
+Facto? research is
progressing from a
vision to a reaky.
Th e Eureka
Sojhuare Facto?
project combines
process modeling
and an architecture
centered on
communication to
aid integra tion.

Sofmare Factory
Principles,
Architecture, and
Experiments
CHRLSTER FERNSTROM, Cap Gemini Innovation
KJ E LL.HA KAN NAR F E LT, Te lia Res ear c h
LENNART OHLSSON, Utilia Consult

concept symbolizes a desired paradigm
shift from labor-intensive software pro-
duction to a more capital-intensive style,
in which substantial investments can be
made at an acceptable risk level. The soft-
ware factory represents an evolutionary
step on the scale of software-engineering
support, a refinement of software-devel-
opment environments and integrated
project-support environments.

The software fac~ory is sdl more a vision
than a reality, but several efforts have been
undertaken to reabze the concept One effort
is the Eureka Software Factory project, a Eu-
ropean effort funded under the Eureka pro-
gram. ESF is profiled in the box on the fat-
ing page.

We foresee a market for software fac-
tory parts that can both be configured for
specific applications and evolve to take ad-

vantage of tomorrow’s innovations. Prod-
ucts in t h ~ s market will range from hghly
specialized tools to complete environ-
ments and will be provided from different
vendors, thus requiring vendor-indepen-
dent integration mechanisms.

To service h s market, ESF has de-
fined a communication-centered CASE
architecture which, when combined with
specific support for describing and an-
mating various software-engineering ac-
tivities, helps factory builders integrate
CASE products.

FACTORY MODEL

The classic factory, where people act as
machinery in performing predetermined,
repetitive tasks, is neither a desirable nor
correct model. In the context of software,
the factory analogy can be applied only to

36 074i37459/92/0300/0036/503 00 0 IEEE M A R C H 1 9 9 2

the goal of industrial-style production, not enterprise, includmg all primary and sec-
to its implementation. The manufacture of ondary activities related to software prc-
software involves little or duction. CIM factories
no traditional production: are designed to reduce
Every system is unique; the isolation of produc-
only individual parts may - tion islands (such as
repeatedly appear in more The factory enology computer-aided design
than one system. systems, production ma-

ware environments em- tens) whde still allowing
phasize support for pro- each subprocess to
ducingcodeandassociated production, not evolve and be enhanced
documents. In a software
factorv. the focus shifts to

Most traditional soft- applies Only t0 the chines, and ordering .s~.5-

goal of

naturally. industrial
~ i’

coordinating information ’ Information otmulation.
between producers and Implementation* In the strongly hunian-
consumers so that the
right person always has the
right information at the right time.

Idonnation logistics. There are three per-
spectives to the logistics of coordinating
information:

+ At the organizational level, the envi-
ronment must manage access rights and
enforce procedures according to roles and
assignments.

+ At the team level, the environment
must provide change notification and mu-
tability control to manage updates of
shared information.

+ At the individual engineer level, the
environment must reduce information
overload and provide focused views ofrel-
evant information.

A software-factory environment does
not restrict access to information for tech-
nical reasons, but for reasons of relevance
and possibly policy. The logistics problem
is how to provide precisely the informa-
tion that is currently needed and how to
ensure that the information provided is
valid and consistent with the assigned user
tasks - by ensuring that appropriate vali-
dation procedures have been applied, for
example.

The software factory has some of the
same characteristics as factories that apply
computer-integrated manufacturing, es-
pecially the continuous focus on synchro-
nizing and integrating independently
evolving subprocesses to achieve very
broad coverage.

A sobare factory‘s scope is the entire

- .

oriented software-pro-
duction process, knowl-

edge and experience are most often col-
lected only informally. Organizations
have no memory and carry experience
over to new projects by coincidence rather
than by design. Manufacturing organiza-

Ins, on the other hand, measure and an-

alyze production characteristics, which
then become important assets in their ef-
fort to enhance predictability, quality, and
productivity.

An important characteristic of a soft-
ware factory is the importance it gives to
information accumulated from many
projects.’ This information may take
many forms, including reusable elements
(of code, designs, and documentation),
performance measures, development
processes, and reports on the effective-
ness of applying specific techmques.

To collect ,and use all h s infomyation,
an organization must first understand
both its semantics and its context. The or-
ganization must store the information in
semantically rich smctures that help con-
sumers understand how to use it effec-
tively. A software factory must have the
means to analyze and describe infornia-
tion and its context, store it efficiently (in a
knowledge base, for example), retrieve it,
and apply it to new situations.

EUREKA SOFTWARE FACTORY
ESF, which began in late 1986, intends

to create a market for CASE products that
can both be configured for specific appli-
cations and evolve.

The ESF consortium comprises 13
partners fi-om five European countries.
The companies represent computer man-
ufacturers, research institutions, CASE
tool producers, and system developers.

The ESF consortium members are
Cap Gemini Innovation, France; EB
Technology, Norway ICL, United King-
dom; Imperial College, United Kingdom;
INRIA (hstitut National de Recherche
en Informatique et en Automatisme),
France; Matra Marconi Space, France;
Sema Group, France and United King-
dom; Softlab, Germany, Systemhaus GEI
GmbH, Germany; TeleSoft, Sweden; the
University of Dortmund, Germany and
the University of Durham, UK

Organized by a management team in
Berlin, ESF’s activities are dismbuted
amss Europe. There are now 15 active

subprojects, since 1989, more than 200
man-years per year have been allocated to
the ESF project.

By 1991, halfway into the 10-year proj-
ect, ESF had defined a reference architec-
ture, completed the first implementation
of a suppordng framework and various
tools and tool prototypes, and had under-
taken several factory-integration experi-
ments. In the second half of the project,
ESF‘s focus will shift to developing prod-
ucts and introducing its factory concept
into organizations. For more information,
contact FSF, Hohenzijllerndamm 152,
D-1000, Berlin; Internet secretary@esf.de.

REFERENCES
1. Femstrom, C., ‘The Eureh S o h a r e Factory:

Concepts and Accomplishments,” Prof. Third
Earopean Sofiwnre Eng. Con$, A. Laniswerde and
A Fugetta, eds., SpringerVerlag, Berlin, 1991.

2. R. Rockwell, “Software Factories: The Indus-
mal Production of ‘Mnd Stuff,’ ” Proc. IPIP
Wwkmg Group J Con$’ NEW Apprazches to One-of
a-Kind Produrtima,” Elsevier Press, New York,
1992, to appear.

I E E E S O F T W A R E 3 7

mailto:secretary@esf.de

Produd Supported process

Service Operation
Tool Tsk
Tool set Role
Environment Production process

EMERGING CASE MARKET

Today’s software-production process i
so complex and extensive that no CASE
vendor can support all the administrativi
and technical aaivities of a software enter
prise. So CASE developers specialize
providing support for only part ofthe pro
cess. The problem with specialization i
that it often leads to products that are is0
lated and closed - different vendors’ prod
ucts usually do not interoperate correctly
Such a hgmented market prevents the real

ization of the software factory concept.
The ESF project attempts to minimize

fragmentation by creating the conditions
necessary for niche vendors to focus on
their core business without risking isola-
tion. Each vendor should be able to offer a
complementary part of a complete, inte-
grated production environment.

We foresee two types of CASE ven-
dors: componentvendors, the makers of the
factory “equipment,” and factmy vendors,
the builders of environments, who select
the most suitable equipment, integrate it,
and customize it to fit a client’s organiia-
tion and production process.

To build such a market, the techcal
solution must incorporate customizahle,
cooperating, heterogeneous components
that work together in a distributed envi-
ronment. Moreover, the software factory
concept must cope with evolution: Cur-
rent technology must be able to coexist
with tomorrow’s technology.

Product versus process inteyation. Table 1

1

Figure 1. Work contexts in a user’s interaction enz‘irunnrtmt Work context WC1 conmts ofthe tntwacttm
olyects d a t e d to the z i d s a r s i p e d work MZ task TI in role R1, W C 2 to tark T 2 in role RI , mid U T 3 to tark
T 3 in role R2

lists some CASE products of different

+ Asmice is an atomic operation the
user cannot interrupt once it has started,
such as cut, paste, and compile. On the
process side, a service corresponds to a
user function that has been fully auto-
mated.

+ A tool is an integrated set of services,
such as editors and project schedulers. On
the process side, a tool supports a user task.

+ A tool set is an integrated set of tools
that supports a user role, such as program-
mer, projea manager, and librarian.

+ An envirolznient is an integrated set of
tool sets that supports every role in a soft-
ware factory.

For products in the same category to
interoperate, there must be intei-prodmt z?z-
tegr-ution. Services have a strong require-
ment for interproduct integration, but the
requirement decreases as you move down
the list of market segments. For example,
the ability to cut text is not very interesting
if it is not tightly integrated with other
editing services. On the other hand, a
complete environment need not be tightly
integrated with other complete environ-
ments.

Tight integration is generally expen-
sive. When a product is tightly integrated,
h s cost is spread over all the sales of the
product. However, environment integra-
tion is paid for by each customer, because
each environment is customized to an or-
ganization. Thus, a strong requirement on
the interproduct-integration mechanism
is low usage cost.

In contrast to interproduct integration,
the requirements for pocess integration -
the ability of products to integrate with the
organization’s processes - are higher for
environments than for services. Introduc-
ing a service requires very little process
knowledge, hut introducing a tool set or
an environment requires that the roles the
product seeks to support match an organi-
zation and the methods used by the latter.

The market includes all four product
types, so a technical solution to environment
construction must cater to two needs:

+ The need for a flexible and adequate
interproduct integration mechanism that
both allows cost-benefit trade-o& for in-

p u l a r i t y .

- _. _-__

3 8 M A R C H 1 9 9 2

tegrating products from different vendors
and can coexist with the mechanisms used
for tight inwapodzlct integration.

o The need for process modeling,
which lets factory vendors customize their
product.

ENVIRONMENT ARCHITECWRE

A CASE environment must provide
the right information to the right people
at the right time and maintain a consis-
tent view of the system under develop-
ment, despite the demands placed on it
by varied users, data representations,
and formalisms.

Process m t . Fundamental to realiz-
ing a software factory is the formalization
of the software-production process. Al-
though it is common to b d d a process
model earlv in traditional mformation svs-

component I I component

I I I I I I I

Figure 2. The ESF environment r$erence architecture. A set ofsmice componentsand a set of use?-interur-
tion components plug into the sofi7m-e bus. Swvice components represent the concepts supported ly the
envimnmat; user-interaction components implement the user dialogue. The sofnuare bxs hides the dutrrbution
and heterogeneity of the componentsplugged into it andputs no restnctions un a component ’s internal execution
enwironment

tem development, these models are used
mainly as development blueprints.

A process model for a software factory,
on the other hand, actively suppons users’
activities and is used to automate the
factory‘s mfomtion logistics. Ethis process
model is expressed in a formal language with
executable semantics - as a
procesrprogram -it cdn be
executed while the environ- -

and the roles he plays as he works on them.
Interaction objects encapsulate in-

formation and tools. They may be dis-
tinct entities in an object-oriented user
interface or they may be independent

data and tools. T h e
process program makes

mentis used. A CASE environment
gram and the actual pro-

When the process pro-
must maintain a

consistent view of

demands placed on it
viromentcomprisesbth by varied users, data

organizations cannot formalisms.

cess interact, the process
has been en&ed. Enacting
the process brings the
environment’s functions

organization and users. In
our model, an enacted en-

“hard” software -policy-
free building blocks that

modify - and “soft” soft-

the system under
closer to the needs ofthe development, despite

representahonsi and

ware - process programs
that are under the organization’s full con-
trol.

As Figure 1 illustrates, the user sees
process enactment through work mte&, a
collection of objectswith which he interam
and which are specific to IS assigned tasks

I E E E S O F T W A R E

work contexts available
to a user whenever he is
assigned a task and re-
moves the work context
when he has completed
or delegated the task.

The user-interaction
environment consists of
all available work con-
texts, and so is a view of all
the information and
functions in a user’s sup-
port environment. When
a user completes a task,
the process program may
automatically notify
other team members or

dismbute results. An enacted process may
also accumulate experience by collecting,
classifymg, and storing information about
the running process automatically.

Enviomnent integration. To integrate the

tools in an environment, most recent
CASE architectures use a central
database. As the box at on p. 40 describes,
however, such storage-centered environ-
ments have some shortcomings and are
not yet widely used.

Figure 2 illustrates ESF’s communica-
tion-centered arclutecture, which com-
bines the advantages of highly interactive
environments with evolutionary flexibility
and the ability to achieve broad coverage.

Environments in ESF are built
around a sojiware bus, which hides the
distribution and heterogeneity of the
components plugged into it. The com-
ponents are islands of tight integration
that interoperate via the software bus.
The software bus puts no restrictions on
a component’s internal execution envi-
ronment. Components may be written
in different languages, use private stor-
age models, and independently choose a
storage system for managing persistent
data. The software bus concerns itself
only with how components make their
functions available to the rest of the en-
vironment. It requires only that they
provide a programmatic interface that
can be accessed via the protocols the
software bus stipulates.

39

CURRENT CASE ARCHITECTURES
Most recent architectures for soft-

ware-development environments are
based on the use of a central database, or
repository, which stores all relevant data.

A common database facilitates the
collective use of several tools in many
ways. First, its data model imposes a
uniform format for all data that is used
by more than one tool. Second, its
shared state enables the short response
times that highly interactive environ-
ments require.

Third, a common database schema
explicitly expresses the database’s inten-
tion and how it relates pieces of informa-
tion. This expression is distinct &om how
the data is actually stored. Experience has
shown that the use of schemas forces de-
velopers to give precise information de-
scripaons, thus reducing misinterpreta-
tion. Separating semantic data descrip-
tions from storage representation also re-
sults in systems that are easy to make
small changes to.

Fourth, a common database mini-
mizes control coupling between tools: Be-
cause tools operate on the state of the
database, rather than the direct output of
another tool, they can be ignorant of
when the data was produced and what
produced it.

Liaiiions. Despite these apparent ad-
vantages, database-centered environ-
ments are not (yet) widelyused. One rea-
son is that the data models of conven-
tional database-management systems can-
not express the rich semantics that CASE
applications require (complex integrity
constraints and derivation dependencies
among entities, for example).

If the schema cannot explicitly state
such knowledge, it must be stated in the
code. And if several tools share the same
data, this code must be included in all of
them. For example, in a programming-
support environment the compiler, edi-
tor, and debugger all have embedded
knowledge of the language’s syntax and
semantics. Such duplication of code re-

-

40

duces tool independence and makes it
harder to integrate them.

cation of database-centered environ-
ments is that different tools have very dif-
ferent requirements on issues such as
transaction model, query model, aggrega-
tion bchties, and inbrmation granular-
ity. It is difficult to consma a DBMS
that combines a data model of sufficient
semantic richness, the generality to cover
varying requirements, and the high per-
formance that interactive environments
require. This is an area of active research.

So-called language-centered environ-
ments, like Interlisp, Smalltalk, and
Rational, achieve tight integration by
building on special-purpose databases in-
stead of commercial DBMSs. However,
because they are specialized, these envi-
ronments neither fit into a wider context
nor cooperate easily with other tools.

Another reason for the limited appli-

Appkation d e l . Another, more open,
approach is to hctor out the parts of the
tools that embody the applicationspecific
semantics of the stored data and place
them in an application kzyw on top of the
data model. Other tools then access the
database only through the interface to
this layer, the appliicatian d e l .

Like the data model, the application
model lets schemas be defined. If the
application model is object oriented, it
lets high-level integrity constraints be
implemented as methods, indepen-
dently of and in combination with an ef-
ficient storage model, as expressed by
the data model.

A consequence of the distinction be-
tween the storage model and the appli-
cation model when building a tool is
something that appears to other tools
as a single object may indeed be a col-
lection of storage objects or a com-
puted object with no counterpart in the
storage model at all. Because the appli-
cation model lets you express schemas,
building tools this way helps reduce
their interdependence.

Cmpents Inspired by Smalltalk‘s model-
view-controller paradigm, ESFs environ-
ments comprise two lands of components:

+ User-interaction components, which
correspond to Smalltalk‘s view-controller,
let users view and manipulate the data
contained in service components. A user-
interaction component contains no pri-
vate application data that survives the ses-
sion in which i t was retrieved o r
computed. User-interaction components
are small, single-user entities designed for
a specific activity.

+ Service componennr~, which correspond
to Smalltalk’s model, provide functions
available to the software bus through pro-
grammatic interfaces. A service compo-
nent encapsulates an internal state that can
be accessed and modified by operations
available to other components via the soft-
ware bus. These operations always pre-
Serve internal integrity by talung the com-
ponent from one consistent state to
another.

Most of the information managed by a
service component is persistent and stored
in the component’s internal database. ESF
explicitly describes a service component’s
interface in an object-oriented component
model. As explained in the box at left, such
a model lets methods implement high-
level integrity constraints independently
of the internal data-storage model.

Other components that use the func-
tions provided by service components see
the service component as a database with
application-specific operations and do-
main knowledge. Service components are
generally large, multiuser subsystems with
considerable complexity and correspond-
ingly high price tags.

Process enactment is provided by afar-
to? process engine, which implements the
runtime support for process programs
with a set of service components present in
every factory environment. Likewise, ser-
vice components implement the work-
context management functions of the var-
ious user-interaction environments and
user-interaction components that imple-
ment the user interface. Tools generally
consist of a user-interaction component
acting as a client of one or more service
components.

M A R C H 1 9 9 2

lntegdion m~honkm. A well-designed ser- components not taken into account ear-
vice component obeys the rules of strong lier. The plug-in mechanism addresses
cohesion and loose external coupling. problems like those encountered in devel-

Component dependence -the degree oping federated database systems (larger
to which the inclusion or modification of database systems consisting of cooperat-
one component results in the need to in- ing database systems that individually de-
clude or modify other veloped and maintained.).
components - is related As Figure 3 illustrates,
to external coupling and the plug-in mechanism
to the integration ESF is developing WO uses the environment
mechanisms’ characteris- model to integrate individ-
tics. A useful guideline to generator tools, ual components by map-
reduce external coupling ping the components’ ele-
and achieve strong com- ments to those of the
ponentcohesionis to map to automate much of environment model. The
functionality to compo- factory builder constructs
nents in such a way that the tedious work the environment model
cycles in client relation- in building usel from component models
ships are internal to the in a manner similar to

database schema integra-
tion. This lets relation- T h e integration

mechanisms in the soft- ships, operations, events,
ware bus provide three features that ! and queries be defined across component
largely reduce component dependence:’ boundaries.

+ Specification-level interoperability.’ The software bus lets you define map-
The software bus provides a common un- pings between the environment model
derstanding of the data exchanged among and the component models. T h s supports
components, independent of their actual the integration process and reduces the
representation. I t supports component in- coupling between the environment model
tegration at build-time with a plug-in , and components, thereby removing un-
mechanism and at runtime with a commu-

SemDraw and

components. interfaces.

~

nication mechanism. Both mechanisms
rely on the component models and an en-
vironment model, all expressed in the com-
ponent-description language ESF CDL.

ESF CDL, in tum, comprises three sub-
languages: an abstraction-description lan-
guage, which describes functions indepen-
dently of representation; a representative-
description language, which describes
data-interchange formats and control-ex-
change primitives (for example, synchro-
nous and asynchronous procedure calls or
call backs); and a component package-de-
scription language, which describes the
abstractions a component provides and re-
quires and what representations it uses. The
representation parts are used in integration
to create and change components’ data and
control representations as necessary.

+ Plug-in mechanism. T h e plug-in
mechanism incrementally integrates com-
ponent models with the environment
model in a way that lets you introduce

necessary dependencies and localizing the
effects of changes.

+ Communication mechanism. T h e
communication mechanism provides re-
mote procedure calls and notification-
based component interoperation. It pro-
vides for synchronous and asynchronous
operation, dynamic system reconfigura-
tion, and late binding.

For operations with dynamic binding,
the environment model is used for type-
driven dispatch. When the software bus
receives an operation-object pair, it deter-
mines the destination of the operation by
loolung at the object type that uniquely
defines the component on which the op-
eration should be invoked. This may in
turn be a more specialized dispatcher.
Thus, a client component does not see
component boundaries - the environ-
ment appears to be an integrated whole.

Component generation. Software develop-
ment relies on different formalisms and
representations, including graphical ones.
The choice of formalisms and how they
are combined vary from organization to
organization, and even from project to
project. ESF is developing tyo generator
tools, SemDraw4 and Nexus,’ to automate

I I

Figure 3. How components plug into the environment model. Components’ expoported and imported
&i~ctionaliq is mapped to the environment modelis elements cia adaptors generated ly the so f ia re bus. The
adaptws p e i f m conceptual mappings and transformations of‘dataformat.s and control exchange primitiaw.
Conceptual ntupping inz.olz~es creating z’imss and cm7-elating m e modelk objects t o iinother model’s objects.

-

41 I E E E S O F T W A R E

METHOD-END

Figure 4. Fragment o f the Ada service component’s model, written in ESF CDL. ThrrF7agment desmbes
same of the component’c equrtedfitnctionality using the abmamon-desmption Language of ESF CDL.

much of the tedious work in building
multiformalistic, multiview user inter-
faces.

SemDraw is a general-purpose haw-
ing tool that lets you define consmints
among elements. With SemDraw, you
generate speciahzed editors for different
form&sm interactively, extending both

FACTORY EXPERIMENTS

An important thread of the ESF proj-
ect is learning how to integrate large-scale
environments. One of our integration ex-
periments has Produced a Prototype Soft-
ware factory an i“ i I -n t for real-time
system development; the other, a factory

keep &em consistent, a- storage systems are also supports design and

that support incremental heterogeneous. software-production pro-
pecially in environments module reuse and the

_ -
cess itself, by mapping the interaction.

vice component that factors out the logical
contents of several formalisms and incre-
mentally maintains them by propagating
state changes across several components.
Nexus is a view-server generator based on
attribute-grammar technology, which lets
view servers be generated from descrip-
tions of the formalisms used.

A view smw is a ser- production activities to
work contexts, which in turn deiine the

More than 20 components f b m eight
orgamzations make up h s environment.
We developed some of them from scratch,
but most were reengineered kom “ m e r -
cial tools adab le from ESF partners and
their subcontractors.

users’ tool support.

The system includes an Ada tool set,
developed by TeleSoft, Sema Group, and
INRIA (a French national research foun-
dation). T h s tool set is based on a service
component that was reenpeered from
TeleArcs/TeleGenZ, by TeleSoft.’ This
service component provides an object-ori-
ented interface for manipulating Ada ob-
jects (such as program libraries, compila-
tion units, program statements, and
declarations) according to their semantics
and for exploiting their semantic relation-
ships. Figure 4 shows a hgment of ESF
CDL that gives the abstract description of
operations provided on Ada compilation-
unit instances.

A user-interaction component, which
we based on the generic language-manip-
ulation system Centaur: provides a highly
interactive and adaptable user-interaction
environment. This component supports
two user roles: system builder and Ada
programmer.

For the system builder, the tool set pro-
vides facilities for maintaining system
baselines and shared library structures.
For the programmer, it provides a syntax-
oriented Ada editor. Through seamless in-
tegration of the user-interaction compo-
nent and the service component via the
software bus, the editor also supports Ada
static semantics. The reengineering effort
to build the service component, which was
implemented in Ada and respected the
principles of Ada package encapsulation,
was minor. The effort was outweighed by
the benefit it added to the supported roles
through interoperation with other tool
sets like those that support reuse, docu-
mentation, and design.

The environment was constructed
over 18 months. Development and reen-
pee r ing was distributed throughout Eu-
rope. The integration work, which was
supported by prototypes of the software
bus and a tool set for process modehg and
enactment, was also dismbuted to a large
extent. We usually completed painvise in-
tegration tests within a week

Although the real-time system factory
environment runs on a limited range of
systems - Sun Microsystems work-
stations and PCs - its implementation
languages are considerably heterogeneous

42 M A R C H 1 9 9 2

- C, C++, Ada, Lisp, Prolog - as are its
storage systems - files, Ingres, Oracle,
and the Promod object-management
system.

Factory for expbring information logistics.
Another experimental ESF environment,

developed by Cap Genlini Innovation,
contains prototypes to support process
definition and exec~tiodenactment.~

Process designers create and maintain
process descriptions with a graphical pro-
cess editor. They describe the structure of
tasks and overall infomiation flow with a

graphical notation that is like SADT
(Stuctured Analysis and Design Tech-
nique), bind tool supprt and (user) role
types to & with the usual SADT support
h, and define detailed task descriptions
and task synchronization with generic,
colored Petri nets with preconditions.

File

U

Figure F. The nuin window ofthe Agenda tool. User tasksarepe.rented in U t U ~ o - d i ? i i e r i . r ~ o n a ~ ~ ~ according t o their relative importance vr urgency. W e n a tusk i.r

selected (highlighted), its i n f m t i m is presented in the upper right xindow; its interuction objects within its a v r k conte.rt in the middle right window; and its
termination-control buttons in the lower right window. The irons m the lefi are iisedfbr tnsk delegation and nmyuided actizities.

- ~~

I E E E S O F T W A R E 43

To enact a process, the process de-
signer attaches actions, expressed in an ac-
tion language, to the Petri-net transitions.
These actions operate on the factory
environment’s objects. Trpical actions in-
voke a tool, check out a data object for
work, or send a message to a user.

User interaction is based on work con-
texts that are dispatched to users according
to task assignments. The user accesses the
environment services with a tool called
Agenda. He accesses tools and informa-
tion through Agenda’s object-oriented in-
terface either with process guidance (to
perform a planned activity) or without
guidance (for example, to read the mail).
Either way, access is reahzed through the
activation of a work context that corre-
sponds to a task. As Figure 5 shows,
Agenda visualizes tasks inany ways: as
scrollable lists sorted according to differ-
ent criteria, as icons, or as points in differ-
ent kinds of graphs.

Agenda also lets the user create, mod-
ify, delete, and delegate tasks and work
contexts to other users. The ability to cre-
ate a work context means the user can
group sets of tools and data to support
informal tasks, which are managed by
Agenda exactly as it manages the tasks it
receives via an enacted process. To dele-
gate a task, he simply sends the corre-
sponding work context to the Agenda of
the recipient.

So far, we have used h s environment
to experiment with archtectures for pro-
cess-support environments. In the future
we will use it mainly to transfer process
technology into organizations.

e fact that the software market has T“ two layers, in which factory vendors
provide customized solutions by integrat-
ing the products of specialized component
vendors, has led the ESF project to focus
on support for software processes and
component integration.

We have built environments along
these lines and early results with proto-
types are very encouraging. We are
now launching a program to set up soft-
ware factories in production environ-
ments, starting with the European space
industry. +

ACKNOWLEDGMENTS
The cnncepts and ideas presented here were developed within ESF, which involves numerous people

across Europe, inany of whom have actively conmhuted their ideas to the project. We acknowledge the signifi-
cant contribution of more than 50 people to the work reported here. Software Bus is a registered trademark of
the Eureka Software Factow project.

REFERENCES
1. G. Caldiera and \: Basili, “Identii).ing and QualifLing Reusable Software Componene,,” Computer, Feb.

2 . “The ESF Software Bus: An (hrcniew,” tech. report, Eureka Software Factory, Berlin, 1991.
3. J.C. \Vileden et al., “Specification-Level Interoperahility,” Cmm. ACM, May 1991, pp. 72-87.
4. &I. Beaudoin-T,afon, B. Chahrier, and M. Thiellenient, “Graphics in the Avis CTLMS,” tech. report, Eureka

5 . X. Ceugniet and \: Lemait, “Integrate Software Development Enwonments Through Interacnve Se-

I(iO1,pp. 61-70.

Software Factory, Berlin, 1090.

mantic N e w : The \iew Server ,Approach,” Research Report 90-17, University of Nice, Sophia Antipolis,
France, 1YYO.

ElLsHomood, Chichcster, UK, 1971, pp. 305.316.

Cmf, Camhndge Press, Cambridge, UK, IY88.

6. C. Fernstroin, “An ESF Pilot Facton for Real-Time Software,” b7tY Coif Sofiaw Eng. E”zwtr,

7. D. Schcljtrciiii, “PrognniniinR-in-the-Large with the System-Oriented Fniitor,” P m . Ada-Europe Int’l

8. P. Borras ct al.. “Centaur: The System,” SIGl’lnii A\htzce.r, Feh. 1989, pp. 14-24.
9. (:. Femstroiii and I,. Ohlsson, “liitegration Needs in Process-Enacted Environments,” Pmc. lnt? CO$

So$wrw Proms. IEEE (3 Press, I m Alaiiiitos, Calif., 1991, pp. 142.158.

Christer Fernstrom is a chief eneineer at Cao Gemini Innovation’s research center in
(;renoble, France, where he i s in charge of research on software pmcesv support He has
served as technical director for the Eureka Software Factorv project and is currently di-
recong its advanced technolog?, program HIS research interests lnclude software systeiiis
architecture. development enmronments, and support for process modehng and enan-
iiient

Fcmsuoni received an M S ln electncal engneermg and a PhD in computer engi-
ncenng trom Lund University in Sweden He is a member of the ACM and IEEE Com-
puter Society - - -
K j e l l - H h Nirfelt is manager of a resedrch group at Telia Research, Sweden, the re
search and dc\elopment company of the Swedish Xlecom Admlnistranon When em-
ployed hy TeleSoft, he was responsible for the compdnv’s amvines in the ESF project
His research interests are softwaredevelopment enwonmenu, and methodologies and
telecomnimcanon-network arcluteares

Nufelt received a PhD UI computer science from the Umversity of Lule3, Sweden.

Lennart Ohlsson is an independent software consultant. His areas ofinterest include oh-
ject-oriented techniques and their implications for \oftware-engineering management,
nontechnical aspeas ofconceptual modeling, and inethods for technology nansfer t?om
academic research to industrial application.

Ohlssoii reccived an MS in electrical engineering and a PhD in computer engineer-
ing from Lund University. He is a member of the LEEE and IEEE Computer Society.

Mdress questions ahout this amcle to Femstrom, Cap Gmini Innovation, 7 Che-
min du VICUX Ch$ne - ZIRST, 38 240 Meylan, France; Internet dinster@capsogeti.fr.

-~

M A R C H 1 9 9 2 44

mailto:dinster@capsogeti.fr

