
1

Reaching Software Development Maturity

with Continuous Delivery

Viktor Ekholm

Fredrik St

˚

al

Faculity of Engineering, Lund University

F

Having a mature software development process sig-
nifies that it has undergone certain improvements to
maximize productivity while the users of the process
find it simple to work with.

In this master’s thesis we have studied an approach
to increase the level of software development maturity
in a company by analyzing key areas in software
projects on the company.

We were able to find that the most important first
step in a process improvement is to develop a template
for a common process.

As fine spirits mature and develop a more complex
and interesting taste over the years, the same can, almost,
be said about software development. Having a mature
software development process may not produce any
extraordinary taste sensations, but it does give a com-
fortable and effective work process. The prerequisites are
to put in effort to actually mature the software process.

In short, improving your software process aims to rid
you of any manual, repetitive processes and possible
downtimes due to events you have to wait for to com-
plete. Unnecessary rework is considered an anti-pattern
and thus a very bad practice. Automating this hard labor
intends to give developers a break from tedious, manual
tasks, but in theory quality and consistency would also
improve. This is because we have a smaller risk of
random mistakes due to automation.

This master’s thesis have studied a practice, where we
aim to always have a releasable product, as a means
for software process improvement. Through this practice
we expect less integration problems as software code
is integrated in small increments several times per day.
Through automated test executions upon integration, we
receive iterative feedback which gives the status of our
software.

The company is first and foremost a consulting firm,
but also conduct some in-house development. These de-
velopment projects became our focus and it was initially
perceived that one of our premises was that the in-
house developers did not have a common development
process.

Through interviews with developers and stakeholders,
our take on the in-house environment was that the
nature of the company required developers to be given
assignments on other companies between projects. Their
knowledge of processes is then temporarily lost for the
in-house development when they leave. As there is no
collective knowledge of processes, there is a lot of work
only suitable for the moment at project start. This is
usually called ad hoc. In a way the context has a relation
to open-source projects, where we have to expect that
developers come and go and thus require a process that
would make it simple to start contributing.

It was perceived that no value is seen in taking the
required time to mature and baseline processes. Work
hours are considered as billable and the customer is
most certainly not interested in paying good money
for advancing the processes at the company after they
already have accepted them as developers. The interest
for the company in developing more efficient processes
is to place more time and focus on developing the
software and thus increase productivity.

One of the purposes of this thesis was to, through
interviews and analysis, locate key areas in the devel-
opment process that could benefit the most from im-
provement. Although being a smaller company, they had
multiple projects running simultaneously with different
number of developers in each one, ranging from one to
six. The first target was only the projects that developed
applications for the Android platform and try to extend
the process by adding additional features and tools. The
intention was to improve, not only to increase efficiency
of the development, but also the communication with
customers.

After a certain amount of weeks we changed our
target to a newly started project that had three smaller
parts. These parts consisted of an ASP.NET website, an
Android and an iPhone application, respectively. The
motivation of this change of target was to have the
opportunity of accessing and monitoring a live project
taking shape in real time, and not just basing our work
on theoretical or old projects. Also, the diversity aspect



2

of this three-parted project interested us.
The primary goal then became to analyze the process

used for each part and together with the developers
work with improving key areas during the course of the
project. It was discovered that one of the smaller projects
contained a deployment procedure that was performed
several times a day to a testing environment, which we
saw as a perfect opportunity to study how processes are
carried out at the company.

There was no unified or general approach for projects,
which had led to that developers on each part of the
studied project had performed implementations on an ad
hoc basis. Besides analyzing the reasons and root causes
of the chosen methods we also had a goal to develop a
common process with the purpose of introducing auto-
mated procedures for as many of the manual activities
as possible. This would further benefit our own work,
but our initial hypothesis was that it would also help to
increase knowledge of well-defined practices and assist
in increasing the level of software development maturity
on the company, which we had as a third goal.

Based on our analysis and studies we were able to
determine the most simple solution for the problems we
had found. The key areas of the development process
turned out to be development activities such as building,
testing and deploying software. By ensuring that these
activities could be automated in an abstract process
applicable to every project, we had developed a common
process with the aims of fulfilling our goals.

In the prototype solution, development activities are
separated into sequential and automated stages. Each
stage has the capability of reporting its results as feed-
back to developers and once a stage (i.e. an activity)
passes, the next stage will be triggered. For every new
iteration, any additional changes to the software are col-
lected to ensure that the latest version of the application
is built and tested.

Fig. 1. An example of the prototype solution.

After we had made a prototype we held a demon-
stration for the developers in the project, in which we
showed them how to set up the solution from scratch.
Our setup handled builds, unit tests and deployments
of the application automatically once a new version of
the software was created. This demo with the developers
generated a lot of valuable discussion and it was decided
that the developers would try our implemented solution
during the remaining couple of months work on the
project.

The work that has been conducted during this thesis
gave us a lot of ideas, some of them which we were able
to fulfill with implementations. No one can deny that
reaching high levels of software development maturity

requires effort from the majority of the organization, but
there is no particular reason as to why this should not
be one of the most prioritized goals. A strong argument
is that our implemented solution was able to increase
efficiency by almost 10%.

We saw that the changes we introduced and have
discussed will be very beneficial for a software company
and the benefits are discovered almost immediately after
implementing solutions. The results have also shown
that the commitment of developers will increase because
they no longer are forced to endure tedious, manual
tasks followed by a new version of the software. In
the long run, an improved process will also become
a natural way of working, which eventually leads to
further improvement and higher levels of maturity.

The above mentioned issues are what we found in our
context, taking another context into consideration might
have a lot more issues, or perhaps fewer. Our work
showed that a general solution can only be abstracted for
a specific domain, which is different from company to
company. By first defining what goals our improvement
aims to fulfill we can reduce the friction in a software
process improvement, remove ad hoc procedures and
be one step closer to ultimately reach higher levels of
software development maturity.


