
+Facto? research is 
progressing from a 
vision to a reaky. 
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concept symbolizes a desired paradigm 
shift from labor-intensive software pro- 
duction to a more capital-intensive style, 
in which substantial investments can be 
made at an acceptable risk level. The soft- 
ware factory represents an evolutionary 
step on the scale of software-engineering 
support, a refinement of software-devel- 
opment environments and integrated 
project-support environments. 

The software fac~ory is sdl more a vision 
than a reality, but several efforts have been 
undertaken to reabze the concept One effort 
is the Eureka Software Factory project, a Eu- 
ropean effort funded under the Eureka pro- 
gram. ESF is profiled in the box on the fat- 
ing page. 

We foresee a market for software fac- 
tory parts that can both be configured for 
specific applications and evolve to take ad- 

vantage of tomorrow’s innovations. Prod- 
ucts in t h ~ s  market will range from hghly 
specialized tools to complete environ- 
ments and will be provided from different 
vendors, thus requiring vendor-indepen- 
dent integration mechanisms. 

To service h s  market, ESF has de- 
fined a communication-centered CASE 
architecture which, when combined with 
specific support for describing and an- 
mating various software-engineering ac- 
tivities, helps factory builders integrate 
CASE products. 

FACTORY MODEL 

The classic factory, where people act as 
machinery in performing predetermined, 
repetitive tasks, is neither a desirable nor 
correct model. In the context of software, 
the factory analogy can be applied only to 
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the goal of industrial-style production, not enterprise, includmg all primary and sec- 
to its implementation. The manufacture of ondary activities related to software prc- 
software involves little or duction. CIM factories 
no traditional production: are designed to reduce 
Every system is unique; the isolation of produc- 
only individual parts may - tion islands (such as 
repeatedly appear in more The factory enology computer-aided design 
than one system. systems, production ma- 

ware environments em- tens) whde still allowing 
phasize support for pro- each subprocess to  
ducingcodeandassociated production, not evolve and be enhanced 
documents. In a software 
factorv. the focus shifts to 

Most traditional soft- applies Only t0 the chines, and ordering .s~.5- 

goal of 

naturally. industrial 
~ i’ 

coordinating information ’ Information otmulation. 
between producers and Implementation* In the strongly hunian- 
consumers so that the 
right person always has the 
right information at the right time. 

Idonnation logistics. There are three per- 
spectives to the logistics of coordinating 
information: 

+ At the organizational level, the envi- 
ronment must manage access rights and 
enforce procedures according to roles and 
assignments. 

+ At the team level, the environment 
must provide change notification and mu- 
tability control to manage updates of 
shared information. 

+ At the individual engineer level, the 
environment must reduce information 
overload and provide focused views ofrel- 
evant information. 

A software-factory environment does 
not restrict access to information for tech- 
nical reasons, but for reasons of relevance 
and possibly policy. The logistics problem 
is how to provide precisely the informa- 
tion that is currently needed and how to 
ensure that the information provided is 
valid and consistent with the assigned user 
tasks - by ensuring that appropriate vali- 
dation procedures have been applied, for 
example. 

The  software factory has some of the 
same characteristics as factories that apply 
computer-integrated manufacturing, es- 
pecially the continuous focus on synchro- 
nizing and integrating independently 
evolving subprocesses to achieve very 
broad coverage. 

A sobare  factory‘s scope is the entire 

- .  

oriented software-pro- 
duction process, knowl- 

edge and experience are most often col- 
lected only informally. Organizations 
have no memory and carry experience 
over to new projects by coincidence rather 
than by design. Manufacturing organiza- 

Ins, on the other hand, measure and an- 

alyze production characteristics, which 
then become important assets in their ef- 
fort to enhance predictability, quality, and 
productivity. 

An important characteristic of a soft- 
ware factory is the importance it gives to 
information accumulated from many 
projects.’ This information may take 
many forms, including reusable elements 
(of code, designs, and documentation), 
performance measures, development 
processes, and reports on the effective- 
ness of applying specific techmques. 

To collect ,and use all h s  infomyation, 
an organization must first understand 
both its semantics and its context. The or- 
ganization must store the information in 
semantically rich smctures that help con- 
sumers understand how to use it effec- 
tively. A software factory must have the 
means to analyze and describe infornia- 
tion and its context, store it efficiently (in a 
knowledge base, for example), retrieve it, 
and apply it to new situations. 

EUREKA SOFTWARE FACTORY 
ESF, which began in late 1986, intends 

to create a market for CASE products that 
can both be configured for specific appli- 
cations and evolve. 

The ESF consortium comprises 13 
partners fi-om five European countries. 
The companies represent computer man- 
ufacturers, research institutions, CASE 
tool producers, and system developers. 

The ESF consortium members are 
Cap Gemini Innovation, France; EB 
Technology, Norway ICL, United King- 
dom; Imperial College, United Kingdom; 
INRIA (hstitut National de Recherche 
en Informatique et en Automatisme), 
France; Matra Marconi Space, France; 
Sema Group, France and United King- 
dom; Softlab, Germany, Systemhaus GEI 
GmbH, Germany; TeleSoft, Sweden; the 
University of Dortmund, Germany and 
the University of Durham, UK 

Organized by a management team in 
Berlin, ESF’s activities are dismbuted 
amss Europe. There are now 15 active 

subprojects, since 1989, more than 200 
man-years per year have been allocated to 
the ESF project. 

By 1991, halfway into the 10-year proj- 
ect, ESF had defined a reference architec- 
ture, completed the first implementation 
of a suppordng framework and various 
tools and tool prototypes, and had under- 
taken several factory-integration experi- 
ments. In the second half of the project, 
ESF‘s focus will shift to developing prod- 
ucts and introducing its factory concept 
into organizations. For more information, 
contact FSF, Hohenzijllerndamm 152, 
D-1000, Berlin; Internet secretary@esf.de. 
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EMERGING CASE MARKET 

Today’s software-production process i 
so complex and extensive that no CASE 
vendor can support all the administrativi 
and technical aaivities of a software enter 
prise. So CASE developers specialize 
providing support for only part ofthe pro 
cess. The problem with specialization i 
that it often leads to products that are is0 
lated and closed - different vendors’ prod 
ucts usually do not interoperate correctly 
Such a hgmented market prevents the real 

ization of the software factory concept. 
The ESF project attempts to minimize 

fragmentation by creating the conditions 
necessary for niche vendors to focus on 
their core business without risking isola- 
tion. Each vendor should be able to offer a 
complementary part of a complete, inte- 
grated production environment. 

We foresee two types of CASE ven- 
dors: componentvendors, the makers of the 
factory “equipment,” and factmy vendors, 
the builders of environments, who select 
the most suitable equipment, integrate it, 
and customize it to fit a client’s organiia- 
tion and production process. 

To build such a market, the techcal  
solution must incorporate customizahle, 
cooperating, heterogeneous components 
that work together in a distributed envi- 
ronment. Moreover, the software factory 
concept must cope with evolution: Cur- 
rent technology must be able to coexist 
with tomorrow’s technology. 

Product versus process inteyation. Table 1 

1 

Figure 1. Work contexts in a user’s interaction enz‘irunnrtmt Work context WC1 conmts ofthe tntwacttm 
olyects d a t e d  to the z i d s a r s i p e d  work MZ task TI in role R1, W C 2  to  tark T 2  in role RI ,  mid U T 3  to tark 
T 3  in role R2 

lists some CASE products of different 

+ Asmice is an atomic operation the 
user cannot interrupt once it has started, 
such as cut, paste, and compile. On the 
process side, a service corresponds to a 
user function that has been fully auto- 
mated. 

+ A tool is an integrated set of services, 
such as editors and project schedulers. On 
the process side, a tool supports a user task. 

+ A tool set is an integrated set of tools 
that supports a user role, such as program- 
mer, projea manager, and librarian. 

+ An envirolznient is an integrated set of 
tool sets that supports every role in a soft- 
ware factory. 

For products in the same category to 
interoperate, there must be intei-prodmt z?z- 
tegr-ution. Services have a strong require- 
ment for interproduct integration, but the 
requirement decreases as you move down 
the list of market segments. For example, 
the ability to cut text is not very interesting 
if it is not tightly integrated with other 
editing services. On the other hand, a 
complete environment need not be tightly 
integrated with other complete environ- 
ments. 

Tight integration is generally expen- 
sive. When a product is tightly integrated, 
h s  cost is spread over all the sales of the 
product. However, environment integra- 
tion is paid for by each customer, because 
each environment is customized to an or- 
ganization. Thus, a strong requirement on 
the interproduct-integration mechanism 
is low usage cost. 

In contrast to interproduct integration, 
the requirements for pocess integration - 
the ability of products to integrate with the 
organization’s processes - are higher for 
environments than for services. Introduc- 
ing a service requires very little process 
knowledge, hut introducing a tool set or 
an environment requires that the roles the 
product seeks to support match an organi- 
zation and the methods used by the latter. 

The market includes all four product 
types, so a technical solution to environment 
construction must cater to two needs: 

+ The need for a flexible and adequate 
interproduct integration mechanism that 
both allows cost-benefit trade-o& for in- 

p u l a r i t y .  

- _. _-__ 
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tegrating products from different vendors 
and can coexist with the mechanisms used 
for tight inwapodzlct integration. 

o The need for process modeling, 
which lets factory vendors customize their 
product. 

ENVIRONMENT ARCHITECWRE 

A CASE environment must provide 
the right information to the right people 
at the right time and maintain a consis- 
tent view of the system under develop- 
ment, despite the demands placed on it 
by varied users, data representations, 
and formalisms. 

Process m t .  Fundamental to realiz- 
ing a software factory is the formalization 
of the software-production process. Al- 
though it is common to b d d  a process 
model earlv in traditional mformation svs- 

component I I component 

I I I I I I I 

Figure 2. The ESF environment r$erence architecture. A set ofsmice componentsand a set of use?-interur- 
tion components plug into the sofi7m-e bus. Swvice components represent the concepts supported ly the 
envimnmat; user-interaction components implement the user dialogue. The sofnuare bxs hides the dutrrbution 
and heterogeneity of the componentsplugged into it andputs no restnctions un a component ’s internal execution 
enwironment 

tem development, these models are used 
mainly as development blueprints. 

A process model for a software factory, 
on the other hand, actively suppons users’ 
activities and is used to automate the 
factory‘s mfomtion logistics. Ethis process 
model is expressed in a formal language with 
executable semantics - as a 
procesrprogram -it cdn be 
executed while the environ- - 

and the roles he plays as he works on them. 
Interaction objects encapsulate in- 

formation and tools. They may be dis- 
tinct entities in an object-oriented user 
interface or they may be independent 

data and tools.  T h e  
process program makes 

mentis used. A CASE environment 
gram and the actual pro- 

When the process pro- 
must maintain a 

consistent view of 

demands placed on it 
viromentcomprisesbth by varied users, data 

organizations cannot formalisms. 

cess interact, the process 
has been en&ed. Enacting 
the process brings the 
environment’s functions 

organization and users. In 
our model, an enacted en- 

“hard” software -policy- 
free building blocks that 

modify - and “soft” soft- 

the system under 
closer to the needs ofthe development, despite 

representahonsi and 

ware - process programs 
that are under the organization’s full con- 
trol. 

As Figure 1 illustrates, the user sees 
process enactment through work mte&,  a 
collection of objectswith which he interam 
and which are specific to  IS assigned tasks 
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work contexts available 
to a user whenever he is 
assigned a task and re- 
moves the work context 
when he has completed 
or delegated the task. 

The user-interaction 
environment consists of 
all available work con- 
texts, and so is a view of all 
the information and 
functions in a user’s sup- 
port environment. When 
a user completes a task, 
the process program may 
automatically notify 
other team members or 

dismbute results. An enacted process may 
also accumulate experience by collecting, 
classifymg, and storing information about 
the running process automatically. 

Enviomnent integration. To integrate the 

tools in an environment, most recent 
CASE architectures use a central 
database. As the box at on p. 40 describes, 
however, such storage-centered environ- 
ments have some shortcomings and are 
not yet widely used. 

Figure 2 illustrates ESF’s communica- 
tion-centered arclutecture, which com- 
bines the advantages of highly interactive 
environments with evolutionary flexibility 
and the ability to achieve broad coverage. 

Environments in ESF are built 
around a sojiware bus, which hides the 
distribution and heterogeneity of the 
components plugged into it. The com- 
ponents are islands of tight integration 
that interoperate via the software bus. 
The software bus puts no restrictions on 
a component’s internal execution envi- 
ronment. Components may be written 
in different languages, use private stor- 
age models, and independently choose a 
storage system for managing persistent 
data. The software bus concerns itself 
only with how components make their 
functions available to the rest of the en- 
vironment. It requires only that they 
provide a programmatic interface that 
can be accessed via the protocols the 
software bus stipulates. 

39 



CURRENT CASE ARCHITECTURES 
Most recent architectures for soft- 

ware-development environments are 
based on the use of a central database, or 
repository, which stores all relevant data. 

A common database facilitates the 
collective use of several tools in many 
ways. First, its data model imposes a 
uniform format for all data that is used 
by more than one tool. Second, its 
shared state enables the short response 
times that highly interactive environ- 
ments require. 

Third, a common database schema 
explicitly expresses the database’s inten- 
tion and how it relates pieces of informa- 
tion. This expression is distinct &om how 
the data is actually stored. Experience has 
shown that the use of schemas forces de- 
velopers to give precise information de- 
scripaons, thus reducing misinterpreta- 
tion. Separating semantic data descrip- 
tions from storage representation also re- 
sults in systems that are easy to make 
small changes to. 

Fourth, a common database mini- 
mizes control coupling between tools: Be- 
cause tools operate on the state of the 
database, rather than the direct output of 
another tool, they can be ignorant of 
when the data was produced and what 
produced it. 

Liaiiions. Despite these apparent ad- 
vantages, database-centered environ- 
ments are not (yet) widelyused. One rea- 
son is that the data models of conven- 
tional database-management systems can- 
not express the rich semantics that CASE 
applications require (complex integrity 
constraints and derivation dependencies 
among entities, for example). 

If the schema cannot explicitly state 
such knowledge, it must be stated in the 
code. And if several tools share the same 
data, this code must be included in all of 
them. For example, in a programming- 
support environment the compiler, edi- 
tor, and debugger all have embedded 
knowledge of the language’s syntax and 
semantics. Such duplication of code re- 

- 
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duces tool independence and makes it 
harder to integrate them. 

cation of database-centered environ- 
ments is that different tools have very dif- 
ferent requirements on issues such as 
transaction model, query model, aggrega- 
tion bchties, and inbrmation granular- 
ity. It is difficult to consma a DBMS 
that combines a data model of sufficient 
semantic richness, the generality to cover 
varying requirements, and the high per- 
formance that interactive environments 
require. This is an area of active research. 

So-called language-centered environ- 
ments, like Interlisp, Smalltalk, and 
Rational, achieve tight integration by 
building on special-purpose databases in- 
stead of commercial DBMSs. However, 
because they are specialized, these envi- 
ronments neither fit into a wider context 
nor cooperate easily with other tools. 

Another reason for the limited appli- 

Appkation d e l .  Another, more open, 
approach is to hctor out the parts of the 
tools that embody the applicationspecific 
semantics of the stored data and place 
them in an application kzyw on top of the 
data model. Other tools then access the 
database only through the interface to 
this layer, the appliicatian d e l .  

Like the data model, the application 
model lets schemas be defined. If the 
application model is object oriented, it 
lets high-level integrity constraints be 
implemented as methods, indepen- 
dently of and in combination with an ef- 
ficient storage model, as expressed by 
the data model. 

A consequence of the distinction be- 
tween the storage model and the appli- 
cation model when building a tool is 
something that appears to other tools 
as a single object may indeed be a col- 
lection of storage objects or a com- 
puted object with no counterpart in the 
storage model at all. Because the appli- 
cation model lets you express schemas, 
building tools this way helps reduce 
their interdependence. 

Cmpents Inspired by Smalltalk‘s model- 
view-controller paradigm, ESFs environ- 
ments comprise two lands of components: 

+ User-interaction components, which 
correspond to Smalltalk‘s view-controller, 
let users view and manipulate the data 
contained in service components. A user- 
interaction component contains no pri- 
vate application data that survives the ses- 
sion in which i t  was retrieved o r  
computed. User-interaction components 
are small, single-user entities designed for 
a specific activity. 

+ Service componennr~, which correspond 
to Smalltalk’s model, provide functions 
available to the software bus through pro- 
grammatic interfaces. A service compo- 
nent encapsulates an internal state that can 
be accessed and modified by operations 
available to other components via the soft- 
ware bus. These operations always pre- 
Serve internal integrity by talung the com- 
ponent from one consistent state to 
another. 

Most of the information managed by a 
service component is persistent and stored 
in the component’s internal database. ESF 
explicitly describes a service component’s 
interface in an object-oriented component 
model. As explained in the box at left, such 
a model lets methods implement high- 
level integrity constraints independently 
of the internal data-storage model. 

Other components that use the func- 
tions provided by service components see 
the service component as a database with 
application-specific operations and do- 
main knowledge. Service components are 
generally large, multiuser subsystems with 
considerable complexity and correspond- 
ingly high price tags. 

Process enactment is provided by afar- 
to? process engine, which implements the 
runtime support for process programs 
with a set of service components present in 
every factory environment. Likewise, ser- 
vice components implement the work- 
context management functions of the var- 
ious user-interaction environments and 
user-interaction components that imple- 
ment the user interface. Tools generally 
consist of a user-interaction component 
acting as a client of one or more service 
components. 
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lntegdion m~honkm. A well-designed ser- components not taken into account ear- 
vice component obeys the rules of strong lier. The plug-in mechanism addresses 
cohesion and loose external coupling. problems like those encountered in devel- 

Component dependence -the degree oping federated database systems (larger 
to which the inclusion or modification of database systems consisting of cooperat- 
one component results in the need to in- ing database systems that individually de- 
clude or modify other veloped and maintained.). 
components - is related As Figure 3 illustrates, 
to external coupling and the plug-in mechanism 
to  the integration ESF is developing WO uses the environment 
mechanisms’ characteris- model to integrate individ- 
tics. A useful guideline to generator tools, ual components by map- 
reduce external coupling ping the components’ ele- 
and achieve strong com- ments to those of the 
ponentcohesionis to map to automate much of environment model. The 
functionality to compo- factory builder constructs 
nents in such a way that the tedious work the environment model 
cycles in client relation- in building usel from component models 
ships are internal to the in a manner similar to 

database schema integra- 
tion. This lets relation- T h e  integration 

mechanisms in the soft- ships, operations, events, 
ware bus provide three features that ! and queries be defined across component 
largely reduce component dependence:’ boundaries. 

+ Specification-level interoperability.’ The software bus lets you define map- 
The software bus provides a common un- pings between the environment model 
derstanding of the data exchanged among and the component models. T h s  supports 
components, independent of their actual the integration process and reduces the 
representation. I t  supports component in- coupling between the environment model 
tegration at build-time with a plug-in , and components, thereby removing un- 
mechanism and at runtime with a commu- 

SemDraw and 

components. interfaces. 

~ 

nication mechanism. Both mechanisms 
rely on the component models and an en- 
vironment model, all expressed in the com- 
ponent-description language ESF CDL. 

ESF CDL, in tum, comprises three sub- 
languages: an abstraction-description lan- 
guage, which describes functions indepen- 
dently of representation; a representative- 
description language, which describes 
data-interchange formats and control-ex- 
change primitives (for example, synchro- 
nous and asynchronous procedure calls or 
call backs); and a component package-de- 
scription language, which describes the 
abstractions a component provides and re- 
quires and what representations it uses. The 
representation parts are used in integration 
to create and change components’ data and 
control representations as necessary. 

+ Plug-in mechanism. T h e  plug-in 
mechanism incrementally integrates com- 
ponent models with the environment 
model in a way that lets you introduce 

necessary dependencies and localizing the 
effects of changes. 

+ Communication mechanism. T h e  
communication mechanism provides re- 
mote procedure calls and notification- 
based component interoperation. It pro- 
vides for synchronous and asynchronous 
operation, dynamic system reconfigura- 
tion, and late binding. 

For operations with dynamic binding, 
the environment model is used for type- 
driven dispatch. When the software bus 
receives an operation-object pair, it deter- 
mines the destination of the operation by 
loolung at the object type that uniquely 
defines the component on which the op- 
eration should be invoked. This may in 
turn be a more specialized dispatcher. 
Thus, a client component does not see 
component boundaries - the environ- 
ment appears to be an integrated whole. 

Component generation. Software develop- 
ment relies on different formalisms and 
representations, including graphical ones. 
The choice of formalisms and how they 
are combined vary from organization to 
organization, and even from project to 
project. ESF is developing tyo generator 
tools, SemDraw4 and Nexus,’ to automate 

I I 

Figure 3. How components plug into the environment model. Components’ expoported and imported 
&i~ctionaliq is mapped to  the environment modelis elements cia adaptors generated ly the so f ia re  bus. The 
adaptws p e i f m  conceptual mappings and transformations of‘dataformat.s and control exchange primitiaw. 
Conceptual ntupping inz.olz~es creating z’imss and cm7-elating m e  modelk objects t o  iinother model’s objects. 

- .... 
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METHOD-END 

Figure 4. Fragment o f  the Ada service component’s model, written in ESF CDL. ThrrF7agment desmbes 
same of the component’c equrtedfitnctionality using the abmamon-desmption Language of ESF CDL. 

much of the tedious work in building 
multiformalistic, multiview user inter- 
faces. 

SemDraw is a general-purpose haw- 
ing tool that lets you define consmints 
among elements. With SemDraw, you 
generate speciahzed editors for different 
form&sm interactively, extending both 

FACTORY EXPERIMENTS 

An important thread of the ESF proj- 
ect is learning how to integrate large-scale 
environments. One of our integration ex- 
periments has Produced a Prototype Soft- 
ware factory an i“ i I -n t  for real-time 
system development; the other, a factory 

keep &em consistent, a- storage systems are also supports design and 

that support incremental heterogeneous. software-production pro- 
pecially in environments module reuse and the 

_ -  
cess itself, by mapping the interaction. 

vice component that factors out the logical 
contents of several formalisms and incre- 
mentally maintains them by propagating 
state changes across several components. 
Nexus is a view-server generator based on 
attribute-grammar technology, which lets 
view servers be generated from descrip- 
tions of the formalisms used. 

A view smw is a ser- production activities to 
work contexts, which in turn deiine the 

More than 20 components f b m  eight 
orgamzations make up h s  environment. 
We developed some of them from scratch, 
but most were reengineered kom “ m e r -  
cial tools adab le  from ESF partners and 
their subcontractors. 

users’ tool support. 

The system includes an Ada tool set, 
developed by TeleSoft, Sema Group, and 
INRIA (a French national research foun- 
dation). T h s  tool set is based on a service 
component that was reenpeered from 
TeleArcs/TeleGenZ, by TeleSoft.’ This 
service component provides an object-ori- 
ented interface for manipulating Ada ob- 
jects (such as program libraries, compila- 
tion units, program statements, and 
declarations) according to their semantics 
and for exploiting their semantic relation- 
ships. Figure 4 shows a hgment  of ESF 
CDL that gives the abstract description of 
operations provided on Ada compilation- 
unit instances. 

A user-interaction component, which 
we based on the generic language-manip- 
ulation system Centaur: provides a highly 
interactive and adaptable user-interaction 
environment. This component supports 
two user roles: system builder and Ada 
programmer. 

For the system builder, the tool set pro- 
vides facilities for maintaining system 
baselines and shared library structures. 
For the programmer, it provides a syntax- 
oriented Ada editor. Through seamless in- 
tegration of the user-interaction compo- 
nent and the service component via the 
software bus, the editor also supports Ada 
static semantics. The reengineering effort 
to build the service component, which was 
implemented in Ada and respected the 
principles of Ada package encapsulation, 
was minor. The effort was outweighed by 
the benefit it added to the supported roles 
through interoperation with other tool 
sets like those that support reuse, docu- 
mentation, and design. 

The  environment was constructed 
over 18 months. Development and reen- 
pee r ing  was distributed throughout Eu- 
rope. The integration work, which was 
supported by prototypes of the software 
bus and a tool set for process modehg and 
enactment, was also dismbuted to a large 
extent. We usually completed painvise in- 
tegration tests within a week 

Although the real-time system factory 
environment runs on a limited range of 
systems - Sun Microsystems work- 
stations and PCs - its implementation 
languages are considerably heterogeneous 
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- C, C++, Ada, Lisp, Prolog - as are its 
storage systems - files, Ingres, Oracle, 
and the Promod object-management 
system. 

Factory for expbring information logistics. 
Another experimental ESF environment, 

developed by Cap Genlini Innovation, 
contains prototypes to support process 
definition and exec~tiodenactment.~ 

Process designers create and maintain 
process descriptions with a graphical pro- 
cess editor. They describe the structure of 
tasks and overall infomiation flow with a 

graphical notation that is like SADT 
(Stuctured Analysis and Design Tech- 
nique), bind tool supprt and (user) role 
types to & with the usual SADT support 
h, and define detailed task descriptions 
and task synchronization with generic, 
colored Petri nets with preconditions. 

File 

U 

Figure F. The nuin window ofthe Agenda tool. User tasksarepe.rented in U t U ~ o - d i ? i i e r i . r ~ o n a ~ ~ ~  according t o  their relative importance vr urgency. W e n  a tusk i.r 

selected (highlighted), its i n f  m t i m  is presented in the upper right xindow; its interuction objects within its a v r k  conte.rt in the middle right window; and its 
termination-control buttons in the lower right window. The irons m the lefi  are iisedfbr tnsk delegation and nmyuided actizities. 

- ~~ 
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To enact a process, the process de- 
signer attaches actions, expressed in an ac- 
tion language, to the Petri-net transitions. 
These actions operate on the factory 
environment’s objects. Trpical actions in- 
voke a tool, check out a data object for 
work, or send a message to a user. 

User interaction is based on work con- 
texts that are dispatched to users according 
to task assignments. The user accesses the 
environment services with a tool called 
Agenda. He accesses tools and informa- 
tion through Agenda’s object-oriented in- 
terface either with process guidance (to 
perform a planned activity) or without 
guidance (for example, to read the mail). 
Either way, access is reahzed through the 
activation of a work context that corre- 
sponds to a task. As Figure 5 shows, 
Agenda visualizes tasks inany ways: as 
scrollable lists sorted according to differ- 
ent criteria, as icons, or as points in differ- 
ent kinds of graphs. 

Agenda also lets the user create, mod- 
ify, delete, and delegate tasks and work 
contexts to other users. The ability to cre- 
ate a work context means the user can 
group sets of tools and data to support 
informal tasks, which are managed by 
Agenda exactly as it manages the tasks it 
receives via an enacted process. To dele- 
gate a task, he simply sends the corre- 
sponding work context to the Agenda of 
the recipient. 

So far, we have used h s  environment 
to experiment with archtectures for pro- 
cess-support environments. In the future 
we will use it mainly to transfer process 
technology into organizations. 

e fact that the software market has T“ two layers, in which factory vendors 
provide customized solutions by integrat- 
ing the products of specialized component 
vendors, has led the ESF project to focus 
on support for software processes and 
component integration. 

We have built environments along 
these lines and early results with proto- 
types are very encouraging. We are 
now launching a program to set up soft- 
ware factories in production environ- 
ments, starting with the European space 
industry. + 
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