
	 	 March	2017	

	 	 	

Continuous Software Engineering
Yvonne Dittrich, Lektor, IT University of Copenhagen
Jacob Nørbjerg, Lektor, Copenhagen Business School
Lars Bendix, Lektor, Lund Tekniska Høgskolan
With the advance of the deployment of software as a service and the possibility to update
software on mobile phones, embedded computers and personal computers through digital
networks, the frequency of updates of software increases. Internet services like Google and
Amazon are deploying new software several times a day. The industry talks about ‘cloud
cadence’, and in the beginning academic discussion the term ‘continuous software engi-
neering’ has been established. New ways of cooperation between system operators and de-
velopment teams are discussed under the terms ‘DevOps’ – developers are tightly cooper-
ating with systems operators in case of a service.
Continuous deployment is seen as a strategic business advantage, as it allows shipping de-
velopment results quicker and harvesting the return on investment earlier. This is most rel-
evant for service industries like banking, insurance and online games. However, also soft-
ware products, which are more and more provided as a service as well as in a shipable ver-
sion, technically embedded software and mobile applications are observed to adopt contin-
uous software engineering to improve quality.
The proposed research project sets out to develop processes, methods, tools and techniques
to support the Danish industry in this rapid change. To this end we will deploy an empiri-
cal research approach, where researchers and practitioners together experiment with new
techniques, tools and methods. We aim at recruiting a number of companies who have
started or want to work with continuous deployment and continuous software engineering.
We plan to apply for external funding from the Innovation Foundation with a deadline
June 2017. The project would start 3 to 6 months later.
We currently are in contact with several companies. The following focus areas transpired
from the bilateral discusions:
1. Continuous software development processes We see a diversification of rhythms of

different activities in the software development process in organisations that work with
continuous deployment. Whereas in more traditional development the release schedule
provided a common clock, continuous deployment allows for parallel teams to have in-
dependent development schedules. Further, different software development activities
follow independent rhythms This requires new kinds of coordination mechanisms. This
also relates to cooperation with business departments, and with current and future users.

2. Continuous Quality management: The possibility to deploy a change, update or bug
fix of software within short term requires a development environment that automates in-
tegration, build, test and deployment. Besides massive, often parallelised test automa-
tion, sophisticated configuration management strategies need to be developed and au-
tomated. Not only source code, but also database schemes and binaries need to be taken
under configuration control for incremental update and rollback of changes. This in turn
has implications on the architectural design.

3. Continuous Integration Tooling & Architecture: Coordination in continuous devel-
opment requires new coordination mechanisms and in turn continuous integration, con-
tinuous testing and continuous delivery/deployment tools. The flexibility required
though will have repercussions on software architecture: Massive incremental change
puts additional requirements on the technical design of software. Deployability becomes
a software quality criterion. The use of micro-services to this end in turn requires again
different coordination and different testautomationstrategies.

