system should be able to satisfy the accuracy requirements

of ±0.2 mm, even in the presence of external load during clamp­up or

drilling. The method of dynamic sensor­controlled drilling represents a

different approach compared to current static (and expensive) systems.

The purpose of the force control is threefold; i. to control the normality

to the surface; ii. to avoid the drilling end­effector sliding on the surface

(skating) during the drilling and clamp­up phases; and iii. to press the

parts together so that burrs do not enter in between the plates. The control

is accomplished by an open robot controller interface with a sampling rate

of 250 Hz – see [29], [30]. Further, the system allows for reuse of much

of the existing safety and programming functionality of the robot sys­

tem, with extensions made to allow flexible programming of sensor­based

tasks. The off­line programming environment DELMIA V5 Robotics was

selected for simulation and planning of the drilling process, thereby sim­

plifying robot programming. The robot hole­to­hole programming includes

meta­data for the force control in pre­aligning the pressure foot. The force

data is included in the robot program with our extension to the ABB Rapid

program language called ExtRapid. The goal is to avoid additional force
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Figure 4.1 Overview of the end­effector prototype for the drilling experiments.

feedback programming after the off­line programming in DELMIA.

4.2 System Topology

The robot system includes a robot with its controller, two computers and

a force/torque sensor. The solution presented in this paper has the sensor

installed in the end­effector. Fig. 4.2 shows an overview of the system. In

detail, the system includes:

• External computer: Master PC for ExtRapid program execution.

• Robot: ABB IRB 4400 Industrial robot.

• Robot Controller: Modified ABB S4CPlus control system.

• Power PC card: G4 processor with memory, PMC Interface.

• PMC­PCI card: Interface between the Power PC card and the PCI

Backplane.
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Figure 4.2 Overview of the robot control system. The sensor PC is an optional

component not used in the drilling application, as support for JR3 force/torque

sensors has been integrated into the robot controller system and signals can be

read directly into the Power PC card over the PCI bus. However, the ability to

include a Sensor PC gives extra flexibility in interfacing other types of sensors

typically used in laboratory environments, such as vision sensors for CPU­intensive

real­time applications.

• Sensor: JR3/160M50 force sensor and corresponding computer in­

terface.

• Network environment: Configured from the Master PC.

• Master PC Software environment: Making it able to execute and

supervise ExtRapid programs.

The architecture of the ABB S4CPlus control system and its extensions

are presented in the previous chapter. The force control robot system con­

sists of the robot and its controller, extended with an extra processor

card (G4). The setup uses two additional PCs, MasterPC for executing

the robot language extension (ExtRapid) and SensorPC for handling the

force/torque sensor, responsibilities that are to be handled by the con­

troller and the G4, but for development and testing purposes have been

kept separate. The MasterPC has a double role, acting as cell controller.

Robot force control programming is performed on three levels: (i.) Spec­

ification of a Simulink controller acting within the ABB industrial robot

controller; (ii.) Steering of the controller through language extensions
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in the ABB robot programming language; (iii.) Task­level force annota­

tions in the Delmia simulation software. The robot controller extension

allows arbitrary Simulink models to affect the robot trajectory at the 4

ms joint level. Developed models are compiled using Real­time Workshop

and transferred to the G4 file system (NFS, FTP, ...) prior to execution.

Execution time is not dependent upon ABB hardware but relies on the

G4 processor, allowing for quite CPU­intensive models. Compiled models

can easily be switched between task executions. A Simulink library of­

fers blocks for reading and writing ABB trajectory data. External sensor

data can be integrated as extra blocks, with data provided, for example,

through the G4 Ethernet port. A low­level Java GUI (OpCom) allows di­

rect access to the G4 for switching models, logging model parameter data

and changing model parameters for tuning and validation in a running

system.

At a higher level, model parameters are exported dynamically to the

robot programming language extension (ExtRapid) where they can be

accessed and modified as part of a regular robot program. Usage of a model

is encapsulated in a controller block. Outside the controller block, regular

ABB RAPID code is executed as usual. Inside the controller block, RAPID

code is executed under the influence of the model. Since the model is not

allowed to deviate too much from the planned trajectory for supervisory

and safety reasons, RAPID code is needed for defining a default trajectory

within the block. The interface between regular code and model influenced

code is currently solved by requiring the robot system to be in a known

state (nonmoving, not­in­process) when turning on and off the model.

The ExtRapid extension1 is implemented to be in conformity with stan­

dard RAPID on ABB S4 and IRC5 systems using compiler­compiler tech­

nology. Controller blocks are specified as add­ons to the grammar specifi­

cation. As for programming, we refer to the example in Fig. 4.3.

This project used the off­line programming (OLP) method, with DEL­

MIA V5 Robotics as the OLP system. The force­feedback programming

method in this project was aimed at making the programming environ­

ment as powerful and user friendly as possible. In addition to the default

installation of DELMIA a small interface was implemented to incorpo­

1This version of ExtRapid differs from the one developed in chapter 3. The language

extension is fully integrated into the Rapid abstract syntax tree (AST) and follows normal

syntactic and semantic language rules. Declarative and aspect­oriented properties of the

applied compiler­compiler tools (JastAdd [31]) allow the AST to be decorated with specific

language rules for the extension. An executable aspect of the AST acts as middleware,

coordinating Rapid and Simulink execution and transfers of state. A compilation aspect

produces Rapid code for upload to the controller. JastAdd allows for a clear separation

between extension and Rapid concerns, making it feasible to modularize the extension as a

Rapid add­on.
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MoveJ pos10, v50, fine, drill_TCP

MoveL pos20, v20, fine, drill_TCP

FORCE

FORCESET ramp_speed := 150;

FORCESET glob_gain := 1;

FORCESET f_switch := 1;

WaitTime 0.1;

FORCESET forceRef := -400;

FORCEWAITUNTIL forceOut <= -390;

WaitTime 1;

SetDO bus2do8, 1;

WaitTime 0.5;

SetDO bus2do8, 0;

FORCESET glob_gain := 0;

WaitTime 8;

FORCESET glob_gain := 1;

FORCESET forceRef := 0;

WaitTime 5;

FORCESET f_switch := 0;

WaitTime 1;

ENDFORCE

MoveL pos30, v50, fine, drill_TCP

Figure 4.3 The example force tag above defines a force scope in ExtRapid for

pos20. The force is ramped up with the speed of 150 mm/s; f_switch command

starts the impedance controller; forceRef = ­400 is the clamp­up force; forceOut is

a trigger value to continuewith the next ExtRapid program line; SetDo bus2do8,1

activates the drilling cycle; glob_gain = 0 stops the force control loop, which keep

the robot steady during drilling. As glob_gain = 1 and forceRef = 0 is executed, the

force control starts again and the clamp­up force is reduced to zero before moving

the end­effector to pos30 in the Rapid program; pos30 is a position some distance

away from the airframe.

rate ExtRapid programming as part of the robotic drilling simulation

process. In DELMIA there is a functionality to include comments to a

robot program, as the comment types PreComment and PostComment.

The PreComment includes a comment prior to a program line in the post­

processed robot program. PostComment does the same, but includes the

comment text after the program line. For each position in the simulation

model to be drilled the user clicks “Insert ExtRapid” and the ExtRapid

menu is shown, see Fig. 4.4. Using PreComments and PostComments

enables the user to view ExtRapid data directly in the PPR­tree. Using

PreComment and PostComment was the key to avoid customizing the

post processor in DELMIA. When the program is executed in the robot,
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Figure 4.4 The Delmia interface with ExtRapid programming functionality.

the master controller interprets the ExtRapid data. One advantage hav­

ing the master controller reading directly from the program in the robot

controller, is the ability to include ExtRapid data in the teach­in pro­

gramming method. The method to include the ExtRapid data in DELMIA

made it possible to avoid the additional programming of force data on the

workshop floor.

4.3 Drilling System Design

The end­effector prototype, an overview of which is shown in Fig. 4.1, was

designed with the purpose of generating force and torque sensor data to

the robot controller. The drilling tool was equipped with a tripod with

three antennas positioned symmetrically around the drilling tip. When
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each antenna is pressed to the surface a force will build up and propagate

to the force sensor. Three antennas were used to recognize asymmetrical

forces around the drill tip in order to compensate for lack of normality.

The Coromant CaptoTM interface was used for attachment to the robot

chuck. The force sensor was a JR3 160/50M and was installed between

the drilling unit and the pressure foot. The end­effector was configured as

a mix between a pointing configuration and a hanging configuration [22].
The sensor data from the force/torque sensor was used in the following

way:

• Torque: different amount of force on each antenna will cause errors

in normality.

• Z­force: the total amount of pre­load force exerted on the surface.

• X­Y­force: the force indicating the skating effect.

All the six degrees of freedom (6­DOF) of the force/torque sensor are

used to compensate for the different phenomena in the process. The torque

will increase if the end­effector is rotated around the X­ or Y­axis (defined

in the workpiece plane), which corresponds to the end­effector force not be­

ing normal to the surface. Thus, the controller will make use of the torque

measurements to even out the force on the three antennas. The controller

will control the Z­force to ramp up the clamp­up force to the reference

value and use the X­ and Y force values to control the forces in the X­

and Y­directions to zero, thus eliminating skating. Without compensation,

due to the compliance in the robot transmission and links, deformations

of up to several millimeters could occur, which would seriously degrade

hole quality and positioning. Although the high­friction contact between

the tripod and the surface improves the sliding suppression and effec­

tive stiffness of the robot, sliding may still occur if the tangential forces

become larger than the break­away force of the friction contact. This is

frequently the case in practice, as the axial cutting forces will make the

tripod ascend from the surface, thus breaking the friction contact.

Dynamic Modeling and Control

For the purposes of simulation and model­based control design, a dynamic

model of the system responses to external forces and motion references is

required. The deflection in the tool position will not be in the direction of

the external force. In particular, the axial forces on the drill and pressure

foot will make the robot bend and deflect also tangentially to the surface,

causing a sliding motion which must be compensated for. The presence of

dry and viscous friction in motors and transmissions, mechanical backlash

and partially unknown parameters make it necessary to find a detailed
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model for high­bandwidth modelbased control design. Models capturing

the behavior of the controlled robot were experimentally obtained accord­

ing to [32], [33].
An extended approach including friction parameters was outlined but

was not used in the final experiments, as friction was shown to be handled

more accurately on a lower level by the position/velocity control servos of

the built­in controller. For this reason, the identified model used in the

experiments was a linear MIMO system.

Environment Properties During stiction contact between the tripod

and the drilled component, when the tangential forces became larger than

the break­away forces of the stiction, the tripod started to slide across the

surface, with poor hole quality and positioning as a result.

Therefore, it was important both to control the tangential forces so

that sliding was avoided and to control the moments to keep the tripod

in contact with the surface at each of the three contact points.

For the tripod contact of the drilling tool used in this work, it was nec­

essary to take also the geometry of the contact into account. The contact

was considered as a combination of three­point contacts, where the force

acting at each point contributed to the effective force and moment acting

at the robot TCP point.

The developed contact model provided a useful local approximation

during stiction and the objective of the control was to keep the system in

this stiction regime.

Control Design Because of the limited bandwidth of the motion control

system and the deformations of the robot caused by external forces, the

tracking of the desired motion may be poor when the robot is in contact

with a stiff environment. In order to improve the tracking performance,

compensation of the effects of the measured external forces was included

in the inner­loop motion control. This can be seen as trying to increase the

“stiffness” of the robot as seen from the tool, which improves the ability

to control contact forces and moments. Although the compensation can

only improve the rejection of disturbances up to a frequency limited by

the mechanical and controller bandwidth, it is still effective as long as

the variation of the sliding forces is slower than the bandwidth, which is

usually the case in practice. We used a controller structure which includes

this inner­loop compensation. The controller was chosen to give a proper

suppression of disturbances at the arm side position for frequencies up

to approximately 25% of the mechanical bandwidth, in order to suppress

the dominant sliding effects.

In addition to force sensors, which can be used to obtain improved dis­

turbance suppression through feedforward, feedback from arm side posi­
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tion measurements could be used in the inner controller to improve the

absolute accuracy of the positioning. Such measurements could be ob­

tained from, e.g., cameras or laser trackers.

Since the inner loop design was based on a 3­DOF model with transla­

tion only, a static decoupling matrix was included for improved decoupling

between the control of xy­torques and xy­forces. The use of a purely static

method for the decoupling of the rotation can be motivated by the much

lower demands on the bandwidth of the moment control, as compared to

the linear forces. The reason for the difference is that the moment control

only needs to keep the tripod aligned and in stable contact with the sur­

face and is not as strongly affected by the fast variation of the forces that

cause the deflection and sliding. A proper choice for decoupling matrix

could be found from the static calibration data, as described in [32], [34],
[35], [36].

4.4 Experiments

The first part of the experiments were carried out at Lund University,

using a smaller ABB IRB 2400 industrial robot equipped with a pneu­

matic Atlas Copco LBL25 drilling machine with 4 mm drill diameter. The

contact forces were measured using a JR3 force/torque sensor and the

workpiece was a 3.5 mm plate of high­strength aluminum. In this part of

the experimental program, a number of experiments were performed in

several different robot configurations, with the purpose of evaluating the

effect of the sliding suppression control. The evaluation was done by com­

paring the results from two different sets of experiments, corresponding

to controllers with and without sliding suppression, respectively.

In Fig. 4.5 it can be seen that the tool deflection when forces were

applied during the force buildup was reduced to approximately 0.1 mm

and sliding during the drilling phase was reduced to 0.1 mm. Having per­

formed a number of experiments in different configurations, the model­

based force controller was always able to control the sliding forces so

that the tripod contact remained in the stiction regime during the entire

drilling operation and the tangential deformation was always below 0.3

mm. This resulted in greatly improved mechanical stiffness and vibra­

tion suppression, leading to significant improvements in hole quality and

positioning.

Using the same motion control software, an extended test program

was performed in the robot lab at Linköping University. Test coupons

were installed in a test rig at four different locations in the robot work

envelope. In each experiment the skating deviation was measured using

two LVDT sensors (Linear Variable Differential Transducer). The test
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Figure 4.5 The linear deflection of the tool in the x­ and y­directions during a

drilling experiment using an inner­loop controller with compensation for the robot

compliance and with active control of the sliding forces. The drill sliding is reduced

in the critical drilling phase by a factor of five as compared to the previous case.

program included four stations and on each station three tests were made:

1. to press with different clamp­up forces on the surface using a hard

foundation;

2. to press with different clamp­up forces on the surface using an elastic

foundation;

3. to keep the clamp­up force constant and drill.

For each test forces and torques in all six degrees of freedom and

skating using LVDT sensors were logged.

The elastic foundation constituted four rubber pillows and two square

shaped plates. When the robot pushed the test coupon intentionally moved.

The idea of a moving test coupon was to simulate flexible skin panels. In

this case the LVDT moved along with the mobile test coupon. The outputs

of the tests were the measured forces and torques in all six­degrees­of­

freedom and the skating as measured using the LVDT sensors.

In order to measure the skating during clamp­up, the drill bit was

replaced with a short rod having square cross­section. This solution en­
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abled the LVDT to measure skating as close to the drill tip as possible.

The robot was moved close to the surface before the measurements were

initiated. This small movement before build­up of the clamp­up pressure

caused a small movement, which was neglected when measuring the ac­

tual skating effect. The force feedback control was initiated as soon as the

force was detected in the force sensor. The test results showed an LVDT

motion of 0.1 mm. It was concluded that most of the 0.1 mm movement

was due to the orientation control of the end­effector. The reason for this

was that the LVDT could not measure exactly at the TCP point, but rather

at a point 3­4 mm up along the square shaped stick. This phenomenon

was increased when drilling on flexible surfaces, where larger orientation

control actions were necessary.

The drilling was performed with a Gühring cutter with a 5 mm bore

diameter and the holes where drilled 15 mm apart. The hole­to­hole cycle

time was around 12 seconds. The actual time to control the clamp­up

without skating and with the end­effector orthogonal to the surface took

around 2.5 seconds. In addition to the coupon drilling tests drilling was

also made on a very flexible plate. This test was made to investigate how

well suited this method is to be used in flexible airframe skin panels,

as seen in Fig. 4.7. In the cases where the structure has low stability,

the normal direction of the skin will change during clamp­up. This is

one of the strengths of using force/torque feedback. In this case the end­

effector maintains orthogonality with respect to the surface during clamp­

up, through rapid rotation of the tool in order to adapt to the changing

surface normal. This was confirmed in laboratory experiments, drilling on

the very flexible skin panel.

4.5 Discussion

As an alternative to controlling the position using arm side position feed­

back, the controller attempts to achieve sliding suppression by making

sure that the tangential interaction forces are always small enough to

keep the contact in the stiction regime. In practice, the achievable band­

width of the force control is limited by the mechanical bandwidth of the

robot, as well as by the bandwidth of the inner motion control. Therefore,

the force control and sliding suppression must be combined with proper

mechanical construction in order to obtain a sufficiently stiff system. In

the proposed solution, the stiffness is effectively increased by the tripod

high­friction contact. The contact will damp and suppress small distur­

bances, such as vibrations from the feeding and rotation of the drilling

tool, while the force control and active sliding suppression handles large

disturbances at lower frequencies, such as the slower variations of the
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Figure 4.6 Task­level program set­up for testing of drilling in flexible airframe

skin panels.

Figure 4.7 Set­up for testing of drilling in flexible airframe skin panels according

to task­level program of Fig. 4.6.
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Figure 4.8 Drilling operation forces Fx , Fy, Fz, Mx, My, Mz vs. time for the end­

effector with three antennas also reflecting the drilling operation cycle time, the

plate thickness being 4 mm with holes at a distance of 15 mm.

cutting forces. Thereby, a system which is able to reject disturbances over

a wide frequency range is obtained, at a potentially very low cost as the

solution requires only a standard force/torque sensor integrated into the

drilling tool. Whereas there are difficulties with coupling between differ­

ent directions in the Cartesian space and the linear­model approximation

could be challenged, it should be stressed that in spite of these approxima­

tions and error sources it was possible to obtain the performance needed

for the process.

In addition to the robotic force control interface [29], [30], robotic force

control interfaces and their usage have been reported elsewhere – e.g.,

the DLR effort [37], the Comau force control interface [38] and the ABB

force­controlled machining [39].

4.6 Conclusions

The use of industrial robots in automatic drilling applications has been

limited, mainly due to the presence of rapidly varying interaction forces

in combination with compliance in gear boxes and links. Functionality
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for high­bandwidth force control in modern industrial robot control sys­

tems could potentially lead to robotic drilling systems with significantly

improved performance, without the use of costly hardware modifications

and calibration procedures. In this paper, we have presented methods and

systems for force­controlled robot drilling. Using a 6­DOF force/torque

sensor, an outer force control loop and a model­based inner­loop distur­

bance compensation scheme have been designed and used to control the

axial contact force and suppress the sliding of a tripod contact while the

drilling is performed. The advantage of the proposed controller is demon­

strated in reproducible drilling experiments using an industrial robot sys­

tem. Moreover, the application potential for high­precision robotic drilling

operations in airframe assembly has been demonstrated.
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5

Configuration Support for

Parallel Manipulators

Goal: Software support for configuration of modular robots

5.1 Introduction

New low­cost and flexible robot concepts are needed to fulfill the needs for

small lot production series, typically found in small­ and medium­sized en­

terprises (SMEs) in manufacturing; SMEs depend on their ability to cost

efficiently produce customized products and the use of manual labor is

common to accomplish the required flexibility. To maintain profitability

on a global market, there is a desire to have robots that in an efficient

way can assist human workers. This would require robots to be much more

flexible to configure and use, and in many cases much more stiff in the

sense of motion compliance compared to traditional industrial robot arms.

The Parallel Kinematic Manipulator (PKM) with Gantry­Tau structure

has been proposed recently to accomplish a low­cost reconfigurable stiff

robot [40]. The Gantry solution provides a larger working range than other

PKMs do. The Tau variant provides an open and accessible workspace,

which is an important advantage over, e.g., the linear Delta version. Op­

posed to traditional serial/articulated robots that come as an optimized

fixed unit from the robot manufacturer, a Gantry­Tau PKM can be assem­

bled at the customer site and reconfigured to meet various task require­

ments, without loosing stiffness or speed if reconfigurations are within

reasonable limits. However, reconfiguration of the robot demands on­site

calibration to guarantee absolute accuracy of the manipulator. Figs. 5.1

and 5.2 show two early LTH prototype Gantry­Tau of varying sizes. In

Fig. 5.3, we see two later prototypes of the Gantry­Tau, developed within

the EU FP6 SMErobot project [41]. The upper left picture shows the robot
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Figure 5.1 Prototype 3­DOF parallel robot with Gantry­Tau structure built using

a modular framework carrying Güdel linear actuators. The links shown in the pic­

ture are controlled through an ABB IRC5 industrial robot controller. Note that the

links are not dimensioned for industrial usage. The end­effector carries devices for

collision protection and tool exchange (cabling for the wrist not included in picture).
To the upper left can be seen cameras to be used for signature calibration.

integrated with an industrial robot controller where it is used for contact

force­controlled grinding and cutting applications within the foundry in­

dustry. The upper right picture shows a vertical prototype with dual motor

control for backlash reduction and improved performance. The robots are

modular in their design and the base construction consists of three linear

actuators working in parallel with arm links connected to the robot wrist

using the Tau structure. Both the robot and the framework carrying the

robot are built using modular components to ease fast deployment. The

framework in the upper right picture is based on the box­joint system

designed at Linköping University [42].
Arm lengths can easily be changed by replacing arm links, and the

linear actuators can be moved in space by adjusting the framework, thus

easing reconfiguration. The overall design and kinematic configuration

needed when assembling at a customer site is related to the engineering

that has traditionally been done at the robot manufacturer site, but with

the increased modularity and the mechanically not redundant link system

there is now an opportunity to base the design less on the limits of robots

66



5. Configuration Support for Parallel Manipulators

Figure 5.2 Table­sized Gantry­Tau prototype shown at the Scandinavian Techni­

cal Fair (Stockholm, 3­6 October, 2006). End­effector, linear tracks and gearboxes

manufactured inhouse. Drive systems from the Faulhaber Group [6]. Robot con­

trolled from the Visual Components 3DCreate tool (laptop).

from robot manufacturers, and more on the requirements of the end­user,

which may shift over time and application. A key property for the end­

user is the usage of a standard industrial robot controller whereas an open

R&D­platform is to prefer during the development phase. In a series of

previous research projects on contact­force control, an open robot control

platform for fast sensor interface was developed by Lund University and

ABB [30, 44]. Furthermore, the SMErobot partner Güdel AG [43] has

experience in integrating their modular robotics components with ABB

robot controllers. Therefore, an ABB IRC5 controller was chosen together

with Güdel linear actuators to form the core of the prototype. Then, in

cooperation with ABB, PKM kinematics were developed and integrated

into the (standard) IRC5 system. In parallel, there is a R&D platform

based on the IRC5 controller for further algorithm development.

It is important to support the new configurability and modularity in

robot simulation and programming tools. In the early design phase, sim­

ulating the process is necessary in order to dimension the PKM for the

task. A configurable Gantry­Tau simulator was developed for a robot tool

that targets end­users in the workcell planning phase and together with

tools necessary for configuring the kinematic structure of the robot at
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Figure 5.3 Parallel kinematic robot in force­controlled cutting operation on a

casted pump house at CTI, Sheffield (upper left); Vertical Gantry­Tau PKM at

Güdel, AG, Switzerland, with dual motor control [43] (upper right); Schematic pic­

ture of PKM and its links (lower left); The pump houses (or workpieces) before and

after (manual) cutting (lower right).

this phase it provided the necessities for the initial planning in a foundry

workcell scenario.

The rest of the chapter is organized as follows: Firstly, issues regarding

PKM kinematics and its application in a controller are discussed. Then

the support in end­user tools is discussed and the concept task­centric

reconfiguration is defined. The article concludes with further perspectives

and future work.

5.2 Gantry-Tau Kinematics

The basic design of the Gantry­Tau robot consists of three parallel pris­

matic joints moving carts on linear tracks [43]. The three carts are con­

nected via links to a wrist mount. The six links are clustered into three

groups (arms), with one, two and three links, forming the Tau structure.

The links are connected to the cart and wrist mount through passive
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spherical joints. During the project, new spherical joints with very high

stiffness in relation to weight and low friction were developed using bear­

ing structures with diamond­like carbon layers. The links belonging to

the same cluster form parallelograms.

3­DOF Kinematics Gantry­Tau kinematics for 3 degrees of freedom

was implemented both in the standard ABB IRC5 controller, in the above

mentioned R&D platform and in PC control for the Güdel­based vertical

Gantry­Tau PKM (Fig. 5.3) equipped with Beckhoff drives [45].
The Gantry­Tau kinematic solution for 3 degrees of freedom is de­

scribed in [46]. In contrast to the case for serial manipulators, the forward

kinematics problem is the more difficult problem to solve for PKMs. For an

analytical solution the 3­DOF forward kinematics solution assumes par­

allel prismatic actuated joints and a fixed orientation of the wrist (which

is guaranteed by proper placement of the links in the Tau structure).
The problem can then be reduced to a stepwise geometric solution where

first the intersection of two link clusters is calculated and then the re­

sulting circle is intersected with the third link cluster. For the forward

kinematics, two solutions exist and a configuration state is needed to de­

cide which one is valid. The forward and inverse kinematics solution for

the three­base actuated prismatic joints can thus be represented as

qx = f −1
3 (x, s, c) (5.1)

x = f3(qx, s, c) (5.2)

where the joint positions qx = (q1, q2, q3) are related to a wrist center

point (WCP), position x = (x, y, z) and parameterized by a configura­

tion state (solution selection) c and a structural parameterization s. As

the configuration state resulting from direct kinematics is not related to

the inverse kinematics configuration, c is defined to include both kind

of configuration states. The kinematics solutions have been implemented

in Matlab and C for control purposes and in Maple and Python [47] for

simulation and analysis purposes. For the R&D controller platform, the

kinematics are represented in Simulink/Real­time Workshop blocks for

fast and easy control and application development (i.e., no proprietary

controller code needs to be changed in modifications of control algorithms

or the kinematic implementations during a development phase).

Kinematic descriptions

To capture and support the modularity and flexibility of the Gantry­Tau

PKM as needed for manufacturing SMEs there is a need for a common

higher­level kinematic description that can ease implementation of new
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software tools, methods and algorithms. Symbolic representation of kine­

matics is necessary for developing methods for calibration and configura­

tion such as identifying geometrical and dynamical properties of an assem­

bled robot. As an example, a higher­level kinematic description would con­

siderably ease integration efforts between applications. One experiment

would aim towards integration of two applications featuring discrete­

event simulation of workcell layouts (3DCreate [48]) with automatic pro­

gram generation (RinasWeld [49]). A common higher­level kinematics de­

scription enabling the two software environments to share robot geometry

and kinematics would considerably ease the integration effort. To this end,

the Modelica language was tested by using it for kinematic analysis, Mod­

elica being an object­oriented modeling language [13]. Dymola is a com­

mercial implementation of Modelica, which is used in this work (Dynasim

[15]). Figure 5.4 shows a Modelica model of the Gantry­Tau robot. Two

different kind of models have been implemented to model direct as well

as inverse kinematic behaviour. The Modelica Multi­Body Library models

kinematics and dynamics (kinetics) of rigid body systems. An advantage

of Modelica is that mechanical models can easily be extended with models

from other domains, e.g., a controller or an actuator for the PKM. Together

with additional files provided by Dynasim, C­files generated for simula­

tion can be used for hardware­in­the­loop simulations, e.g., for control of

the robot. This, together with other experiences from manual implemen­

tation of a GT kinematic solution in C for ABB IRC5, implementation in

Maple with code generation towards Visual Component specific Python

and modeling and analysis in Modelica points clearly towards a need for

a common kinematics description valid across both controllers and tools.

Higher degrees of freedom

The Gantry­Tau has a natural modularity in extending the degrees of

freedom. Several different ways of extending the existing 3­DOF robot to

5­DOF are conceivable. First, mounting an active wrist with two rotational

DOFs on the existing wrist mount were considered. A second possibility

was to add two supplementary carts on two of the tracks and have the six

links distributed on five link clusters. A third is to add rotational joints

on two of the carts to transfer re­orientations to the wrist mount through

the link clusters, as done in Fig. 5.3 (upper left).
For the first case, an analytic solution of the kinematics problem is

easy to derive. In this case, position and orientation can be regarded sepa­

rately. For forward kinematics, first the platform position Xp is calculated

from the joint positions [46]. Then, the WCP position X and orientation

R are obtained by considering only the active wrist with rotation angles

qθ = (θ1,θ2) and kinematic parameterization sw (e.g., Denavit­Hartenberg

parameters) and f2(qθ , Xp, sw) calculated [50]:
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Figure 5.4 The Modelica language supports analytic handling of kinematic loops,

which is an obstacle in many other simulation and modeling tools. The multi­body

library is used for modeling the kinematics and dynamics of a 3­DOF Gantry Tau­

PKM.

(X , R) = f5(qx, qθ , s, sw, c) = f2(qθ , f3(qx, s, c), sw) (5.3)

The inverse kinematics problem can be solved similarly. For the foundry

application, a compact wrist with new lightweight servo actuators includ­

ing new harmonic drive speed reducer and new motors from HDD1 (servo

actuator weight 2 kg, outgoing static torque 80 Nm) was developed (Fig.

5.5).

5.3 Gantry-Tau Configuration Support

The modular design of the Gantry­Tau PKM allows part of the overall

design and kinematic configuration traditionally performed at a robot

manufacturer site to be exposed as configuration options towards the

end­user, thus increasing the robot flexibility towards the end­user ap­

1HDD Servo Motors AB, http://www.hdd.se
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Figure 5.5 The 2­DOF serial wrist with two lightweight actuators including high­

power HDD­motors mounted on the (black) “wrist frame plate”. A wrist­mounted

force/torque sensor (ATI Omega160) is used for lead­through programming and

contact force­controlled cutting/grinding.

plication. However, (re)configuration options must be analysed and han­

dled already in the workcell planning phase for the end­user to bene­

fit from these properties optimally. This calls for reconfigurable simula­

tion models to be included in robot tools together with robotspecific tools

for analysing/deriving robot configuration properties (pre­calculated for

traditional non/limited­configurable robots and normally available from

the robot manufacturer), such as workspace envelope, for comparison to

task requirements and (eventually) synthesizing configurations based on

robot­task requirements.

Automated calibration routines

Every physical reconfiguration of the robot frame or change of link lengths

requires a succeeding recalibration to guarantee the accuracy of the robot.

In general, signature calibration of robots are done at the robot manufac­

turer using high­precision metrology equipment. For a reconfigurable ma­

nipulator, the need for a low­cost, high precision, automated calibration

method is needed.

In [51], a method for fully automatic kinematic calibration of a robot

using two cameras was presented. This method includes calculation of

appropriate measurement points, automatic experiment execution, auto­

matic pattern detection and localization to determine the robot pose and

identification of the kinematic model by model­error minimization. Esti­

mation of the kinematic model’s positioning error resulting from measure­

ment and modeling errors is given. The method achieves subpixel resolu­
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Figure 5.6 The automated calibration routine in [51] repositions the robot and the

wrist mounted calibration pattern on a semioptimized grid in the robot workspace

(based on approximative parameter values). Accurate kinematic robot parameters

are then calculated based on measurements of the corresponding stereo pictures

and the robot joints values.

tion for the pattern positioning. Fig. 5.6 shows a pair of stereo pictures of

the robot with calibration pattern.

Task-centric configuration in foundry scenario

Manufacturing in the traditional foundry industry comprises several chal­

lenges for a flexible automation, including small­lot series and individual

variations in castings. Due to harsh working conditions, cutting and de­

burring in foundry industries is an important robot application. For end

user testing, a PKM work cell is built at the Castings Technology Interna­

tional [52], Sheffield, to support a medium­sized foundry company (Norton

Cast Products Ltd [53]). The applications are mainly cutting and grinding

operations of foundry goods.

In the scenario foundry workpieces come in small batches (estimated

1­10), varying sizes (estimated 10­1000 kg) and with varying geometries.

The Norton Cast application consists of removal of input metal reservoirs

through cutting. The reservoirs are needed for the casting process but are

not part of the product, cf. lower right pictures in Fig. 5.3. The cutting

process is then followed by stub grinding and for fins also deflashing, with

cutting forces as depicted in Fig. 5.9.

For the initial planning of the cell, a feasible task family was cho­

sen (cutting of low­weight workpieces, 10­100 kg) and appropriate robots

and external axes were selected for the tasks, including selection of PKM

structural configuration parameters for fitting the robot geometrically to

the task. This setup was one of the SMErobot key demonstrators for new

easy­to­use robot concepts [41]. Properties considered interesting were
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Figure 5.7 Prototype SMErobot foundry workcell using a reconfigurable Gantry­

Tau PKM for material removal. To the left are reconfiguration parameters for the

modular framework supporting the PKM.

Figure 5.8 Gantry­Tau before (left) and after (right) re­configuration.

workspace envelope (to handle varying workpiece dimensions), reacha­

bility of cutting tool towards workpiece, dexterity (for good cutting pro­

cess), determination of necessary degrees of freedom for wrist (to reduce

weight) and determination of the necessity of an external axis for the fix­

ture (to increase reachability). Configuration decisions were to be assisted

by simulations performed in a workcell and factory planning tool.

To configure the robot to better fit the task in consideration, a recon­

figurable robot simulation was implemented in the 3DCreate tool [48].
For the initial planning a family of workcell simulations with the robot

74



5. Configuration Support for Parallel Manipulators

Figure 5.9 Cutting force from slitting operation (upper). Corresponding TCP­

position: Approach phase (A), cutting phase (B), after cutting through (C) (lower).

were then created featuring different wrists (1­, 2­, 3­DOF), different fix­

tures and different number of external axes (0­, 1­DOF). The size of the

robot was selected by reconfiguring the robot with ranges of link lengths

and track positions to find a good working envelope for the task while

adhering to volumetric constraints (room size). Reachability and collision

freeness were confirmed for the example workpiece CAD model by explicit

programming and simulation of the cutting process for promising work­

cell candidates. This also gave an indication of how the workcell might

perform for other workpiece geometries, although further testing would

be necessary. Figs. 5.7 and 5.8 show one candidate workcell with robot

reconfiguration, selection of wrist and fixture and result from workspace

envelope analysis of one robot configuration (easily covering the work­

piece).

Virtual tools to ease task-specific configuration analysis

To assist in the initial workcell planning stage it was important to ease

configuration analysis in the simulation tool. In particular, easily accessi­

ble methods for deriving robot configuration properties were needed. Later
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Figure 5.10 workspace exploration end­effector mounted on Gantry­Tau robot

(left). The tool implements a simple grid­based algorithm to estimate workspace

envelope. Outcome of the tool (right).

a need for task knowledge in the simulation tool was discovered.

Availability of automatic programming for the cutting process would

probably have meant significantly reduced time spent on verifying reach­

ability and collision­freeness at the initial planning stage. Having these

needs and at the same time considering the component model used in the

simulation tool, the solution was to create virtual end­effector tools con­

taining both tool geometry and process/task knowledge, thereby allowing

the tool to automatically program any robot that it was mounted on. Two

examples of virtual tools were created. Fig. 5.10 shows a pure virtual

end­effector tool (no representation in the real world) used for obtaining

an estimate of the robot workspace envelope for a given configuration. It

contains a parameterized robot task (search volume, sample step) that de­

fines a discrete volume grid search algorithm noting reachability for each

visited position in space. The result is stored as a program in the robot

containing all reachable points and may be viewed by the simulation tool.

Fig. 5.11 shows a touch sensor virtual end­effector tool. The tool contains a

grid search algorithm to probe the surface of a workpiece placed in front

of the robot which can be used, for instance, for analysing reachability

and collision­freeness towards a CAD workpiece for given configurations.

Unlike the previous tool, the virtual touch sensor may present a real tool

and might even be used in path planning the search for the real work­

cell. Eventually, in this particular case, the virtual tool geometry is to

be replaced with the geometry of a real touch sensor and moved to the

full­scale Gantry­Tau robot. Both tools were created following the compo­

nent model of the simulation tool and were implemented using the builtin

script language (Python [47]).
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Figure 5.11 Desktop version of Gantry­Tau equipped with a fictitious touch sensor

and programmed with a search pattern.

5.4 Conclusions

The reconfigurable Gantry­Tau PKM is a new robot concept that has the

potential to achieve a cost/performance ratio that would make it highly at­

tractive for SME manufacturing. To support reconfiguration, it was expe­

rienced that robot simulation and programming tools need to provide aid

in terms of reconfigurable robot models and end­user analysis methods.

For implementation, 3DCreate provided good support through its compo­

nent model, plug­and­play capability and the flexible Python­scriptable

engine. To increase flexibility, two possible extensions of existing 3­DOF

kinematics to 5­DOF were presented.

To assist engineering analysis and synthesis of the robot workcell, a

task­centric view was proposed to ease adaptation of the robot configura­

tion towards the application. As an example, the workspace analysis tool

(implemented in Python as a virtual end­effector) turned out to be easy

to use by other users, knowing nothing about the internals. For robot pro­

gramming and task configuration in general, a non­robot­centric view was

proposed, where task and process knowledge are associated with the end­

effector. The end­effector also programs the robot, so that by mounting a

cutting tool the robot effectively becomes a cutter and is configurable for

cutting operations.

The modularity and flexibility of the GT­PKM, together with the needed

toolkits for configuration and task definition, have made us realize that

77



5.4 Conclusions

there is a need for a common higher­level kinematic description that can

ease implementation of new methods and algorithms. Code generation

towards explicit controllers, low­level code, robot models and other rep­

resentations was equally important to lower the amount of engineering

time needed. Symbolic representation of kinematics and other properties

are necessary for developing methods for calibration and configuration

such as identifying geometrical and dynamical properties of an assem­

bled robot. Our conclusion is that such an increased level of abstraction

is of key importance to fully exploit the increased flexibility, without too

extensive engineering efforts.
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Human­Robot Interfaces





6

On the Scalability of

Visualization in

Manufacturing

Goal: Selection of functionality and information from engineering tools

in shop­floor user interfaces

6.1 Introduction

Virtual manufacturing environments are emerging1 to meet the demands

of rapid planning and reconfiguration in production systems. That in turn

is driven by the need to rapidly respond to product changes, thereby

achieving shorter time to market and increased profitability.

The similarities between factory automation and both virtual reality

and enterprise computing have been observed [54]. There are, however,

also important differences. In the world of factory automation, as well as

in other areas such as autonomous systems etc., we have to cope with

the differences between the real and the virtual world, not only during

creation but also frequently during tuning, operation and maintenance

of the system. This imposes additional requirements on the user inter­

action, which may take place first in an engineering environment and

later in a production environment (using the same software component).
Furthermore, software components may be used for, or tightly together

with, the control of physical machines. In order for this to scale up to

1This chapter was written when Internet 3D standards were emerging and digital plant

technologies were in development. In the time span elapsed since then graphics in handheld

devices have become common. For instance, Android units today offer a Java platform with

capable graphics performance.
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large, as well as down to small systems, we will first have to find a sound

software technology. Secondly, we need an appropriate technique for sup­

porting graphical user interfaces. As the most challenging case, we focus

on the need for 3D graphics, which clearly applies to many programmable

machines such as industrial robots.

We propose the notion of executable visualization graphics as a term

for the encapsulation of graphics and renderer together in a software com­

ponent. The immediate advantage is that one may use a high­level graph­

ical description language but still be able to render on systems providing

only low­level rendering capabilities. Other advantages are customized

navigation and animation capabilities, easy management and customiza­

tion of graphical descriptions, possibility to use template software com­

ponents for creation of a whole class of visualizations, and construction

of visualization components for heterogenous environments. We believe

this approach will be highly useful when dealing with small application

specific visualizations.

After presenting some related approaches, we will first look at the issue

of scalability and its implications for manufacturing software. That points

out some unsolved issues concerning software components and graphics.

The main part of the paper is the subject of executable visualizations. A

prototype implementation using Java technology is presented followed by

a discussion with application examples. Finally, conclusions are drawn.

6.2 Related Work

Web visualization is a field which is in the beginning of its development.

This work has largely been inspired by the efforts of Dr. Mikael Jern to

create componentbased web visualizations [55]. Visualizing medical data

on the web is a problem because most medical examinations produce huge

amounts of data. The low bandwidth of Internet produces the need for data

reduction techniques reducing the amount of data being sent to the web

visualization client. Dr. Jern is considering client­server solutions based

on intelligent component clients containing rendering, custom navigation

and visualization functionality to assist the user in searching the datas­

pace while minimizing the data transfer rate.

The German Institute of Space Flight has made an early attempt to

use web­based visualization for telepresence [56]. Their group has de­

veloped virtual robots used for online prediction of robot movements in

teleoperating environments.

Most notable within manufacturing visualization is the field of digital

manufacturing, creating large scale visualizations covering entire plants.

The production shall be suited to the product: the goal of digital man­
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ufacturing is to connect manufacturing control to the product planning

process. By simulating the entire production process in a virtual environ­

ment shorter product cycle times are achieved, as well as lowered costs,

guaranteed quality and shorter product­to­production time spans [57].
Robot visualization is being used in simulation and control software

for robot manufacturing [58]. The field of digital manufacturing rely on

plant visualization [57]. Visualizations are put to use in various situations

including control, monitoring and off­line programming tasks. The typical

visualization is part of a large system running on a dedicated workstation.

However, the Internet has created a demand for light­weight visualiza­

tions capable of running on low­end, low­cost personal computers to form

the backbone of new types of user interfaces.

6.3 Scalability

Within automation, there is currently a clear trend towards creating appli­

cation software by graphically composing available software components.

The issue now is to select the most promising approach to accomplish the

concept of executable visualization.

Components used in industry today are mostly written in C/C++ by

programmers well acquainted with the restart­the­computer culture which

they have learned to accept; believing in the utopia that you will finally

find that last error. Of course finding all faults can be done in theory, but

in practice the use of an unsafe language like C/C++ implies that the

engineering effort is too high. This means, for example, that even if only

one out of 50 used components at some time contains a bad pointer (due

to manual memory management) or an array index out of bound, that can

affect data which in turn may cause the entire application to crash.

As applications get larger and more complex, and considering that

components are more frequently used in safety critical application (such

as hazardous chemical processes), we need to worry about safe and de­

pendable operation. That involves several issues such as redundancy, su­

pervisory control, error handling, etc. But more logically, to make sure

those features really work, we need to ensure proper program execution.

This implies that the use of unsafe languages, for other than well re­

stricted/encapsulated local interfaces or drivers, will have to be aban­

doned for control systems. This is a necessary but not sufficient condition

for safe operation.

For a language to be called safe, we use the definition that all possible

executions are defined in terms of the language itself. This implies, for

example, that it has to be abandoned to: use absolute memory addresses,

create dangling pointers, index outside an array, cast­away type checking,
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or reference uninitialized memory. If any of this would be allowed, execu­

tion can result in something that is neither expressible as a program nor

desired. We talk about core dumps, blue screens and the like. A program

written in a safe language can also crash, but only in a controlled way;

for instance by throwing an exception to the invoking application, which

cannot be damaged by illegal memory access. Instead, measures can be

taken to manage the application in an appropriate way.

When it comes to the actual control of industrial processes and man­

ufacturing equipment, special care is needed to obtain real­time perfor­

mance and also to maintain operator interaction on the factory floor. Au­

tomatic memory management, or garbage collection, which is part of the

Java program execution and a cornerstone of the scalability of Java, is of­

ten referred to as an obstacle for real­time performance. That is, however,

not true. In our group it has been proved in theory and demonstrated in

practice on a real industrial robot, that well designed automatic memory

management works fine and predictable even in hard real­time systems

[59].
Encouraged by these results and realizing that Internet and enterprise

computing techniques are applicable even down to the field­bus level [60],
[61], we have focused on operator interaction and graphical user inter­

faces which play a key role in programming, configuration and operation

of manufacturing equipment. As the most challenging case, we consider

industrial robots and the need to handle description and presentation of

geometries. We then need a technique that provides both scalable/safe

operation and visualization that scales well from powerful workstations

down to dedicated devices on the factory floor.

The natural choice today is the Java language. Java has already made

its way into enterprise computing and since the same requirements show

up in factory automation, Java appears to be very well suited for the

task. Thus, we try to use Java for its safety, which is required to obtain

scalability and history has taught us that in the long run it is the scalable

techniques that survive.

6.4 Executable Visualization

We would like to put forward the notion of executable visualization as

a term for software components containing a graphical description and

customized code to render the description.

Four aspects of usability

A hard coupling between rendering and description provides a number

of possible advantages for the user such as customized graphical descrip­
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tions, customized rendering, self­contained graphical descriptions and plat­

form­independent execution and behaviour.

Customized graphical descriptions. A problem that has existed dur­

ing a long time, but has exploded with the introduction of Internet,

is the large number of existing file formats. It is not feasible to

equip each computer with readers for every file. One solution to this

problem is to introduce generic file formats and have generic file

viewers. This is the normal approach on the Internet today (Adobe

Public Document Format for WEB publishing, HTML for browsing

and VRML for 3D graphics). This solution is, however, not feasible

for specialized situations needing customized functionality. The nor­

mal approach is to develop specialized software tools. We propose

another way; by focusing on the data and enhancing it with custom

functionality we achieve an essentially self­contained data format.

It will be possible to directly export CAD geometry with enhanced

functionality without worrying if the target computer has the ability

to render the enhanced CAD format.

Customizable renderers. The property of customization is important

as it allows executable visualizations to be customized for special

tasks, with special demands on navigation, control and feedback

functionality. An executable visualization has the ability to modify

its renderer to incorporate customized behaviour, for instance to en­

hance a static graphical description with animation capabilities, to

provide customized navigation capabilities for user interaction, and

to incorporate external control intcrfaces. It is to be expected that

demands on functionality will vary extremely depending on situa­

tion.

Software component packaging of graphics. A system might be het­

erogenous from several different points of view: different processing

power and memory capacities, different capabilities for visualizing

graphics and different platforms. An executable visualization should

be able to render and produce reliable results in a heterogenous en­

vironment. Our prototype implementation achieves platform­ and

environment­independence by utilizing the Java and Java Beans

component technology.

Template software components. Using the notion of executable visu­

alization, it will be possible to speed up development of similar visu­

alizations by creating a template software component containing a

customized renderer and use it with all graphical descriptions. For

instance, it will be possible to create a renderer providing custom
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functionality for rendering robot geometry and use this renderer to

create executable visualizations for a whole product range of robots.

Approach to building

When building executable visualizations established technologies should

be used as much as possible in order to achieve rapid development, low

maintenance and high platform independence. We therefore propose an

implementation in three stages.

The first stage consists of a graphical description of the visualization,

for instance CAD geometry resembling an industrial robot. It is important

that the file format of the description in this stage conforms directly to the

source of the graphical descriptions. In our robot example, we want to use

CAD geometry also for the robot that is to be used in the manufacturing

task. The executable visualization should store the geometry in a CAD

format, for instance VRML.

The second stage consists of the renderer together with customization

code. The available range of renderers today goes from API­accessible

renderers to pure standalone rendering applications. A problem is the

customization code. Customization may potentially be provided through

three sources; through changes to the graphical description file, through

customization by developing a renderer based on a rendering API, or

through customization of a standalone renderer. That is, there are three

approaches:

The first approach involves a modifier that annotates the description

file with customization code. This demands, however, that the language

used to express the graphical description contains the power necessary

to provide demanded functionality. Most CAD systems of today are able

to export static geometry to VRML. Built into the language of VRML is

the possibility of script­driven animation, something CAD systems do not

utilize. The creation of a moving robot from a static robot model could,

in the second layer, involve the annotation of the VRML description with

scripts driving an animation. A standard renderer of VRML might then

be invoked. As a counterexample, VRML is not able to express all kinds

of functionality. We might want to express a customized navigation capa­

bility like semantic zooming, which is a technique for chosing the wanted

detail level in a visualization. In the VRML this might only be achieved

with great difficulty because the language lacks constructs for handling

such functionality [62].
The second approach relies on the availability of a rendering API,

preferably able to read the file format to be rendered. The advantage of

having a renderer available through an API is that it provides a high­

degree of freedom for customization; you are essentially free to develop

your own custom renderer on top of the API. The VRML workgroup has
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Figure 6.1 Executable visualization showing virtual ABB IRB 6 robot to the left

and the real robot available in our laboratory to the right.

developed a VRML rendering API running on top of Java 3D, a software

package available for the Java 2 platform [63], [64], [65] and [66].
The third approach uses standalone renderers with customization abil­

ity. The Cosmo player [67] (a VRML viewer) uses a link called the Ex­

ternal Authoring Interface [68] to enable the Java language to connect to

the viewer and affect the VRML model.

The third stage encapsulates the visualization into a common com­

ponent technology. This enables the executable visualization to be incor­

porated as a component into the application, with a component tool like

Microsoft Visual Basic and Java Beanbox.

The conclusions to be drawn from this section is that the implemen­

tation of executable visualizations as we propose them will not state a

problem. However, the preferred way to do it is the second approach,

using a rendering API, which provides most customization power. Some

experiences from using that approach now follows.

6.5 Implementation

Component technologies such as ActiveX, JavaBeans, CORBA, COM and

DCOM provides the infrastructure upon which executable visualizations
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may reside as natural extensions. Tools for dealing with components are

quite common [69], [70]. There exists a lot of renderers (Java 3D, Cosmo,

OpenInventor, OpenGL++), converters between different file formats and

a few neutral file formats for the exchange of geometry between different

systems. As mentioned, we have chosen to use VRML.

The core Java 2 platform from Sun Microsystems Inc. may be extended

with a package called Java3D also available from Sun. Java3D is an API

capable of rendering high­level 3D graphical descriptions onto OpenGL

and DirectX platforms. Java3D is closely related to VRML. In fact, Java3D

was designed to allow easy transitions from VRML to Java3D. By using

Java3D it is possible to encapsulate VRML graphics with a VRML ren­

derer into a component and customize the rendering through the Java

language. We have utilized this for creating virtual industrial robots avail­

able as Java Bean components or ActiveX components, executable in a

number of user interface environments such as Visual Basic, Internet

Explorer (HTML) and Java standalone application. Most notable is that

the component due to Java runs in these different environments without

modification.

An industrial robot implementation

Our prototype implementation of an executable visualization for visual­

izing industrial robots. The prototype is based on the Java 3D renderer

enhanced with VRML. The robot is encapsuled as a JavaBean compo­

nent and is able to run in an ActiveX environment through a ActiveX­

JavaBeans bridge, see Figure 6.2.

The prototype expects static geometry in VRML as directly exported

by one specific off­line programming system, but should handle VRML

exported from other systems with no problem. Our example robot (ABB

IRB 6) is shown in Figure 6.1. The VRML describing the robot is annotated

with named nodes in order for the component to recognize rigid robot parts

among the geometry, see Figure 6.3.

At the initial stage of our project there were no VRML loaders avail­

able for Java3D. However, several efforts are being made to create VRML

loaders, the most notable being the formation of a Java3D and VRML

Working group within the Web3D Consortium1 . As we saw that several

implementations were on their way but were not quite ready when we

needed them, we wrote a simple tool, translating VRML geometry into its

Java3D equivalent. This was easily accomplished as most CAD systems

only utilize a small subset of VRML when exporting geometry. The disad­

vantages of this solution is that we do not retain the original file format

within the component and we have to recompile the component in order

1http:/www.web3d.org/
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Figure 6.2 Executable visualization as an ActiveX component in Microsoft Visual

Basic, using a JavaBeans­ActiveX bridge.

Figure 6.3 VRML geometry exported from the IGrip system. Note the named node

IRB 6. That node represents a rigid body part of the robot.
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to change geometry.

The renderer has enhanced the original static view with animation

capability. The robot is able to move its individual joints, according to data

supplied at runtime. This is accomplished by "hooking" the identified rigid

robot parts onto a linked structure of Java3D transform objects. Finally,

the resulting objects are made into a JavaBean and transformed into

an ActiveX component using the available JavaBean­ActiveX bridge from

Sun Microsystems Inc.

The prototype is well suited to act as a template component to create

similar visualizations for other robots, for instance an ABB IRB 2000

robot, which is also available in our laboratory. The geometry used for

creating the robots may be as simple as the VRML geometry available on

the ABB product page1. A spinoff usage of the component is to visualize

motion data recorded from the real IRB 6 robot.

Both the robot models and the software platform (Java 2) are freely

available on the Internet.

6.6 Applications and Discussion

The use of computer graphics in the personal computer market is, as

mentioned, affecting the manufacturing market. Soon the use of graph­

ics and particularly 3D graphics is not going to be a nice feature but a

demand from the customer. The use of graphics in the manufacturing

industry today is mostly concentrated towards large­scale visualization

(digital manufacturing) and CAD system design. Since that is a more

or less established technology, we will now see how this scales down to

dedicated end­user interfaces for use on the plant floor.

Whether or not we need a powerful online interface to a machine or

robot very much depends on the manufacturing task. For instance, assem­

bly of circuit boards is in most cases well specified from a CAD/off­line

model, which among other things uses a database with descriptions of the

physical components to assemble. In such case, an initial calibration of

the robot relative to some fixtures may be enough and only a very simple

online interface is needed.

In other application areas, accurate off­line modeling is much harder,

for instance due to unmodeled dynamics of the manufacturing process.

This is often the case within large application areas such as welding and

deburring [2]. Therefore, such robots are often handled via a small user

interface that the operator can carry around close to the manufacturing

process, see Figure 6.4. There is of course also a tradeoff to be done be­

1http://www.abb.com/robotics/
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Figure 6.4 Robot operator/programmer at Volvo, using a hand­held terminal for

online changes. (With permission from Volvo and ABB).

tween a hand­held simpler interface and a more powerful interface via,

for instance, a PC connected directly to the machine. We leave that de­

cision to the industrial development. Instead, we consider the techniques

that can be applied in a flexible manner. An interesting alternative is to

have a complete Windows platform even in the hand­held device. That

may, however, not be the most efficient solution, but it can in any case be

used beneath the principles we propose. As an example, let us consider

an arc­welding application.

Arc-welding example

Assume manufacturing a product includes, among other things, welding

two metal pieces together. Due to tolerances of the workpieces and the

difficulties to exactly predict the outcome of welding operation, there is a

need for an appropriate end­user interface by which the production engi­

neer can tune the welding operation. Such tuning may need to be different

for different parts of the seam. Furthermore, there is a desire to let the

operator adjust the welding in terms of the geometry of the welding seam,

rather than on some less understandable voltage or wire­feed parameter.
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Figure 6.5 The end­user interface incorporates the geometry, the possible cus­

tomized visualization and navigation, and tbe application know­how.

For this purpose, there is a trend towards having knowledge about the

welding process stored in databases that can be accesses via the factory

network.

To our knowledge, there are no really good such interface today. In­

stead, we base this discussion on want­lists from production engineers.

Given the specifications for the user interface needed for a certain appli­

cation, one could of course implement it directly in, for example, C++ on

the Win32 platform utilizing available ActiveX/DCOM components writ­

ten the same way. That would, however, impose restrictions on safety and

flexibility. Instead, we suggest a Java­based implementation. To further

explain our approach, each of the input sources depicted in Figure 6.5 will

now be reviewed.

The purpose of the CAD data input is to obtain up­to­date coordinates

on which the machine/robot operations can be defined. For brevity, re­

trieval of calibrated coordinates back to the CAD system [2] is not treated

here. A variety of existing CAD data formats exist today, but many of

them are too limited for 3D description, internal proprietary, platform

specific, etc. Therefore. we have chosen the VRML format; most systems

can export the object geometry in VRML. The VRML format is a platform

neutral ISO/IEC standard designed for the Internet.

Visualization is today mainly used for off­line programming; in online

programming the physical equipment and workpieces are there, so why

visualize it? Reasons include:

1. To make referencing and description of coordinates during program­

ming more user friendly.

2. To make monitoring of ongoing machine operations more under­

standable.

3. To tune and optimize the manufacturing process.
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Items 1 and 2 are obvious but let us see what the third item could

mean in arc­welding. Examples:

The welding technician may want to study the weld­seam profile along

the path, both the CAD­model and the actual workpieces, and confirm the

generated welding settings from the engineering department.

In case of deviations between the model and the real world objects,

there should be a way of calibrating the model and to simulate the ef­

fect of using the welding settings (such as currents, wire­feed, path speed

and weaving amplitude). Since the seam properties changes along the

seam, one can easily imagine the benefits of having a customized visu­

alization and navigation along the track. Using Java3D with imported

VRML models, in combination with a customized rendering and naviga­

tion tool appears to be very useful.

The input from the application knowledge database may concern guide­

lines and rules how different settings affect each other, but also specific

rules and restrictions how the welding has to be performed to meet certain

quality requirements [71]. Today, such functionality is data driven from

tables and special data formats. This limits flexibility and complicates

the implementation of end­user tools since parsing and data conversions

between different formats often have to be done. Instead, we suggest the

use of Java objects, for the same reasons as in enterprise computing. The

advantages of obtaining not only data but also methods add a new degree

of freedom in the way application know­how can be expressed. Clearly,

to have embedded systems running methods dynamically loaded via the

network requires a safe language.

The Java technology we use appears to be very flexible and scalable,

and systems can be built more easily based on well­designed APIs and

software that are freely available on the Internet. The Java objects and

beans that make up a scalable application can of course also be compiled or

wrapped into current Windows technology for usage in systems available

today.

6.7 Conclusions

The use of computer graphics in user interfaces today poses some prob­

lems. Graphical description languages are either too low­level (OpenGL)
or lack the expressiveness (VRML) needed for use in user interfaces. The

diversity of description languages is another problem that causes com­

patibility problems between systems. This may be solved by creating cus­

tomized visualization components containing both graphical description

and executable code, what we call executable visualizations. The major

benefit of using the notion of executable visualization is that it exploits
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the large body of CAD geometry to provide cheap visualizations that are

easy to create, to maintain and to update by customizing the component

rather than the geometry itself.

We have shown on the Java platform that it is possible to create exe­

cutable 3D visualizations which animates robots exported as static geom­

etry objects from an object library while making minimal intrusion into

the robot geometry description, thus providing cheap domain controlled

animation to a whole product range of robots. The resulting visualiza­

tion is packaged as a software component and is directly executable in a

Microsoft environment, as well as in a Java environment and a browser

environment. Also, the Java platform has the additional advantage of be­

ing free software. This makes it possible to freely create and distribute

computer graphics in the form of Java software components.

The arc­welding example illustrates the need for this type of visual­

ization in the industry. The need to incorporate domain specific informa­

tion in user interfaces is essential for advanced control applications and

our prototype implementation shows that the proposed techniques accom­

plishes that in a feasible way.

Together with the portability and scalability of the Java 2 platform,

our approach appears to have unique benefits, which should be of great

value within the field of manufacturing.
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7

Robot Speech Interface with

Multimodal Feedback

Goal: Use of several redundant communication channels in user interfaces

7.1 Introduction

Industrial robot programming interfaces provide a challenging experimen­

tal context for researching integration issues on speech and graphical in­

terfaces. Most programming issues are inherently abstract and therefore

difficult to visualize and discuss, but robot programming revolves around

the task of making a robot move in a desired manner. It is easy to vi­

sualize and discuss task accomplishments in terms of robot movements.

At the same time robot programming is quite complex, requiring large

feature­rich user interfaces to design a program, implying a high learn­

ing threshold and specialist competence. This is the kind of interface that

would probably benefit the most from a multimodal approach.

This paper reports on a prototype speech user interface developed for

studying multimodal user interfaces in the context of industrial robot

programming. The prototype is restricted to manipulator­oriented robot

programming. It tries to enhance a dialogue, or a design tool, in a larger

programming tool. This approach has several advantages:

• The speech vocabulary can be quite limited because the interface is

concerned with a specific task.

• A complete system decoupled from existing programming tools may

be developed to allow precise experiment control.

• It is feasible to integrate the system into an existing tool in order to

test it in a live environment.

95



7.2 Multimodal Interfaces and Robot Programming Tools

The aim of the prototype is to develop a speech system for designing

robot trajectories that would fit well with current CAD paradigms. The

prototype could later be integrated into CAD software as a plug­in.

Further motivation lies in the fact that current available speech inter­

faces seem to be capable of handling small vocabularies efficiently, with

performance gradually decreasing as the size of the vocabulary increases.

This makes it interesting to examine the impact of small domain­specific

speech interfaces on larger user interface designs, perhaps having several

different domains and collecting them in user interface dialogues.

The purpose of the prototype is to provide an experimental platform

for investigating the usefulness of speech in robot programming tools. The

high learning threshold and complexity of available programming tools

makes it important to find means to increase usability. Speech offers a

promising approach.

The paper is organized as follows: speech, multimodal interfaces and

robot programming tools are briefly recapitulated. Then, the prototype is

described giving the design rationale, the system architecture, the differ­

ent system parts and a description of an example dialogue design. The

paper concludes with a discussion of ongoing experiments and future en­

hancements to the prototype.

7.2 Multimodal Interfaces and Robot Programming Tools

Speech recognition and synthesis

Speech software has two goals: trying to recognize words and sentences

from voice or trying to synthesize voice from words and sentences. Most

user interfaces involving speech need to both recognize spoken utterances

and synthesize voice. Recognized words can be used directly for command

& control, data entry, or document preparation. They can also serve as the

input to natural language processing and dialogue systems. Voice synthe­

sis provides feedback to the user. An example is the Swedish Automobile

Registry service providing a telephone speech interface with recognition

and synthesis allowing a user to query about a car owner knowing the

car registration plate number.

A problem with speech interfaces is erroneous interpretations that

must be dealt with [72]. One approach to deal with it is to use other

modalities for fallback or early fault detection.
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Multimodal user interfaces

A multimodal user interface makes use of several modalities in the same

user interface. For instance, it is common to provide auditory feedback

on operations in graphical user interfaces by playing small sounds mark­

ing important stages, such as the finish of a lenghty compilation in the

Microsoft Visual C++ application. Rosenfeld gives an overview in [73].
Different modalities should complement each other in order to en­

hance the usability of the interface. Many graphical interfaces, including

robot programming interfaces, are of the direct­manipulation type. Speech

should therefore complement directmanipulation interfaces [74]. Grasso

[75] lists complementary strengths and weaknesses related to directma­

nipulation and speech interfaces:

• Direct manipulation requires user interaction. It relies on direct en­

gagement and simple actions.

• The graphical language used in direct manipulation interfaces de­

mands consistent look and feel and no reference ambiguity to be

usable. This makes it best suited for simple actions using visible

and limited references.

• Speech interface is a passive form of communication. The medium

allows for describing and executing complex actions using invisible

and multiple references. It does not require use of eyes and hands

making it suitable for hand­eye free operations.

Put in other words: speech might be used to avoid situations where

you know exactly what you want to do but do not have a clue as where to

find it in the graphical user interface. It may also help to avoid situations

when you are able to describe an operation but do not know how it is

expressed in the user interface.

Industrial robot programming interfaces

Essentially all robot programming boils down to the question of how to

place a known point on the robot at a wanted position and orientation in

space at a certain point in time.

For industrial robot arms, the known point is often referred to as the

tool center point (TCP), which is the point where tools are attached to

the robot. For instance, a robot arm might hold an arc­welding tool to

join workpieces together through welding. Most robot programming tasks

deal with the specification of paths for such trajectories [76].
Below is discussed how modeling of trajectories is performed in three

different tool categories for programming industrial robots.
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Teach pendant A single robot operated by a person on the factory

floor is normally programmed using a handheld terminal. The terminal is

a quite versatile device. For instance, the ABB handheld terminal offers

full programmability of the robot. The terminal has a joystick for manual

control of the robot. Function buttons or pull­down menus in the terminal

window give access to other features. Program editing is performed in a

syntax­based editor using the same interface as for manual operation, i.e.

all instructions and attributes are selected in menus. Special application

support can be defined in a way uniform to the standard interface.

Trajectories are designed by either jogging the robot to desired posi­

tions and record them or by programming the robot in a programming lan­

guage. For ABB robots the programming language used is called RAPID

[77].

Off­line programming and simulation tools In engineering envi­

ronments, programming is typically performed using an off­line program­

ming tool. An example is the Envision off­line programming and simu­

lation tool available from Delmia. These tools usually contain: An inte­

grated development environment. A simulation environment for running

robot programs. A virtual world for visualizing running simulations and

being used as a direct manipulation interface for specifying trajectories.

Trajectories are designed by programming them in a domain­specific

language or by directly specifying points along the trajectory. The simu­

lation environment provides extensive error checking capabilities.

CAD and task level programming tools Task level programming

tools typically auto­generate robot programs given CAD data and a specific

task, for instance to weld ship sections. The software works by importing

CAD data and automatically calculate necessary weld trajectories, assign

weld tasks to robots and generate programs for these robots. These tools

are typically used for programming large­scale manufacturing systems.

7.3 Prototype

Two observations can be made concerning the user interfaces in the above

programming environments: The typical task performed by all IDEs (In­

tegrated Development Environment) is to model task specific robot tra­

jectories, which is done with more or less automation, depending on tool

category. The user interface consists of a visualization and a programming

part, see Table 7.1.

The prototype presented here is a user interface where speech has been

chosen to be the primary interaction modality but is used in the presence
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Table 7.1 Visualization and programming in different categories of robot program­

ming tools.

IDE Visualization Programming

Teach pendant Real env. Jogging & lang.

Off­line tool Virtual env. Lang. & sim.

Task­level tool Virtual env. CAD data

of several feedback modalities. Available feedback modalities are text,

speech synthesis and 3D graphics.

The prototype system utilizes the speech recognition available in the

Microsoft Speech API 5.1 software development kit. The SAPI can work in

two modes: command mode recognizing limited vocabularies and dictation

mode recognizing a large set of words and using statistical word phrase

corrections. The prototype uses the command mode. It is thus able to

recognize isolated words or short phrases [78].
The system architecture uses several applications (see Figures 7.1,

7.2, 7.3, 7.4): The Automated Speech Recognition application, which uses

SAPI 5.1 to recognize a limited domain of spoken user commands. Visual

feedback is provided in the Voice Panel window with available voice com­

mands. The Action Logic application, which controls the user interface

system dataflow and is the heart of the prototype. The Text­to­Speech ap­

plication synthesizing user voice feedback. The XEmacs application acting

as a database of RAPID commands and also allowing keyboard editing of

RAPID programs. The 3D robot application providing a visualization of

the robot equipment.

A decision was made to not use any existing CAD programming system

in the prototype. The reasons were twofold: extending an existing system

would limit the interaction into what the system allowed, making it diffi­

cult to easily adjust parameters like the appearance of the 3D world and

the behavior of the editor. The second reason was that by not including a

commercial programming system it was possible to release this prototype

into the open source community as a complete system.

System architecture

The prototype system architecture follows a traditional client­server ap­

proach. The action logic application acts as a server with all other appli­

cations acting as clients. Interprocess communication is performed using

Microsoft Win32 named pipes and sockets.

The system dataflow is centered around the speech applications since

it is the primary modality of the system. Basically information flows from
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Figure 7.1 SAPI 5.1 speech interface application front end with a list of available

command words.

Figure 7.2 The SAPI 5.1 sample TTS application modified for use by the prototype

system.
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Figure 7.3 Virtual ABB IRB 2000 industrial robot arm with 6 degrees of freedom.

Figure 7.4 XEmacs is used as trajectory editor and database.
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Figure 7.5 Prototype system dataflow.

the speech TTS to speech synthesis application through the action logic

application. The action logic application then interacts with the other

applications (XEmacs, 3D robot) in order to update the state and different

views supported in the interface (Figure 7.5).

Prototype applications

Action Logic The action logic application is the heart of the system.

All information goes through this application. The logic controlling the

interface is hidden here.

The basic work flow of the application is:

1. Receive spoken commands from the speech recognition application.

2. Interpret the commands and act accordingly: Send Lisp editing com­

mands to the XEmacs editor that is storing the trajectory as a se­

quence of RAPID MoveL (Move Linear) commands. Read trajectory

stored in XEmacs and send it to the 3D application for execution
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and visualization. Send feedback to be spoken to the speech synthe­

sis application.

Microsoft SAPI 5.1 speech recognition and synthesis The speech

recognition and synthesis applications are based on the Microsoft Speech

API version 5.1. Each application is built by utilizing an example ap­

plication delivered together with the SDK and modifying it for our pur­

poses. The example applications used for the prototype are CoffeeS0 and

TTSApp.

The modifications necessary were quite small. They included: Adding

communication capabilities to the applications so that they could send

and receive information from the action logic application. This was done

by adding a new communication thread to the application. Modifying the

application window message handler to issue and receive speech messages

from the new communication code. Changing the user interface to show

our domain­specific vocabulary and finally tune the speech recognition

application to our vocabulary. This was done by rewriting the default XML

grammar read into the speech recognition application upon initialization.

XEmacs RAPID trajectory editing and database XEmacs is uti­

lized as a combined database, editing and text visualization tool. The

trajectory being edited is stored in an XEmacs buffer in the form of a

sequence of RAPID MoveL commands:

MoveL ToPoint := [940,0,1465,0.707,0,0.707,0],

Speed := v50, Zone := z50, Tool := gripper1

MoveL ToPoint := [980,80,1495,0.707,0,0.707,0],

Speed := v50, Zone := z50, Tool := gripper1

The trajectory code is visualized in text form in the XEmacs buffer

window. It may be edited using normal XEmacs commands. Thus the in­

terface, even if developed with speech in focus, allows alternate interaction

forms.

The interaction between XEmacs and the action logic application is

done using LISP, see Table 7.2. The action logic application phrases data­

base insertion/removal/modification commands of trajectory parts as buffer

editing commands. These are executed as batch jobs on the XEmacs editor

using the gnuserv and gnuclient package.

Virtual environment The prototype needed a replacement for the 3D

visualization usually shipped with robot programming applications to be

realistic. A small 3D viewer previously developed was taken and enhanced

with interpretation and simulation capabilities for a small subset of the

RAPID language.
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Table 7.2 Sample LISP editing command sent to the Emacs RAPID database in

response to spoken commands.

Spoken command Emacs LISP

Add point (kill­new “MoveL...”), (yank)

Remove point (kill­entire­line)

Move forward (forward­line 1)

Move backward (forward­line ­1)

Table 7.3 Vocabulary used in the prototype.

Spoken commands Purpose

Forward, backward, left, right, up, down Jog robot

Play, stop, step forward, step backward, faster, slower Play trajectory

Mark, add point, move point, erase point Edit trajectory

Yes, no User response

Undo Undo

The tool is capable of acting as a player of trajectories stored in the

XEmacs database. Player commands (play, reverse, stop, pause) is con­

trolled from the action logic application.

Dialogue design

A preliminary experiment based onWizard­of­Oz data obtained from the

authors has been implemented.

The basic idea of this interface is to view trajectory modeling as edit­

ing a movie. It is possible to play the trajectory on the 3D visualizer,

insert new trajectory segments at the current point on the trajectory, re­

move trajectory segments and moving along the trajectory backward and

forward using different speeds.

All editing is controlled using spoken commands, see Table 7.3. The

user gets feedback in the form of a synthesized voice repeating the last

issued command, seeing the trajectory in text form in the XEmacs buffer

window and seeing the trajectory being executed in the 3D window. The

command is always repeated by a synthesized voice in order to detect

erroneous interpretations immediately. At some points (for critical oper­

ations like removal of trajectory segments), the interface asks the user if

he/she wants to complete the operation.
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Figure 7.6 The prototype system user interface consists of four windows; 1. The

voice panel containing lists of available voice commands. 2. The XEmacs editor

containing the RAPID program statements. 3. The 3D visualization showing the

current state of the hardware. 4. The TTS application showing the spoken text.

7.4 Improvements

The prototype will be used to explore the design space of speech inter­

faces with multimodal feedback. Below follows a few issues that would be

interesting to gather data on:

• Varying the degree of voice feedback, as well as the type of informa­

tion conveyed.

• Varying between different kinds of visual feedback.

• Varying the command vocabulary and interface functionality. For in­

stance by allowing some task level abstractions in movement speci­

fications, i.e. move to object, grab object.

For the future, there is a list of wanted extensions:

• Allow multiple domains in the speech recognition application, with

the option of choosing which one to be applied from the action logic

application. This feature could be used to test speech interfaces with

state.
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• Allow the entire experiment interface configuration to be specified

in XML. Remove all hacking necessary to tune the interface. This

would also speed up development since it would be easy to switch

between different configurations.

7.5 Conclusion

We have developed a speech interface to edit robot trajectories. An archi­

tecture based on reusable application modules was proposed and imple­

mented.

The work is aimed at studying feasability and usefulness of adding

a speech component to existing software for programming robots. Initial

feedback from users of the interface are encouraging. The users, including

the authors, almost immediately wanted to raise the abstraction level of

the interface by referring to objects in the surrounding virtual environ­

ment. This suggests that a future interface enhancement in such direction

could be fruitful.
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8

Human-Robot Interaction

using Intuitive Devices

Goal: Instruction without programming

8.1 Introduction

The success of using robots with flexible manufacturing systems especially

designed for small and medium enterprises (SME) depends on the human­

machine interfaces (HMI) and on the operator skills. In fact, although

many of these manufacturing systems are semi­autonomous, requiring

only minor parameterization to work, many other systems working in

SMEs require heavy parameterization and reconfiguration to adapt to the

type of production that changes drastically with time and product models.

Another difficulty is the average skill of the available operators, who usu­

ally have difficulty adapting to robotic and/or computer­controlled, flexible

manufacturing systems. This reality configures a scenario in which flexi­

ble automation, and robotics in particular, play a special and unique role

requiring manufacturing cells to be easily used by regular nonskilled op­

erators, and easier to program, control and monitor. One way to this end

is the exploitation of the computer input­output devices to operate with

industrial robotic equipment. With this approach, developers can bene­

fit from the availability and functionality of these devices and from the

powerful programming packages available for the most common desktop

and embedded platforms. On the other hand, users could benefit from the

operational gains obtained by having the normal tasks performed using

common devices and also from the reduction in prices that can arise from

using consumer products [79].
Industrial manufacturing systems would benefit greatly from improved

interaction devices for human­machine interface even if the technology is
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not so advanced. Gains in autonomy, efficiency and agility would be evi­

dent. The modern world requires better products at lower prices, requiring

even more efficient manufacturing plants because the focus is on achieving

better quality products, using faster and cheaper procedures. This means

having systems that require less operator intervention to work normally,

better human­machine interfaces and cooperation between humans and

machines sharing the same workspace as real coworkers [79].
Also, the robot and robotic cell programming task would benefit very

much from improved and easy­to­use interaction devices. This means that

availability of SDKs and programming libraries supported under common

programming environments is necessary.

This paper explores the utilization of programmable digital pens [80],
[81] for the task of programming industrial robot manipulators. The ob­

jective is to demonstrate the usefulness and potential of these devices,

defining a suitable platform that could be used to implement user ser­

vices to support new and advanced features.

8.2 The Anoto Digital Pen

A digital pen is a device that stores the user hand writing in a digital

format, providing a mechanism for the user to access the stored data from

a computer. The concept developed by the Anoto [80] is very innovative

and suitable for robotic applications. The technology developed by Anoto,

entailing interpretation and transmission of handwritten text and images,

is based on a special digital pen and a paper printed with a pattern that

is almost invisible to the eye (Figure 8.1). The digital pen uses ink and

handles just like a normal ballpoint pen, but it also contains a digital

camera, an advanced image processing system and a communication unit,

for example for wireless Bluetooth connection to a mobile phone.

The paper consists of an ordinary paper printed with a dot pattern

that is either pre­printed or printed on a laser printer. The displacement

of the dots, 0.1 millimeters in size, from the relative position enables them

to be programmed to tell the pen the exact location on the page – or the

whole pad of papers – one is writing on. Briefly, a device like this allows

the user to extract the following information (Figure 8.2):

1. Absolute position of the pen on the paper page.

2. The sequence of pen movements as a map of coordinates.

3. Each coordinate has information about the position, the time stamp

(both relative to the start of the stroke and current time when it is

written) and the line color and width.
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Figure 8.1 Dot pattern used by the digital pen [80].

Figure 8.2 Sample line stroke: P* contains position, time, status and stroke prop­

erties information.

By registering the pen’s movement across the paper and also the pres­

sure, the writing is interpreted and digitalized. Hence the technology is

not based on characters having to be written in a special way, in contrast

to various other applications such as hand­held computers. Even drawn

sketches can be interpreted and transferred. Since the pen’s movements

are stored as a series of map coordinates and the paper defines where on

the paper one is writing, it is possible to go back and complete previous

notes in a pad. The technology is capable of interpreting this correctly and

putting it in the right context when transmitting it to the digital media.

The pattern enables different parts of the paper to be assigned different

functions such as predefining various parts of a form.
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8.2 The Anoto Digital Pen

Figure 8.3 The PC architecture used by the digital pen [80].

Consequently, if the user technical drawing is a robot path over a CAD

drawing, for example, then the extracted sequence of positions and time

stamps, etc., is a complete definition of the motion specified by the user.

Selecting a proper set of reference points/orientations this information

can be used to allow users to specify a sequence of robot actions just by

drawing them on a paper. If a few rules are observed the information

extracted from the pen can be used to generate robot programs, i.e., the

user can program a robot just by drawing the robot actions on a paper,

like it’s common for any engineer. Anoto developed a software platform

(Figure 8.3) to interface their pens with personal computers, pocket PC’s,

mobile phones, etc., and released the necessary APIs to allow users to

fully explore the device features [82], [83].
This paper explores the digital pen as a robot input device, showing

three different approaches/implementations designed to program robot

manipulators. The first implementation presented explores the possibility

to specify robot motions on CAD drawings and using specially design

computer applications to include the robot paths with the CAD package,

generate the robot program code, download it to the robot controller and

run it remotely. The second approach moves toward creating an industrial

test case instructing cutting operations in a foundry application using

the digital pen based on the Anoto technology. The third implementation

deals with the generation of CAD data and robot programs from technical

hand drawings. Geometric shapes and their measures are taken from a

simple sketch. The user is able to define robot programs without dealing

with complex interfaces. This implementation uses the Anoto platform

and uses the generated PGC (Pattern Generated Coordinates) files as
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input, which contains the data from the pen and is obtained when the

user synchronizes the pen with the PC infrastructure (just by putting the

pen in the docking station or requesting synchronization by Bluetooth).
Using the Anoto APIs an application was designed [84] to perform the

following services:

1. Extract the data from the PGC file.

2. Import the user strokes to AUTOCAD [85] using the specified file

and layer. The strokes are printed in the screen using also the user

selected color.

3. Generate the robot code based on the received information, using two

different operating modes: Free mode, where the strokes are sent to

the robot as they come from the pen and the robot is commanded

to move in line between points and Corrected Mode, where the type

of stroke is identified and mapped to known robot types of motions

(linear, arc, circular, etc.).

The demonstration uses a welding robot (ABB IRB 1400 robot equipped

with the S4 robot controller [86]), connected to a local area network and

controlled from a laptop using software based on Remote Procedure Calls

(RPC). The working table is modeled in AUTOCAD and the user is able

to:

1. Draw robot paths in 2D using a CAD printout of the working table

and the Anoto digital pen.

2. The obtained robot paths are transferred to AUTOCAD and identi­

fied using the procedure explained above.

3. An application is used to generate the robot code necessary to run

the programmed paths, using a procedure as explained above.

4. Download the generated robot code to the robot controller and the

execution commanded from the PC.

This example, developed at the Mechanical Engineering Department

of the University of Coimbra, shows fully the usefulness of this type of

devices for robotic programming applications [87].

8.3 Development Towards Foundry Applications

Due to the bad working conditions, cutting and deburring in foundry

industries is an important robot application and this is one of the key
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Figure 8.4 Example foundry workpieces. Left: before cutting. Right: after cutting.

demonstrators for new easy­to­use robots. To validate the usefulness of

the digital pen and paper approach for robot programming and interac­

tion in that area, initial experiments have been carried out using the

workpieces from one of our end users (Norton Casts in the UK). The ap­

plication includes material removal by cutting the input metal reservoirs,

which are needed for the casting process but not part of the product (com­

pare left and right picture in Figure 8.4). A second stage of the process is

deburring, which we also think can be simplified by using the Anoto tech­

nology, but in this paper we focus on specification and/or programming of

the cutting.

Since the foundry workpieces are produced in very small batches (1­

10), it is desirable to find a quick and easy way of specifying the task

such that it can be carried out by the automation equipment, including

the robot, the fixture and the cutting tool (oxyfuel burner in our case). An

initial task specification experiment is shown in Figure 8.5. The experi­

enced simplicity of system development and data import, in combination

with the natural and simple way the system can be used, clearly indicate

the potential and applicability of the suggested techniques.

The data to the lower left in Figure 8.5, as obtained from the Anoto

interfaces, is then mapped to the coordinates used in the robot program.

This is similar to the other applications is this paper.

Taking a closer look at the system and further developments, Figure

8.6 shows an example of how the data flow could look like in the prototype

system. The layout and contents of the form enabling the Anoto technology

need to be defined to allow efficient definition of the task. In order to
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Figure 8.5 Foundry workpiece experiment. In upper picture the pen with the CAD

model of the foundry workpiece printed on the paper enabling the Anoto technology

and the pen strokes specify the cuts to be made. In the lower part, the imported

pen strokes (left) and the surface mapping on workpiece 3D image (right).

do that, one or several images or poses of the workpiece is necessary to

print on the paper enabling the Anoto technology, however, in the foundry

industry CAD models featuring metal reservoirs are very rarely produced,

indicating that a method is necessary for either reconstructing geometry

or using camera images of the workpiece directly printed on paper. The

filled in form needs post processing for interpreting the obtained data (pen

strokes), paths or symbols.
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Figure 8.6 Approach for further development. Colored boxes are part of ongoing

work, whereas the noncolored boxes are part of the initial experiments.

Based on these findings the proposed approach for further development

includes development of methods for obtaining metal reservoir workpiece

geometry and add to CAD models, assembling and printing forms for

defining cut tasks, interpreting pen strokes and identifying cut paths on

the workpiece, followed by task generation. Note that the end user sim­

ply works with pen and paper in combination with images and the real

equipment; no programming skill is required.

8.4 Conclusion

In this paper, the authors explore the utilization of digital pens for the task

of programming industrial robot manipulators. Three different implemen­

tations were presented to assess the digital pen features using different

robotic setups. The results clearly show that the digital pen based on

Anoto technology is very useful and powerful, being an interesting solu­

tion for certain advanced applications involving the task of programming

robotic installation just by making technical drawings on a sheet of pa­

per. The next steps will be to adopt a software infrastructure and develop

the necessary services to allow system integrators to consider this type of

device an advanced user­friendly user programming method.
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9

Towards Ontologies and

Services for Robot Setup

Goal: Automatic generation of user interfaces from product and process

knowledge

9.1 Introduction

Traditional robotics supports long­batch production and requires skilled

personnel to handle setup and instruction. On the contrary, new robot

markets often involve shorter series and small and medium enterprises.

This means that the shift of products is faster and the change­overs of­

ten need to be carried out by nonexperts. This sets new challenges for

the robot user interfaces to be more intuitive and user friendly in order

to reduce number of errors and cost/time [88]. Such challenges outline

the need for assistive systems within the robot cell to make the opera­

tor less dependent on expert knowledge and turn complex tasks feasible.

Examples that could benefit from assistance include calibration of tools,

fixtures and workpieces; usage of CAD/CAM software such as task plan­

ners; configuration of process­specific software packages, such as the ABB

PowerPac for palletizing.

In the following, as an attempt to address these challenges, an as­

sistive infrastructure for robot setup and instruction is presented. The

ongoing development of a system based on semantic web technologies

is introduced such that multimodal dialogue interaction can be automati­

cally generated. The prototype currently generates three modalities, html,

digital paper and spoken dialogue. The purpose of an assistive system is

to enhance the usability and usefulness of the robot and its connected

resources (sensors, CAD/CAM systems) through:
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• The use of semantic standards in information exchange, such as

RDF/S, OWL, SPARQL and SWRL, as further described in section

9.3;

• Production documents such as product and process data including a

semantic layer;

• The definition of compatible semantic layers so that they can be used

across the relevant tasks, such as aiding cell calibration and robot

instruction.

• Increased automation of tasks using the semantic layer, such as

finding calibration sequences to make sure nothing is forgotten.

The roadmap we follow to implement the assistive infrastructure is

based on the use of an ontological network to encapsulate knowledge about

the product data and manufacturing processes. It requires the derivation

of ontology concepts that will serve as the main data source to generate

– or refer to – the complete specifications and the operating instructions

used to automate information management necessary for task planning

and execution.

9.2 Multimodal Form-based Dialogue

From the user viewpoint, the operation starts with an initial selection

command from the operator to tell the machine which workpiece to pro­

duce and possibly from positions and equipment data sensed by devices

on the floor.

After the initial selection, the system extracts data from the ontology

that enables the operator to configure the task and the product and to

prepare the task execution. The configuration step uses a multimodal

interface that lets the operator fill in the different options. It ends with

the monitoring and execution of the configured task.

The process flow uses conversion tools such as transformation rules,

inference rules and the JastAdd compiler [31] to select and convert por­

tions of the ontology. This results in process and product data divided into

configurable and nonconfigurable parts (Figure 9.1). The extracted data

are first formatted as an XML document corresponding to a production

sketch that we call the XML appconf.

From this sketch, the system automatically generates user interfaces

with multiple input modalities for all the parameters.

118



9. Towards Ontologies and Services for Robot Setup

Figure 9.1 The process workflow.

9.3 Ontology Modeling

In computer science, ontologies correspond to hierarchical models to rep­

resent concepts, objects and their relationships. They enable systems to

[89]:

• Encode and interpret data using a rich hierarchical and relational

structure.

• Extract data and integrate them into applications.

• Share data with a common format.

As ontology modeling language, we have chosen the web ontology lan­

guage (OWL) [90] and the Protégé toolkit [91] as a data entry and vali­

dation tool. Both are well established standards in their domain with a

large developer’s community. We are currently using them to build the

ontology of a specific domain as shown in Figure 9.2 that serves in the

demonstration prototype. This ontology acts as an advanced data repos­

itory for the product configuration and the production operations. In the

future, we will populate ontologies from manual modeling, specification

databases and 3D models. In addition to what we develop within SMEr­

obot [41], the data model is also influenced from work being carried out

for the SIARAS project [92] on production ontologies.

The conversion pipeline shown in Figure 9.1 uses W3C recommenda­

tions associated with the semantic web such as XSLT or SWRL. The choice

of these tools needs some clarification. We first summarize the concepts

that are around OWL and then explain the conversion principles.
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9.3 Ontology Modeling

Figure 9.2 An excerpt of the ontology detailing the operation hierarchy.

Resource Description Framework – RDF

OWL is based on the resource description framework, RDF [93]. RDF mod­

els statements as triples in the form of a subject, a predicate (a verb) and

an object. As an example, the statement the milling process starts with

a calibration can be split into a subject, the milling process, a predicate,

starts with and an object, a calibration. Such triples are also named, re­

spectively, the resource, the property and the value. RDF is restricted to

binary predicates.

This framework can use two encodings. The first one, called N31, con­

sists of sequences of textual triples and the second one adopts a XML

syntax. The subject – the resource – must be an URI. The predicate or

property, which is also a resource, is an URI too. The object or value

can be a resource or a literal. To represent the example above, we use

the LRC namespace – Lund Robotics Core – and URI http://cs.lth.se/

1Notation 3, http://www.w3.org/DesignIssues/Notation3.
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lrc/ontologies/1.0/. Using N3, we can represent the example above as:

@prefix lrc: <http://cs.lth.se/lrc/ontologies/1.0/>.

<#milling_process> lrc:starts_with "calibration";

And in XML syntax as:

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:lrc="http://cs.lth.se/lrc/ontologies/1.0/">

<rdf:Description rdf:about="#milling_process">

<lrc:starts_with>calibration</lrc:starts_with>

</rdf:Description>

</rdf:RDF>

More generally, triples (subject, predicate, object) can be encoded in

Prolog or Datalog as predicate( subject, object) that is, with the sen­

tence above as:

starts_with(milling_process, calibration)

RDF Schema – RDFS

RDF schema, RDFS, is built on RDF and defines two predicates that en­

able the programmer to build an ontology: rdfs:Classand rdfs:subClass-

Of [94]. The rdfs:Class element allows to declare a RDF resource as a class

and the rdfs:subClassOf element allows to declare subclasses of a class

and build a hierarchy. When a resource has been declared as a class, we

can use rdf:type to create individual members of this class. In addition,

RDFS comprises similar predicates to build a property hierarchy.

In addition, RDFS has constructs to type the subject and the object of

the triples. It corresponds to the domain and range of a function, and

in the case of RDFS applies to properties. RFDS uses the constructs

rdfs:domain for the subjects and rdfs:range for the objects to restrict

the values of the two arguments of a property.

OWL

Although the combination of RDF and RDFS forms an ontology language,

it lacks some features to build large, realistic ontologies. Restrictions in­

clude cardinality limitations, boolean operations on classes, etc. In addi­

tion, RDF and RDFS are not well coupled to logic and reasoning tools.

The web ontology language, OWL, is an extension of RDF and RDFS

that attempts to complement them with better logic foundations and a

support for practical reasoning [90]. It comes with three flavors of in­

creasing expressivity – light, description logic and full – that are upward
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compatible. Only the two first ones are guaranteed to be tractable in prac­

tice.

Important constructs of OWL include the owl:Class, which is derived

from the rdfs:Class, two properties, owl:ObjectProperty and owl:Data-

typeProperty, that relate objects to respectively another object or a data

type value like a string, an integer, a float, etc., owl:Restriction that

enables the programmer to use existential and universal quantifiers and

cardinality.

9.4 Prototype Setup

Nameplate Manufacturing

As described in [95], the ontology programming approach uses automati­

cally generated forms to select and configure both the task and the prod­

uct. The prototype selected to demonstrate the concepts associated with

our approach corresponds to the manufacturing of wood nameplates.

Figure 9.3 shows a configuration form where the left column configures

the shape and looks of the plate. The right column configures the process

for manufacturing the plate. In this example it is possible to skip steps,

execute in a stepwise manner, and choose data acquisition methods for

steps involved. The left column can be filled out at an earlier date while

the right column is filled out close to task execution time. The upper right

barcode identifies the process and is possibly unique to individualize the

sheet.

Nameplate Manufacturing Ontology

We have built a prototype ontology to encode the process templates and

we are developing well­defined conceptual interfaces toward workcells

(equipment, capabilities, communication) and process data, assisting con­

struction of process templates and assisting (manual/automatic) workcell

reconfiguration.

The ontology is restricted to the prototype domain and Figure 9.2

shows an excerpt of it. It describes the finished products, its components,

together with possible features as well as the operations involved in the

manufacturing process of the product.

Intermediate Appconf Representation

Given a product to manufacture, the conversion process extracts an in­

termediate, flat representation from the ontology. This representation is

designed to be modality­independent, which makes it easier to build user
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Figure 9.3 Wood sign milling at Stockholm trade fair 2007 (top left). Wood and

aluminum sign milling integrated into a larger demonstrator at Automatica 2008

(top). Manually edited Anoto configuration forms (bottom left). Automatically gen­

erated form from product and process configuration knowledge (bottom right).

views (forms, speech, gestures). We call it the application configuration –

appconf.

As an example, in the application prototype we are building, the sheet

requires the operator to supply data, such as the corner shape, the hole

configuration and the pattern and text (person name for instance). All
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these items are shown as input areas on the sheet in Figure 9.3. The

intermediate appconf representation has corresponding elements repre­

senting all these configurable items, for instance the corner shape.

We give an idea of how to represent the corner shape options in the

XML code snippet below. This code replicates the possible options, sharp,

soft, or cut corners, with the images to display in the e­form using the

img element and the messages to utter using the snd element in the case

of a spoken dialogue.

<shape>

<one-of>

<option>

<name>sharp corners</name>

<command code="sharp.cd"/>

<img src="sharp.jpg"/>

<snd src="sharp.wav"/>

</option>

<option>

<name>soft corners</name>

<command code="soft.cd"/>

<img src="soft"/>

<param name="diameter" unit="mm"/>

</option>

<option>

<name>cut corners</name>

<command code=".cd"/>

<img src="cut.jpg"/>

<param name="height" unit="mm"/>

</option>

</one-of>

</shape>

Using this configuration sketch, presentation rules and modality spe­

cific constraints, the conversion process produces displayable forms or

spoken dialogues so that the operator can supply the missing parame­

ters. Once the operator has filled in the data, the corresponding XML

fragment is:

<shape>

<name>sharp corners</name>

<command code="sharp.cd"/>

<img src="sharp.jpg"/>

<snd src="sharp.wav"/>

</shape>
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Methods and Languages to Extract Information from Ontologi es

The conversion pipeline extracts and infers information from the ontology

and generates the user input modalities. The appconf configuration sketch

is an XML intermediate document between the ontology and the user

interfaces. Unlike the sketch, the ontology is a structured and hierarchical

representation, where features are shared and inherited across a variety

of pieces and processes. This means that extraction is not trivial because

the representation languages involve three complex and intricate layers:

RDF, RDFS and OWL.

Such a setting requires specific query languages and techniques. In

addition to the ontology management, we need to process other XML doc­

uments in the processing chain such as the appconf sheet to convert them

into forms or dialogue programs. We review here techniques and their ap­

plication in the management of information along the conversion chain.

They include accessing XML nodes, querying RDF triples and reasoning

about the ontology knowledge. Most difficulties come from the apparent

masses of “solutions”. Wikipedia lists not less than 11 different RDF query

languages and ten OWL reasoners! We focus here on what have become

the (likely) standards in their respective ecosystems.

XSLT The simplest way to access and transform XML documents is

to use the combination of XPath and the extensible stylesheet language

transformations, XSLT [96]. XPath enables programmers to express a path

and access nodes in an XML tree, while XSLT defines conversion rules to

apply to the nodes. A typical application of XSLT is the transformation of

XML documents into XHTML files destined to be read by web browsers.

Provided that the amount of paraphrasing (syntactic variation) is lim­

ited, XSLT XPath is fairly usable to run the conversions. From studies we

have done, this is the case for the conversion of the appconf sketch to the

user modalities. We are completing the implementation and integrating

it in the prototype.

However, this is not the case for ontologies. They are built on OWL,

which is built with RDF triples, which allows reformulating similar struc­

tures using different constructs. Querying ontologies require either query

languages or reasoning rules. For a justification, see [97], pp. 100­102.

SPARQL SPARQL [98] is a RDF query language. It enables the pro­

grammer to extract RDF triples using the SELECT keyword where the

variables are denoted with a questionmark prefix using a set of conditions

defined by the WHERE keyword. It is also possible to build a new graph

using the CONSTRUCT keyword. SPARQL’s syntax is similar to that of

the SQL language. The query below extracts all the pairs where ?subject

is a subclass of ?object:
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SELECT ?subject ?object

WHERE {

?subject rdfs:subClassOf ?object. }

However, as SPARQL makes the join operation implicit, it bears some

resemblance with Prolog as in this query:

SELECT ?subject ?config

WHERE {

?subject rdfs:subClassOf <#FinishedProduct> .

?prop rdf:type owl:ObjectProperty .

?prop rdfs:range ?config . }

SPARQL is becoming a de facto standard for RDF. It is a stable lan­

guage with quality implementations from various sources. Competitors

include XQuery, a generic XML query language, which has not gained

acceptance in the RDF community.

SWRL While SPARQL enables a programmer to extract information

from an ontology, it is only designed for RDF. In addition, it cannot easily

derive logical consequences from its results. To exploit fully the ontology

knowledge, one needs a reasoning or inferencing mechanism. This is the

purpose of a language like the semantic web rule language, SWRL [99].
SWRL rules have a Prolog­like structure. They consist of an antecedent

corresponding to a conjunction of conditions (predicates) and a conse­

quent. When the conditions are true, the consequent is also true and can

be asserted. In addition to being a inference language, SWRL features an

extension that lets it act like a query language, SQWRL.

SWRL is supported from the 3.4 version of Protégé in the form of

a development environment with editing tools. This means that we can

write, modify and to a certain extent validate rules. However, version 3.4

is still in the beta stage at the time we are witing this paper. In addition,

Protégé does not include a full­fledged inference engine. This means that

it cannot by itself execute the rules. It just supplies a bridge that connects

to an external module. So far, Protégé supports only one inference engine,

Jess [100].

JastAdd JastAdd is not a query language in itself, but a general com­

piler construction tool with some very useful features; aspect oriented

programming and attribute grammars. Using results from earlier work

[101] we can automatically create a parser for an OWL ontology. Utilizing

the aspect­oriented feature of JastAdd, we can then implement queries

in the form of aspect modules that will be weaved in with the generated

parser at compile time.
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While it does not possess the expressive power of SWRL, it will enable

the user to extract almost any information from the ontology with just a

few lines of Java code.

Prolog Prolog – or Datalog – is a last example of reasoning tool that

could be used to extract information from the ontology. Some Prolog im­

plementations have a RDF interface like SWI Prolog that has been used

with success in semantic web applications [102]. It is then possible to

query an ontology from a logic program and to run inference rules on the

result.

As Prolog predicates and rules have much in common with SWRL,

logic programs written in Prolog and SWRL would be very similar and

with equivalent performances. Difference would come from the location

of the bridge between the ontology and the inference engine, at the RDF

level for Prolog, at the OWL level for SWRL.

However, although Prolog is more expressive than other languages and

has a proven record of industrial applications, Protégé does not support

it. It is not standardized within the context of the semantic web either.

This makes its choice, at the moment, riskier than the other options.

From an Ontology to the Appconf Sketch

The first step of the conversion pipeline generates the XML appconf sketch

from the ontology. As the SWRL formalism is more flexible and powerful,

as well as adopted by the semantic web community, we are using it for this

step in the demonstration prototype. As inference engine, we are using

the built­in bridge that is for now only coupled to Jess.

However, SWRL is a new feature of Protégé 3.4 and athough it already

supports many abox and tbox built­in predicates, it is still under active

development. Many of the predicates are not yet implemented. The beta

version status of SWRL pose timetable problems and we are also using

SPARQL to query the ontology and write the rules.

We wrote rules using both formalisms to extract information from the

ontology. We show below an example of SWRL rule that finds all the prop­

erties of the subclasses of FinishedProduct. We also show its counterpart

in SPARQL. We embedded the rules in the Java prototype using the Pro­

tégé API that resembles SQL drivers.

PREFIX list: <http://jena.hpl.hp.com/ARQ/list#>

SELECT ?product ?configuration

WHERE {

?product rdfs:subClassOf <#FinishedProduct> .

?property rdf:type owl:ObjectProperty .

{{?property rdfs:domain ?product} UNION
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{?property rdfs:domain ?union .

?union owl:unionOf ?list .

?list list:member ?product}} .

?property rdfs:range ?configuration}

From the Appconf Sketch to Input Modalities

The second step of the conversion pipeline generates user input interfaces

from the XML appconf sketch. As final products frequently need to be cus­

tomized according to the order, the manufacturing operator will be able

to enter a part of the specifications at production time. In the demonstra­

tion prototype, we will investigate three configurationmodalities that are

core to the SMErobot project [41], namely E­forms, gestures and spoken

dialogue.

We are developing tools to generate automatically the workpiece pro­

duction forms, the gesture tracking and interpretation module, or the

dialogue specifications from the XML appconf. Before the piece is man­

ufactured, the operator fills in the remaining data corresponding to the

final piece using the modality of her/his choice. To ease the interaction,

we are investigating a framework to combine simultaneously the different

modalities so that the operator can use speech and gestures at the same

time for instance.

Transformation Language As transformation language to produce

the forms and the dialogue specifications, we are using XSLT. XSLT en­

ables to apply transformations to appconf nodes accessed via the XPath

language. It can produce XML documents in formats like XHTML for the

forms or VoiceXML for the dialogues. In addition, we are investigating the

XSL­FO page­formatting standard where the description of a document

content uses objects such as blocks, tables, footnotes, etc. It is richer than

HTML­like descriptions and can be converted to PDF. The conversion of

an XSL­FO document to a PDF uses a sequence of transformations that

builds the XML tree, produces graphical objects, renders the objects as

text areas with their pixel positioning and finally generates PDF.

VoiceXML The demonstration prototype includes a voice modality that

enables the operator to configure the product through a dialogue and

hence have his hands free while he/she fills in the manufacturing op­

tions. The dialogue uses a system­initiative scheme, which means that

the dialogue structure resemble a formfilling procedure where the user

answers questions posed by the system.

We have chosen the Voice Extensible Markup Language, VoiceXML,

to generate the dialogues. [103] is markup language that enables a pro­

grammer to build form­based, goal­oriented dialogues (system­initiative
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Figure 9.4 Multimodal dialogue architecture.

mostly). The user fills fields in forms using speech, where the field input

can be constrained with a grammar. It is designed to be integrated in a

speech server and supports IP telephony. As VoiceXML is a standard, the

programs should be portable to any platform that supports this language.

Perspectives: Multimodal Management

We will examine possible designs for the multimodal management archi­

tecture such as the one shown in Figure 9.4. The work on the speech

channel is mainly derived from a previous work of a member of the LTH

team [104, 105] and a recent system developed by the Bell labs [106, 107].
The internals transcribe the user’s speech into a word stream which a

language engine then processes dealing with syntax, which is constrained

by the VoiceXML structure and semantics. A semantic module converts

words into a semantic representation that is common to speech and other

types of interaction. The other input channels correspond to form filling

using HTML and digital paper. The fusion engine merges data from all

channels and keeps track of context and dialogue goals. The resulting an­

swers are either converted into speech to the user by a speech synthesizer

or presented visually through a visualization channel.

The multimodal architecture will use a client­server architecture and
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instantiate some of the modules shown in Figure 9.4. We are currently

defining them. In the future, it could evolve into an integration platform

enabling partners to plug their applications. As a use case we consider

interactions where the user fills in the data using one modality, the cor­

responding client sends the data to the server and the server updates the

context of all the modalities. There are then continuous visual or audio

updates of the current context. For instance, an audio message is synthe­

sized each time the user has selected an option with the form, to confirm

or remind the next actions. Modality switching could be carried out man­

ually by the user or automatically.

9.5 Conclusions

We have described the design and implemention of an assistive infrastruc­

ture based on the use of an ontological network to encapsulate knowledge

on the product data and manufacturing processes. We have implemented

a prototype ontology that serves as the main data source to automatically

generate digital forms and voice dialogues to configure a wood name­

plate manufacturing process. As a perspective, we intend to synchronize

modalities for more flexible and efficient user input. The prototype was

successfully demonstrated at a SMErobot workshop 20091.

1SMErobot Final Project Workshop, http://www.smerobot.org/15_final_workshop/.
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10

Task-Planning Services for

Automatic Programming

Goal: Automatic invocation of engineering tools for task planning

10.1 Introduction

A Service Oriented Architecture (SOA) has been developed based on a

small domain specific ontology used for goal­driven automatic planning to

produce a final robot program. SOA services are orchestrated into work

flows, possibly containing partial operator input where needed, such as

for calibration routines. An overview of current research problems for

incorporating web services in manufacturing is given in [108] and [109].
The W3C submission for semantic services description called OWL­S has

been used in this work [110] and [111].
Constraint logic programming for automatic composition is seen in sev­

eral works. In [112] finite domain constraints are used for encoding ser­

vices for automatic discovery and composition. [113] utilizes constraints

for automatic composition in the domain of security services (for exam­

ple digital signing). In the work presented in this paper, the automatic

composition and mediation are performed in a similar way by formulating

OWL­S service models as finite domain constraint problems, but utilized

within the manufacturing domain. The JaCoP system is used as a solver

[114].
The idea of coordinating workflow in industrial settings have been

visited, although on a somewhat higher level than the robot cell [115],
[116]. [117] discusses SOA architectures from a third­party perspective.

Mediation and configuration of dataflows are visited in [118]. Ranking of

services is touched in [119].
In [120] the Device Profile for Web Services (DPWS) proposal is dis­
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cussed as a set of web standards suitable for incorporating factory ele­

ments in a SOA architecture, as does [121]. In [122] DPWS is studied

from a real­time perspective. In [123] semantic enhancements to existing

automation standards (IEC TG65) are proposed as an attempt to stan­

dardize device descriptions. Though not touched further in this chapter,

the DPWS standard could prove to be the way of incorporating physical

devices into workflows such as described here.

The method used in our work is based on a semantic service­oriented

approach for automatic integration of process­oriented and vendor­specific

task planning applications, which in our work was selected to be robotic

arc welding. Domain­specific reasoning simplifies creation, configuration

and execution of task generation workflows involving complex modeling,

simulation and planning software. From an industrial point of view, we

address the integration of an important part in industrial automation such

as automatic path planning and robot program generation, calibration

routines and deployment issues when moving programs from a simulation

environment of a real physical environment.

The integration of these services creates a work flow of activities which

increase the overall efficiency with respect to both productivity and qual­

ity. From a practical point of view, the programming time might be sig­

nificantly lower compared with manual programming and even compared

with robot simulation systems. Our approach will generate programs fully

automatic, reduce programming faults and generate a more consistent

quality in the resulting program.

Challenges include the configuration and integration of the task plan­

ning software with other software needed to produce the resulting up­

loaded robot program in the robot controller. The integration should meet

requirements related to efficient work flow and ease of operation by the

user. However, the approach presented here provides some important ben­

efits. An appropriate domain specific software for a given problem can be

used and the goal­directed search for a valid task generation uses au­

tomatically building and negotiating semantically valid data flows, work

flows and proper application configurations. Flexibility is achieved by al­

lowing partial execution, a mix of off­line and online applications and

tuning by the operator to override automatic methods where needed.

The ability to adapt to specific situations and calibrate a priori models

to physical reality is crucial to minimize down­time during change­over

between production batches or individual produced products. Fast, reli­

able and affordable calibration tools and methods have been developed

and evaluated. The involvement of process models accessible during robot

process specification and execution are important in order to change the

focus from today’s operator intensive robot­oriented programming phase

to a task and process oriented programming which, if data are correct, is
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able to generate correct robot program from a model based specification.

It is here important to be able to include typical process knowledge by

the operator or producing company into a task strategy or rules for how

the task should be generated to assure high quality without losing the

possibility to trace and maintain process data.

The concept for automatic programming developed includes a deploy­

ment tool that supports and helps users to move the cell description and

program from the off­line simulation to the robot controller, and leads the

user through the set­up of the robot cell based upon information gath­

ered in the off­line work. The task generation is supported by a work flow

within the SOA which supports automatic program generation, but also

allows the operator (user) to interact as needed within the programming

process. The work presented here has been validated through simulation

and verified by testing the actual generated robot programs on the physi­

cal robot system. The experiments verified the functionality and feasibility

of the approach to generate robot programs automatically.

10.2 Experimental Platform

The application used in our development is robotic arc welding which

represents an important process and application in industrial robotics.

It also highlights issues related to process control and the importance of

calibration of the weld gun and work object locations to achieve a defined

quality of the weld.

A test bed has been used in the development and validation of the

work of the automatic programming which was an important part in the

experimental verification of the concept for integration of the different

services as described in this paper. The aim was to show the feasibility of

the described SOA methodology and its applicability, through the services

provided and developed, to generate task programs for the robot in an

automatic way.

The test bed consists of an ABB IRB 140 robot, a work table with a

flexible workpiece setup with plates arranged in shapes typically found

in arc welding of large constructions. The set up is shown in Figure 10.1,

which also includes a welding gun (Binzel 22 degrees) and a laser dis­

placement sensor for calibration purpose of the work objects.

The programming tools for the robot are RobotStudio from ABB Robotics

which is the normal deployment tool for programs produced for ABB

robots, RinasWeld from RINAS or 3DCreate from Visual Components or

a combination of these for planning and generation of proper weld opera­

tions. In the development of automatic programming, services are set up

and defined for the software tools which are integrated in a work flow to
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Figure 10.1 Test bed used in the development and verification of automatic pro­

gramming.

produce different parts of the program to be executed on the robot. For

the test bed, the programming methodology is validated using the normal

operator tools for the robot such as the direct online programming us­

ing the teach pendant and the off­line and simulation environment using

RobotStudio.

RinasWeld is proprietary software that specifically in the domain of arc

welding is able to plan and produce robot programs for welding operations.

These are generated with respect to collision avoidance, singular areas,

joint limits and specific process related parameters set up for the specific

welding operations. Fine calibration is included in the generated robot

program that typically is a series of search movements to detect the plates
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Figure 10.2 RinasWeld screen shot during simulation and path planning (top).
Welding gun with displacement sensor attached (bottom).

by touching them with the gas nozzle or the tip of the weld wire. This

routine was redefined in this work to allow for the laser displacement

sensor described below. Input to the system are models of the robot, work

setup and workpieces to be welded including weld joint parameters for the

welding process. A screen shot from the software can be seen in Figure

10.2 (top).
In our work, it was assumed that 3D models of the workpiece were

known beforehand. However, in most cases, a calibration is needed to

compensate for displacements of the workpiece with respect to the robot.

This is due to tolerances associated with large constructions or products in

low volume, but also geometrical displacements occurring during welding.

Thus, sensing capability is needed both before and during task execution

for fine calibration of the workpieces. Work related to global calibration
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has been developed and verified earlier using different tools, such as vision

and calibration using the robot itself to produce a rough estimate of work

objects within 10 mm of the nominal location. Fine calibration is developed

as an integrated part within RinasWeld.

Standard test workpieces have been developed for the test bed and are

used in the development and validation of the automatic programming

methodology. The welding gun is used to simulate welding and include

as sensing capability a laser displacement sensor. The laser displacement

sensor is mounted on the welding gun to measure the distance to the

weld plates and can be used to measure the same feature of a plate as

a probing method used on most arc welding applications. With the dis­

placement sensor, the measuring distance is typically 350 mm and the

measurement can be done much faster utilizing smaller motions of the

robot. By introducing new search methods in the software which produce

the robot programs, the programs are not only produced fast, they will

execute faster as well. This is an example where the automatic program­

ming methodology will not only produce programs faster, but also with

new features which speed up the execution in certain situations, see Fig­

ure 10.2 (bottom) which shows the welding gun with laser displacement

sensor.

The methodology to plan and generate programs automatically has

been validated and proved successful where programs were generated as

RAPID program code which is the native language for the ABB robot

controller and then manually deployed to the robot using RobotStudio.

For the continued work, the SOA architecture will support a workflow

which automatically generate and search for services to move a generated

program to an executable robot code as described here.

The most commonly used practice to localize the weld joint is to apply

a set of search movements of the welding gun where the tip of the weld

electrode is forced to touch the plates. By using this technique, a weld

joint can be localized in a way which is sufficient for the welding process.

However, if used extensively, the time needed for the procedure may be in

the order of 20­30 percent of the available productive time. To speed up

this process, several methods can be applied which make use of general

vision based sensors. However, such methods are in many cases unsuitable

due to the process environment or the workpiece setup, or changes may

occur during the processing of the workpiece which is difficult to measure

by the sensors. Alternative solutions are in such cases to use a sensor

mounted on the robot which moves with the welding gun. In the general

case, a seam tracker can be used for this purpose which uses a laser source

and triangulation of a scanning laser stripe transverse to the weld joint

(or plates, edge, etc) to measure the distance profile of the joint or plate

measured.
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Figure 10.3 The developed Deployment Wizard is a tool to guarantee a complete

and correct set up of a robot system from a simulation environment.

These sensors are standard industrial devices but show a few draw­

backs: they are rather expensive to use, add complexity to the system

and occupy a geometrical space at a certain place in front of the welding

gun. For this reason they cannot be said to be a general solution to the

problem presented. Another solution is to apply a specific dedicated sen­

sor to measure the properties of the plate or joint. One such sensor which

can be used is the CSS­WeldSensor from Oxford Sensor Technology which

applies a precise scanning of a surface area by rotating the laser head

and applying triangulation to measure the distance in the same way as a

seam tracker, but without the scanning techniques [124].
The method is efficient and our approach can be said to be a variant

of this but in our case we are using a simple laser displacement sensor

and the movements are performed by the robot producing a more versatile

and low­cost system. As with the CSS­WeldSensor, the laser displacement

sensor can be mounted off­set to the weld gun at any suitable place and

provide a rugged solution to increase efficiency and quality of the work

process of the robot.

10.3 Deployment of Programs

To generate a program automatically is not enough for being able to actu­

ally run the application in the robot system. For this purpose, tools that

support in the deployment process of the automatically generated pro­

gram to the physical system have been developed and integrated into the

work flow, see Fig. 10.3.
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Deployment of programs is often a neglected problem and from a prac­

tical point a very difficult problem which has been a hindrance to the

adoption of off­line programming in industry, especially in improving pro­

ductivity for small and medium enterprises which relay on small batches

and new products. Thus there is a need for tools and methods to help

users of off­line programming systems to deploy off­line solutions to the

online robot system.

The method and a tool described here address the off­line to online

programming calibration issues, such as when a user has programmed or

adjusted a program in a 3­D off­line environment and then wishes to take

that program to the factory floor. After building the program using CAD

models or work station models, these stations must then be calibrated to

match the physical robot station. This typically is done by using the robot

as the measuring device; the user jogs the robot to at least three points

to calibrate a work object or reference frame.

When there are many stations or many objects, the user must go to

all of the objects and jog to many points. Typically, the user must write

down on a piece of paper all objects to be calibrated, or somehow manually

mark in the downloaded robot program the frames, objects and tools that

need to be calibrated on the floor using the robot. This takes time and is

prone to error. There is in general no help for the user to remember the

points, the objects calibrated, nor help in visualizing the steps necessary.

The user has no visual clues when working on the teach pendant and has

to remember in his/her head what the objects in the 3­D simulation were.

While the standard calibration tools present in the robot controller and

teach pendant work, there is no customized calibration that would help

the user directly with the task.

However, all information needed in this process to help the user is

already available in the off­line 3­D system, but not available on the con­

troller and teach pendant when working on the factory floor in the robot

cell. In this work, a configuration tool has been developed to support the

operator in this process. This tool uses the graphical layout of the robot

cell in the simulation program to generate a system for the Virtual Con­

troller with the correct configurations and options. This means that the

user, by one command, can generate a completely new robot system in

just a few seconds and that this system contains correct configuration

and placement for robots, tracks, positioners, etc.

This tool will also prepare the robot system to be easily configured

when being deployed to the real online robot cell by adding calibration

support. The tool is designed to react on reconfiguration suggestions from

the user or from an external decision tool to an existing robot cell and will

provide setup support for process and equipment workcell changes. The

Deployment Wizard will then identify these changes, generate the needed
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cell setup and help the user through all the steps necessary to calibrate

the work object, frames, and tools used in the cell.

This is accomplished by taking 3­D snapshots from the off­line simu­

lation tool and combine these with a Teach Pendant Application Program

which presents the images on the teach pendant and guides the user

step­by­step through the calibration process. In addition, this is combined

with a robot program which can be used to quickly move the robot to all

entered points (for calibration checks) and to save the points for future

verification. This function in RobotStudio is called Create System from

Layout. It allows the user to easily test different station configurations

and to simply reconfigure the actual cell layout.

For a user with small batches that need the production cell to be recon­

figured frequently this tool will provide a useful support, and the function

analyses the cell and the robot program and generates the following out­

put:

1. The robot program(s) for calibration contains the robot motion in­

structions and robot target storage to move the robot to the neces­

sary calibration positions that are needed for calibrating the differ­

ent frames and work objects in the cell.

2. The 3­D snapshots, which are pictures taken from the 3­D simula­

tion, are automatically generated and scaled to fit on the teach pen­

dant. These pictures show the objects and frames to be calibrated

and what points are to be used when jogging and calibrating the

robot.

3. The teach pendant application program, is a .NET assembly that is

generated based upon the data in the 3­D simulation and which con­

tains the step­by­step user interface that shows the 3­D snapshots

and guides the user through the calibration process. The applica­

tion is essentially a wizard making the calibration process easy and

straightforward. See Figure 10.4 for an example of the application

running on the Teach Pendant.

10.4 System Integration and Workflow Support

This section presents the SOA as an integration concept to increase the

level of automation in nontrivial task generation processes that may in­

corporate several CAD/CAM applications, as well as different calibration

equipment and product/process knowledge. The challenge is to use com­

plex planning functionality without requiring expert application and/or

139



10.4 System Integration and Workflow Support

Figure 10.4 Calibration program with step­by­step guidance. The current cali­

bration status is shown and if the frame is not calibrated the user can run the

calibration sequence (or recalibrate, if needed). The deployment wizard method is

patent pending, ref. EP2008/057139.
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integration knowledge from the operator. The proposed integration con­

cept aims at achieving this by increasing the level of automation during

creation and execution of task generation processes:

• Automate application interaction thus removing the need for de­

tailed application operational knowledge.

• Automate information flow and message contents between applica­

tions removing the need for detailed application integration knowl­

edge.

• Automate configuration of applications, for instance by assisting se­

lection of process parameters from product knowledge.

The operator is presented with a simple user interface (at present a

web search interface) that allows the operator to formulate the intent of

the task generation process as a search query. A search is performed to

find valid task generation processes among available applications, equip­

ment and processes. The search result is presented to the operator and

the process can be directly executed by the press of a button.

The integration concept uses results from service­oriented architec­

tures, web services and semantic web:

• Application/equipment functionality is exposed as web services to

enable automatic invocation of functionality.

• Semantic descriptions provide machine­readable explanations of web

service functionality and invocation to enable automatic search for

web service orchestrations (task generation processes).

• Ontology­stored concepts provide a machine­readable common un­

derstanding of web service functionality and message exchange need­

ed to integrate several web services into a task generation process.

• Ontology concepts also provide an understanding of product, process

and application knowledge to allow inference of some web service

message content (interpreted as application configuration) during

web service orchestration.

Integration is performed in two stages. During the first stage, the

semantic stage, a constraint­logic reasoner performs web service match­

making, web service orchestration and mediation of web service message

content. The reasoner makes inference based on semantic web service de­

scriptions and a search query stated by the operator. The outcome of this

stage is one or several process execution scripts representing valid task

generation processes. The script fully describes a task generation process
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containing references to all participating services, a data flow (message

passing) graph between services, a work flow (invocation) graph between

services and message and service configurations. During the second stage

the script is executed. Execution state is persisted allowing the SME op­

erator to retain a log of the task generation process, or pause and resume

an execution.

The prototype built for validation purpose illustrates the concept. The

operator generates a weld task for the workpiece and cell equipment de­

scribed in the test bed by performing a search in a web interface. The

search result orchestrates a planning tool (RinasWeld by KPS Rinas)
with a simulation tool (RobotStudio with Deployment Wizard by ABB)
and product CAD into a task generation script that ends with task de­

ployment to the test bed robot controller (uploaded RAPID executable

robot code).
Revisiting the task generation process of the test bed scenario in more

detail the central tool used is the RinasWeld planner which generates weld

programs. It needs to be fed with workpiece geometry, enough information

about the target cell to be able to create the cell in the planner (equip­

ment) and calibration data for cell and workpiece. The planner also needs

to be configured by selecting proper welding process parameters (such as

leg length) and selecting welding strategy options depending on, among

others, workpiece geometry, workpiece material properties and type of

weld gun. The other tool in the scenario is the ABB RobotStudio simula­

tion tool. The assumption is that a model of the cell is maintained in the

tool. Information about equipment and calibration data (equipment posi­

tioning, work frames, and tool frames) can then be extracted and used by

the planning tool. The deployment wizard functionality ensures that cal­

ibration data is up­to­date with the physical cell. The third tool used is a

generic CAD software mock­up capable of generating workpiece geometry

compatible with the planner tool. Meta­information about the workpiece

can be used to infer process parameters for the planner tool.

Taking a bottom­up approach the implementation of the prototype con­

sists of the following parts:

• Expose application interfaces as web services.

• Expose task generation processes as process execution scripts con­

taining data, work flow steps and execution state.

• Implement/find a process execution engine to execute the script.

• Create a common body of semantic knowledge shared between ap­

plications (keeping it small and focused on task generation)
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– Expose descriptions of application interfaces as ontology­based

process descriptions.

– Expose web service messages and message content data formats

as ontology­based descriptions.

– Expose product, process and application knowledge as ontology­

based descriptions.

• Use a logic reasoner to derive process­specific parameters (static

message content) from the body of product/process/application knowl­

edge.

• Use a finite­domain constraint­logic reasoner to synthesize valid pro­

cess execution scripts by composing web services and mediating mes­

sage content from the ontology descriptions.

The integration concept was bootstrapped and evaluated using avail­

able service­oriented technology where possible, such as the Decentralized

Software Services (DSS) from Microsoft Robotics Studio. The OWL ontol­

ogy language with the OWL­S upper ontology was chosen as basis for

semantic service descriptions.

In conclusion, the prototype generates a work flow involving Robot­

Studio for calibration information, RinasWeld for planning of tasks and a

sample CAD provider, see Figure 10.5. The operator specifies intent in a

web based search query interface. The query is transformed into a process

script (workflow, dataflow) through the Protégé and JaCoP tools perform­

ing reasoning and constraint­based search on semantic descriptions of

the available services. A taskgeneration­specific ontology contains com­

mon concepts used in the service descriptions necessary for transforming

a query into a process script. The script is interpreted and executed by a

manager service handling the message flow between services (RobotStu­

dio Deployment Wizard, RinasWeld, sample CAD provider).
A problem was handling of operator interaction within the automatic

script generation and execution. Both participating applications needed

dialogues to be part of the script work flow (RinasWeld for selection of

weld lines, Deployment Wizard for confirmation of calibration status).
The solution for the prototype was to include dialogue messages as part

of the application web service, displaying a dialogue with message­specific

content when executed.
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Figure 10.5 Task workflow during execution and generation of the robot program.

10.5 OWL-S Extension for Constraint-Based Search

1OWL­S considers a service description to consist of three parts, see Fig­

ure 10.6. First, the service profile provides a classification of the service,

easing the job for discovery algorithms. Second, the service model con­

tains a process specification of the service, providing a data and control

flow model. Finally, the service grounding provides definitions of concrete

message formats for communication with the service. Currently the web

service description language (WSDL) is supported.

Figure 10.7 shows the top­level concepts of OWL­S. The concepts are

separated by namespaces (shown as prefixes followed by colons) with the

major OWL­S concepts presented in the service namespace. The other

namespaces further refines the major concepts, in particular the process

1This section presents unpublished material, mainly from deliverables within the SME­

robot project.
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Figure 10.6 Overview of the OWL­S service description (excerpt from the OWL­S

standards proposal).

namespace describes control flow constructs used in the construction of

process graphs.

Two extensions have been found necessary for the experiment. First,

there is a need to rank service compositions because the application of

constraint solvers for composition and mediation will likely produce many

solutions. Second, OWL­S does not offer a means for configuration of com­

plex message contents and services. Therefore, a configuration attribute

is added to parameters and services. This attribute may contain a de­

scription of capabilities and requirements. In the experiment, the OWL­S

process modeling language is re­used as a configuration description lan­

guage.

The OWL­S ontology needs a companion ontology with domain­specific

concepts to describe services. Figure 10.8 shows a snapshot of the task

generation ontology being developed for the prototype test bed. The ontol­

ogy identifies different roles in the task generation process, covered be­

low the service profile concept. The ontology also defines ranking values.

Messages that may occur in a task generation are identified as connec­

tion profile concepts. Configuration options are identified as configuration

model concepts, the figure shows example options for geometry exchange.

The data value concept covers data generated during execution.

Enhanced service description Service descriptions are created by in­

stancing concepts from OWL­S and domain ontologies. For example, the

experiment contains a service description of the 3DCreate tool from Vi­

sual Components, acting as a CAD provider. The service being described

is called RankedService_3DCreate_CADProvider. It has a CADProfile pro­

file, is described by the CompositeProcess_3DCreate_CADProvider service

model and sends one message (called CAD) that is grounded to a WSDL de­
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Figure 10.7 The OWL­S top level concepts viewed from the Protégé tool.

scription, WsdlGrounding_CAD. Figure 10.9 shows the process model for the

3DCreate CAD provider service. It is a sequence that sends a CAD mes­

sage. Furthermore, the CAD message is configurable. Figure 10.10 shows

the configuration graph for this message. It is a sequence of choices. More

complex configuration scenarios are possible to model since the (re­used)
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Figure 10.8 Domain­specific ontology.
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Figure 10.9 The service description for Visual Components 3DCreate application

in the role of CAD provider.

Figure 10.10 Configuration of CAD message for a service.

OWL­S process language is more powerful, but this is not supported in

the reasoning mechanism of the experiment.

Constraint-Based Search using JaCoP

Automatic composition and mediation are performed by formulating OWL­

S service models as finite domain constraint problems. The JaCoP system

is used as solver [114].
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For composition, the goal is to arrive at fully connected process graphs.

In JaCoP this is achieved by searching for message exchange sequences

fulfilling this criteria, possibly ranking solutions. Including mediation, the

goal is to also produce a set of configuration choices that are valid for ser­

vices exchanging a message. Different choices may be ranked according to

a cost function calculated from service preferences. Finally, the constraint

solver finds solutions with low or minimal cost.

An example illustrates the approach. The example searches for all

valid compositions starting from a partially filled composition, called the

intent. For brevity, solutions are not ranked and no mediation is per­

formed. Available sets of services and connections are encoded as finite

domain values. In the example the following enumerations are used:

Services: NOSERVICE, SERVICE1, SERVICE2, ALLSERVICES

Connections: NOTYPE, TYPE1, ALLTYPES

Outgoing ports: NOOUTGOING, SERVICE1_TYPE1_OUT, ALLOUTGOING

Incoming ports: NOINCOMING, SERVICE2_TYPE1_IN, ALLINCOMING

The search is declared as a finite domain problem in the JaCoP syntax.

A message exchange is encoded using five finite domain variables. Two

for describing the origin of the message (service and connection), two for

describing the target of the message (service and connection) and one for

describing the connection type. A workflow consists of an array of these

five variables, the example allows a maximum size of three sequence steps.

All variables are initialized to their NO­ALL range.

public void allValidCompositions() {

int size = 3;

FDstore store = new FDstore();

FDV[] fromService = new FDV[size];

FDV[] fromConnection = new FDV[size];

FDV[] toService = new FDV[size];

FDV[] toConnection = new FDV[size];

FDV[] type = new FDV[size];

FDV[] used = new FDV[size];

// Initialize FDV domains to allowed ranges (NO -> ALL)

}

Basic constraints ensure that a sequence is as short as possible, that

a message is not sent from a service to itself, that a message is sent be­

tween two services and that the sender and receiver connections are of
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the same type. Service­specific constraints ensure that service connections

are of the right connection type. The intent is constructed by imposing ex­

tra constraints specifying, for instance, wanted services and connections.

Below are shown the service­specific constraints for service one; there are

no incoming connections and the outgoing connection must belong to a

certain type and port:

for (int i=0; i<size; i++) {

// In

store.impose(new XneqC(toService[i], SERVICE1));

// Out

store.impose(new IfThen(

new XeqC(fromService[i], SERVICE1),

new XeqC(fromConnection[i], SERVICE1_TYPE1_OUT)));

store.impose(new IfThen(

new XeqC(fromService[i], SERVICE1),

new XeqC(type[i], TYPE1)));

}

Finally, the constraint finite domain solver produces all valid solutions

where list holds the sequence to be determined:

boolean result = Solver.searchAll(store, list,

new IndomainRandom(),

new Delete(),

solutions);

10.6 Results

Practical tests during a verification phase have shown a consistent and

reliable task programming which produced an uploaded program in the

robot controller in less than one minute. The program was generated

to perform arc welding operation based on a CAD model where up to

five weld joints were selected followed by the automatic generation of

work document and subsequent planning and robot program generation as

discussed above. The weld paths were not considered as “easy” to program

as they needed careful planning by the task planner to consider close to

joint limits, configuration changes and singular areas, which was detected

during manual programming and off­line programming using RobotStudio

in the traditional way. Furthermore, the deployment issues related to

calibration of work object and tool data as discussed were also included

in the final workflow operation.

150



10. Task­Planning Services for Automatic Programming

10.7 Conclusions

Production engineering is often rather complex, with workflows involv­

ing a variety of software tools and equipment, such as sensors and end­

effectors that need to be selected, configured and used appropriately. The

existing workflows are not really suited for use in small manufacturing

facilities where it is not feasible to have the needed software/equipment

specialists. This hampers wide­spread use of robots as targeted by the

SMErobot initiative. Useful semantic models, for well­defined domains

such as arc welding or small parts assembly, would allow engineering

knowledge to be stored for re­use and then applied (semi­)automatically

across involved tools and equipment. As the prototype implementation

shows, reasoning then fits as dedicated components that can ease the

configuration and robot programming. Thereby, usage of robots directly

on the shop­floor, by nonexpert operators, appears to be tractable. The re­

sult was demonstrated as part of the final demos in the SMErobot project.
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