
Code review with Git 
Joacim Åström, ​atp10jas@student.lu.se 
Per­Victor Persson, ​dat12pp1@student.lu.se 
 

 

Abstract 

Code review is commonly prescribed today to help teams keep defects in the                         
code to a minimum, and help the collective ownership. We will analyze the use                           
of Git, with integration of third­party software, while following some                   
best­practice reviewing methods. We will measure whether or not this makes for                       
more efficient code reviews, quality code and a streamlined workflow.  

 

   

mailto:atp10jas@student.lu.se
mailto:dat12pp1@student.lu.se


Introduction 
Reviewing code before final commit to a project will significantly increase code quality, and                           
is a great way to find bugs early on [1]. In spite of this, code review has a stigma in agile                                         
development as time consuming and largely dependant on tools and processes, and is often                           
not a priority. Some argue that code review can be sufficiently performed while programming                           
in pairs, where there is already an extra set of eyes continuously inspecting the code whilst                               
developing. While this may find some errors, we believe that having a secluded peer review                             
could identify mistakes that slip by the authors of the code.  
 
In a study by Winkler and Biffl [2], they compare pair­programming with a form of code                               
inspection, and conclude that pair­programming is far more efficient in small teams, and find                           
more defects than inspection. However, when the team and the project grows larger, a mix                             
between inspection and pair­programming yielded the best results. The defined size of a team                           
is a bit abstract, but we decided to use a mixture of the two, and combine it with tools                                     
available through the use of Git.  
 
We provided our students with easy­to­use tracking tools for code coverage and automated                         
testing, and presented a workflow with story branches, which forced the team to review code                             
before it is merged into the project. By doing this, we hope that the team will get motivated to                                     
perform efficient code reviews, and to maintain a clean repository.  
 
This report will contain the following sections: 
Background​, containing background information on the report and the tools we use in the                           
study. 
Methods​, describing our methodology with sections on the workflow and also how we use                           
the tools we have chosen. 
Results​, discussing and commenting on the results of the survey we sent out and the project                               
as a whole. 
Conclusion, ​where we present our conclusions based on the results. 
 

Background 
When we took the Software Development in Teams course, there was always a bottleneck in                             
production, namely code reviews. They were time consuming and often unproductive, which                       
resulted in review tasks being piled up and never really dealt with, which in turn caused the                                 
repository to repeatedly fail its tests and include a lot of bad smelling code. This was able to                                   
occur since all code was pushed directly into the master branch, and reviews were not                             
necessary to progress in the project. In this study, we aim to get the team more motivated to                                   



performing code reviews by providing tools that hopefully makes the process easier.                       
Furthermore, using Git branches, we will ensure that the team never merges code that has not                               
been reviewed, thus forcing the team to make them a priority to be able to progress with the                                   
project.  
 
In a white paper written by Smartbear [3], they explain how a team can properly perform                               
efficient code reviews, without the use of extensive meetings between developers. Through                       
lightweight code reviewing, performed in small iterations, they managed to decrease the time                         
used for reviews by 75%, whilst still maintaining the same level of quality. In this study, we                                 
will incorporate three of the lightweight methods they mention, mainly  

● Pair programming 
● Peer review 
● Tool assisted review 

Pair programming 
This form of code review is the fastest form of feedback available, and is performed through                               
pair programming where one developer writes code, while the other navigates and gives                         
direct feedback on the code that is being written.  

Peer review 
By passing the code to an independent party, the code is being reviewed with a clean slate.                                 
This can help identify problems that the developer had not thought of, or issues that the                               
developer simply became blinded for when writing the code. Furthermore, peer review is a                           
very effective way to ensure collective code ownership. The peer review will be handled with                             
the use of git branches, which are not to be merged until thoroughly reviewed.  

Tool assisted review 
To make the review easier and more more efficient, the use of third party tools can help                                 
gather useful metrics. Besides using Git for the ability to create branches, we set up two                               
additional tools, CircleCI and Coveralls. CircleCI is not yet available for integration with                         
Bitbucket, which was provided for the course, hence our team instead used Github. 
We used both of these services as a quick sanity­check for the reviewers, so that they can                                 
easily see that the code has been tested. 

CircleCI 
CircleCI allowed us to run all tests in the cloud every time a commit was pushed to a branch.                                     
GitHub then integrated with CircleCI to show if the pull­request (essentially a merge­request)                         
for a branch contained any failing tests. This will enforce that all tests are run continuously                               
and alert if a story is not yet ready for review or merge.  



Coveralls 
We also integrated Coveralls, which adds code­coverage information on the pull­request as a                         
comment. By displaying this information, the reviewer can quickly see how the total                         
code­coverage will be affected by the committed code, and thereby if the code has been                             
properly tested. If the branches code­coverage is not greater or equal to the master branch,                             
better tests needs to be written.  
However, due to missing functionality in the java test­running libraries we were not able to                             
do this and had to settle for a coverage counter for the master branch on the repository web                                   
page. Code coverage could be viewed for a branch by visiting the coveralls website, which                             
we did not inform the students of until a few iterations had passed, to be able to measure                                   
whether this tool was useful or not.  

Methods 
This section will discuss and motivate the tools and the workflow that the team used, and                               
how the methodology was introduced to the team.  

Team introduction 
Many team members had, as could be expected, very little previous experience with Git apart                             
from obligatory exercises in the course Software Development in Teams. During the very                         
first meeting with the team, every member was assigned to create an account on github, if                               
they did not have one already. After a short discussion, we concluded that a brief introduction                               
to Git was necessary and consequently performed, where we ran the team through the basics                             
of branching and merging.  

Workflow 
Before we met the team, we devised a workflow that would then drive the code review                               
process. This workflow was based on the one in Vincent Driessens “A successful Git                           
branching model” [5], but we simplified it to make it easier for the developers to work with                                 
since we wanted to test the essence of the workflows. We did this by cutting down the use of                                     
branches to only have a master branch and story branches (what Driessen calls feature                           
branches). 
The code was stored in a git repository hosted on GitHub. 
 



Git 
Git provides very simple and efficient branching, since a branch is just a pointer to a commit,                                 
it is very easy to change branches. We leveraged this by creating a new branch for every                                 
story, and merging the changes back into master when the story had passed review. 
The story branches then only contained the differences in the code needed for the story, and                               
since branching and switching branches is simple, it becomes easier for the reviewers to                           
switch branches and only review the changes for that particular story. 
We also tried to get the team using git in the terminal, instead of using built­in plugins in                                   
eclipse. Our rationale for this was that it would help the developers get familiar with the tool                                 
and its concepts faster if they did not work with it through an abstraction. 

Kanban 
When a pair of developers start working on a story, they first pick move the card on the                                   
Kanban board from “Todo” to “In Development”. The Kanban board is the first part of the                               
workflow and structures the rest of the process. Having the story cards physically available in                             
the room helps keep the entire team aware of the current state of development. We began                               
with five steps on the kanban board: 

1. Todo 
2. In development 
3. Done 
4. Reviewing 
5. Merged 

After iteration 3 we also added a sixth step “Accepted by customer”, due to customer                             
demand. For the story to be able to move from step 2 to step 3 (Done) the story had to be                                         
finished, tested and refactored. After the story was marked as done a new pair had to move it                                   
to the review stage and review the code. The review step consisted of having the new pair                                 
pull the code the their local machine, view the diff of the code, verify that the tests passed and                                     
also verify that it matched the story specification. In contrast to many similar workflows we                             
also had the pair that performed the review merge the branch into master if it passed the                                 
review, else it was their responsibility to fix anything wrong with the code. 

Git Cheat­Sheet 
Before you get a routine and get familiar with all useful commands, git can be rather                               
confusing. Since tools and methods should not consume valuable time that could be spent on                             
development, we initially intended to author an easy­to­follow cheat­sheet for the team to use                           
whenever they needed to perform a git­related task. However, during the first planning                         
session, we realized that coaches as developers often do not speak the same language when it                               
comes to technical terms. After discussing it with the team, we decided it would be                             
appropriate to delegate composing said cheat­sheet to the group in the form of a spike                             



assignment. Requirements for the cheat­sheet was to cover set up and installation, as well as                             
any or all operations needed to follow the workflow we wanted them to follow, as described                               
in the next section.  

Initial architecture 
The team was provided a simple skeleton application containing very simple classes with                         
faked functionality and a test­running harness, testing the fake functionality. 
It also contained basic configuration and the needed configuration to run the test suite online                             
with CircleCI. This allowed us to easily demonstrate the functionality of Coveralls and                         
CircleCI, and what to look for.  

Survey 
To measure if our method and workflow had a positive impact on the project, we released a                                 
survey to our team close to the end. These included questions of how many reviews the                               
individual performed, how much time was spent, how many errors were identified etc. It also                             
included general attitude towards the methodology, and invited to explain why something                       
worked well or not. The survey provided us with the metrics presented in the results section.   

Results 

Github as tool 
During the first programming session, a lot of time was spent trying to set up the work                                 
environment. However, thanks to the cheat­sheet provided by the team, any operations                       
related to github, e.g cloning the repository and branching out, was relatively painless.                         
Instead, it was eclipse as an IDE that created problems when importing the project and                             
including libraries. At this point, the cheat­sheet was a great success to get everyone started.  

Bottlenecks 
During the course of the project, the team never had more than one or two stories on hold to                                     
be reviewed, no bottleneck arose were reviews stacked up and hindered the progression. This                           
was likely a direct result of using story branches instead of pushing directly to master. Since                               
many stories have dependencies, they could not be initialized, much less finished, without                         
certain stories merged to the master branch, and to do so, it would have to be reviewed. Thus,                                   
reviews were viewed as high priority tasks and appreciative work.  
 
The time for a story being idle as “done” on the Kanban­board could vary a lot. This was in                                     
no way a result of some stories being less important to review, but simply that the developers                                 
preferred to finish their own tasks before engaging in a review. That being said, a story                               



awaiting review was never overlooked by an available developer to prioritize other stories,                         
but dealt with as soon as an opportunity arose. Because stories sometimes had to wait quite a                                 
while, this form of review in a way contravenes the values of extreme programming [6],                           
which encourages fast feedback. Therefore, it is a good practise to combined peer review                           
with pair­programming, which provides instantaneous feedback.  

Red repository 
Using story branches that have to pass all tests before merging into master, it should                             
theoretically be impossible for the master branch to fail its build or tests. It did, however,                               
occur twice during the projects course. The first time was because a class did not have a valid                                   
package declaration. This error ought to have been spotted during review, since attempting to                           
compile the code would have thrown the error. This can be attributed to the developers not                               
being experienced enough, but also us as coaches who should have worked with the                           
developers to establish a better definition of done that included running the code during                           
review.  
A second time occurred due to the Eclipse Java compiler accepting code that the regular                             
javac compiler would not, thus the code could not be built when CircleCI performed its tasks                               
on the master branch.  
Overall, since the master branch was mostly green, it was very easy for the team to quickly                                 
produce a release.  

Survey results 
During the second to last week we sent out a survey to gather data from the developers to                                   
gauge the effectiveness of the workflow and using git to perform code review. 
The average time spent on reviews hovered below 35min, though there is an outlier at three                               
hours. This extremely time consuming review was a result of a story that a programming pair                               
thought was sufficiently developed, but in fact had completely misunderstood. Since a                       
majority of the functionality had to be reworked, this should probably have become its own                             
story, and not logged as a review. In a study by Bacchelli and [4], they conclude that a lot of                                     
the time spent on reviews is to simply understand the code. This number is likely higher in                                 
our study, since the team exists of junior developers with little experience. A crucial factor to                               
reduce the time for understanding is writing proper comments explaining any or all methods                           
in the code.  
We also asked the developers about the amount of reviews they had done, and the majority of                                 
the developers had done three or more reviews each. 
As we also had the reviewing developers fix any issues that came up during the reviews we                                 
were also interested on how much actually had to be fixed after the story was “done” and in                                   
the review phase. The answer was that most of the time was spent on finding problems, but                                 
some amount of fixes had to be done. Combining this result with the time spent explains the                                 
outliers, the result is however somewhat skewed since some of the stories required extensive                           



fixing before they were actually done. This was likely a result of the lack of developing                               
experience by the team, combined with a lack of communication with the rest of the team,                               
which could have helped by sorting out what was required for the story to pass. However, the                                 
majority of the stories worked and passed the review. 
 
Lastly, we asked a few questions regarding the developers opinions on the workflow. 
We asked them on a scale of 1­5 if the peer reviews had increased the quality of the code,                                     
which the majority agreed with. The overwhelming majority also found story­branches and                       
being able to quickly see that the tests had passed when reviewing to be beneficial. 



 

 

   



Conclusions 
All in all, the workflow and the reviews were successful, the team had mostly clean code and                                 
could quickly produce a release knowing all code had been thoroughly reviewed and tested.                           
The workflow did however require some extra technical knowledge with branching, which at                         
times was confusing for the team, how to merge, rebase etc. Therefore, a more extensive                             
introduction to git could be preferred, with some practical and visual examples of how it                             
works.  
 
That being said, using story branches makes for easier reviews, since all the code and                             
changes pertaining to the story is localized to the story branch. This means that the reviewers                               
don’t have to filter through the commits for the ones they want to review, or that they have to                                     
look at code that is not part of the story. 
Another strong case for using branches is being able to hold off on merging code with the                                 
master until it has been reviewed. Using story branches instead of always pushing to master                             
also allowed the team to choose when to merge and take the merge conflicts while still                               
having the code available for the rest of the team to view. 
 
60% of the team agreed that code quality was greatly increased through peer reviews, and                             
almost everyone had a good attitude towards story branches and reviews before merging.                         
This is crucial, so that the team feels committed to enthusiastically perform reviews instead                           
of just performing them to get on with the work.  
 
Some reviews reportedly took way too much time, but during these reviews, majority of the                             
time was spent on writing code and fixing problems. Had these reviews not been enforced by                               
the workflow, a lot of faulty code would have entered the master branch and greatly increased                               
the time to troubleshoot it.  
 
Ultimately we find that using Git to streamline code reviews was a success, and delivered                             
great experience to the team on how to properly use version control systems. The team made                               
reviews a priority and an obvious part of the workflow. Reviews were performed as soon as a                                 
team was available and the repository was almost always clean. The only downside was that                             
the feedback from peer reviews is rather slow, and not in line with the extreme programming                               
fundamentals of fast feedback.  

Future Work 
Easy avenues for future studies could be changing the tools or workflow in the methodology.                             
More interesting paths could be to combine this workflow other processes like continuous                         
integration or working remotely, since this would present an increased need for collective                         
code ownership. 



References 
1: ​Bernhart, Mario, Andreas Mauczka, and Thomas Grechenig. "Adopting Code Reviews for 

Agile Software Development." ​2010 Agile Conference​, 08 2010. 

doi:10.1109/agile.2010.18. 

2: ​Winkler, Dietmar, and Stefan Biffl. "An Empirical Study on Design Quality Improvement 

from Best­Practice Inspection and Pair Programming." ​Product­Focused Software 

Process Improvement Lecture Notes in Computer Science​, 2006, 319­33. 

doi:10.1007/11767718_27. 

3: ​"Code Review: An Agile Process." Accessed March 06, 2016. 

https://smartbear.com/learn/code­review/agile­code­review­process/​. 

4: ​Bacchelli, Alberto, and Christian Bird. "Expectations, Outcomes, and Challenges of 

Modern Code Review." ​2013 35th International Conference on Software Engineering 

(ICSE)​, 05 2013. doi:10.1109/icse.2013.6606617. 

5: ​Vincent Driessen. "A Successful Git Branching Model." Nvie.com. Accessed March 06, 

2016. ​http://nvie.com/posts/a­successful­git­branching­model/​. 

6: ​Beck, Kent. “Extreme Programming EXplained: Embrace Change.” 2000. 

https://smartbear.com/learn/code-review/agile-code-review-process/
http://nvie.com/posts/a-successful-git-branching-model/

