
Git as introduction to
configuration management for

students
Adam Nilsson and Marie Versland

2013-02-19

Contents
1 Introduction 2

2 Git 2

3 EGit 6

4 Github 7

5 Git versus SVN 7

6 Course Project 8
6.1 Course Project description . 8
6.2 Git in the Course Project . 9

6.2.1 Git limitations . 9
6.2.2 Egit . 9
6.2.3 Github . 10
6.2.4 Problems . 10
6.2.5 Survey . 10

7 Conclusions 11
7.1 Easy to learn . 11
7.2 Git suitable for a course project 12

8 Summary 13

9 references 14

1

Abstract
In this report we have outlined the popular software configuration

management tool Git. We have also touched on the associated software
EGit, a Git plug-in for Eclipse and Github which is a hosting site for Git
projects. The report gives a brief introduction to the basics of Git as
well as descriptions of EGit and Github. We have had the opportunity to
coach a group of 8 students during spring 2013 in agile software develop-
ment. We used this occasion to test Git in practice in a somewhat small
project, with the goal of finding out Git’s usability and learning curve.
We wanted to find out whether or not Git is a good alternative to SVN
as a first encounter with software configuration management tools. The
students behaviors and opinions have been recorded and analyzed in this
report. We have used both literature and the student project to draw
conclusions about Gits usefulness and its apparent success in the configu-
ration management business. A comparison between Git and subversion
is made, no introduction is made of subversion and basic knowledge is
expected of the reader.

1 Introduction
We hear Git being mentioned more and more often and want to know why
this is and what Git is all about. Software configuration management tools
have existed for a long time and many different approaches have emerged. This
report will answer questions about the viability of Git. The report is built on a
course project performed at LTH.

First we will describe the three main components investigated Git, EGit and
Github. We will go into more detail on Git since that is the central piece of our
interest. We will explain Git’s basic features that were essential to the workflow
of our students, and the basic structure of the program. We will then outline
the differences between Git and SVN and finally provide results from our study
of the course project. The scope of this report is in relation to the project and
therefore focus remained on the keyparts of Git and not on EGit and Github.

2 Git
Git is a distributed version control tool that was invented by Linus Torvalds
to support the development of Linux. In April 2005 Git was used for the first
time and Linus made the first commit with code for Linux. Linus named the
version control tool Git which is an old English word for silly or worthless person
after have claimed "I’m an egoistical bastard, and I name all my projects after
myself" [1].

The purpose of Git is to provide a reliable and versatile version control and
configuration management, it does this with a little different approach than
some other version control tools. Git also enables people to work together and
empowers teamwork.

2

REPOSITORY: Git is built around two parts your workspace and reposi-
tories. A repository in Git is similar to repositories or depots in other tools.
The repository is where the files and information in the decentralized system is
stored. From a repository you can extract information about the current ver-
sion and earlier versions.Your repository act as the interface to other people you
are working with as well as a powerful part in the configuration management
process.

WORKSPACE: A workspace is where you do all your work. A workspace
is private to one developer and can be said to be his or her personal area. When
you edit a file, you do it in the workspace and no one else is affected, since it is
your workspace.

Figure 1: How data might be transferred within a system managed by Git

In Git along with your workspace you also get your own repository. When
you have made a change you are content with, you want to save it. Saving it
in the workspace would not accomplish that since this area of the system is
changing all the time. You can make changes later that override the version you
have now. This is one reason you want to have the repository, to save versions
that you can later backtrack to if needed. Another reason is to efficiently share
your work, since the repository can be made available to others to take from
and even give to. Git saves a lot of useful information in the repository, it keeps
track of who have pushed content to it, where and when merges in files has
occurred and all older configurations of the system.

3

COMMIT/PULL/PUSH: When a piece of code is written the developer does
a commit and the changes are saved in the private repository. Every commit
can be identified by it SHA-1 hash that depends on its content [2]. By looking
at two hash codes it is impossible to see which order the commits was made. An
obstacle that needs to be solved by SCM-tools is when the user want to rename
files. Git uses the content of the files to track and save changes, therefore it can
easily discover if a file has been renamed rather than just tracking files by their
file names.

When a developer wants some code that is in someone else’s repository
he/she can pull that into his/her own private repository. When a change is
pulled, Git creates a new branch that is merged together with the local code
and the developer gets all the data concerning that code e.g. the commit history.
If there has been changes in the private repository since the last pull the merge
are saved in the history as a own commit.

If a developer however wants to put its own code into some repository he/she
can push it. But to be able to push the code the private repository must have
pulled all the changes that exist in the targets repository.

BRANCHES: An important concept in software configuration management
is branches, and it is even more prominent when using Git as opposed to other
centralized SCM tools. In Git every commit in the repository has the potential
to becom1 a branch [3]. The repositories is in a sense built around branches,
things are stored in a branch [6]. To be useful, branches need to have things in
common, if they don’t they could just as well be and entirely different software
project. Branches serve the purpose of isolating tasks during development to
provide a stable base to work on without distractions. Branches can then be
merged together resulting in a branch with the features of both of the initial
branches. Often there is a ’main-branch’ in a project which is what all small
branches is merged to.

4

Figure 2: Example on branches

Git is based on the change set model [5], which means that changes to the
software are stored as ’separate’ modifications on a base configuration. This
means that the changes can be applied independently of each other. This is of
course only half of the truth since the functionality of the changes can depend
on other modifications to the program. This is a powerful way of doing things
but it also demands competence of the developer since faulty ’cherrypicking’ of
changes will result in buggy code.

Git also supports the concept of strict long transactions by default. This
means that all code will always have existed together in a workspace before it
can be pushed to a repository. This is achieved by making it impossible to push
to a repository without being up to date with all its changes first.

5

Figure 3: The effect of Git using the change set model

One thing you want to do often when working on software as part of a team
is integrating your co-workers work into yours. As Git uses private repositories
you get a lot of freedom. When downloading other changes you do not have to
merge them with your own changes immediately [3], this is because the private
repository can store them seperatly in a branch so you can review the changes
before deciding to merge. If you want you can even continue to work on your
friend’s changes in parallel with working on your own utilizing branches.

3 EGit
EGit is a plug in to the very popular Java IDE eclipse. EGit is a straightforward
extension of the Git features into the eclipse interface. Instead of a separate
client or text based console you get your commands from drop-down menus on
the project in Eclipse.

When using a plug-in such as this you bring your version management tasks
very close your programming activities. To entwine your development and your
configuration management may or may not be a good idea. A plug-in can pos-
sibly decrease the awareness of the distinction between the two slightly disjoint
activities of implementation and configuration management. We noticed this
with our students when they argued over Egit and terminal.

6

4 Github
Github is a Git hosting service where a person can make his own repository
accessible for the public. Github is free unless you want your code to be private.
It also offers a lot of socially focused features [4]. Github supports Git and makes
it more accessible to the public. There are a lot of code hosting services on the
internet for all kinds of SCM tools if you do not want to trouble yourself with
setting up servers and configuring the tools.

Github is very focused on the collaboration between users. Each project on
Github get its own wiki-page where people active in the project can document
various information. Github also tracks commits and makes statistics accessible
via graphs. As a user you can follow other users and enter projects [4]. This is
surely part of why Github is so successful, its features gives clear feedback on
projects progress and allows for easy communication between developers. Many
projects on Github are only used to store code and provide backup for single
person projects [4].

Figure 4: A graph produced by Github showing how code only gets committed
on mondays in the course project.

5 Git versus SVN
After SVN Git is the most used version control tool in some areas [2]. Git is a
decentralized software configuration management (DSCM) where every devel-
oper has his own repository. In DSCM work can flow sideways and between

7

developers. SVN is a centralized SCM tool where work always flows up and
down to a central repository.

Everyone in Git has his own repository, this makes it possible to share code
without the use of a master repository, this is one of the biggest differences
between SVN and Git. In SVN you are working in your workspace with one
connected repository whilst in Git you are having your own repository as well
as your co-worker’s to keep track of, and to integrate changes you want continu-
ously. In Git you have the freedom to take in half finished changes from specific
co-workers to align your work, this can be very powerful but it also requires
great awareness within the project.

Even if developers doesn’t need a master repository like you have in SVN,
in Git you can fake one repository to be the official one, where they can make
releases and which code counts as the current main source code for the project.
When using SVN, a commit is directly visible for all developers in the master
repository but that is not the case in Git. Because in Git you are using private
repositories a commit is only shown in that repository. The other developers
doesn’t see the commit before the have pulled in the changes to their own
repository or the change was pushed into another repository. When using Git
with a master repository you are actually creating a centralized working process.
This way of working is not what Git was developed for and is limiting Git’s
potential, it still retains some interesting differences to SVN but much freedom
is removed. That being said using a master repository can be a good way to
start with Git if you are used to SVN [3].

Both SVN and Git has its own plug-in for Eclipse, for SVN the name is
subeclipse. Plugins to famous IDEs such as eclipse can be important to spread
a tool and for many people it could be a deal breaker when choosing SCM
tool. The power of these two plug-ins are roughly the same in the sense of their
relevance to their respective tool. They both seamlessly handle the Git/SVN
tasks such as merging an committing. The Git way of doing things is a bit
more complex and this reflects in EGit, providing more functions and more
alternatives. This can make the tool more difficult to get into but for advanced
users it provides all the necessary features of Git.

6 Course Project
The following sections describe the project we used as a base for this study
and Gits performance within said project. The second section documents what
happened in the project related to Git and students interactions with Git and
their thoughts on the software.

6.1 Course Project description
The compulsory course eda260, software development in teams, is held every
year for students in the second year at the computer science program at LTH.
The students is given a project where they are to develop a system for registering

8

times at an enduro competition. The course begins with a theoretical part and
is then followed by a practical project part where the students are to develop
the system. In the theory part the students learns about XP and SCM. In the
second part they are divided into teams of eight to ten and expected to apply
what they have learnt on the project. The project has six iterations and three
releases, the system is developed during six 8 hour programming labs and six
two hour planning meetings and every one of them must always be present.

We have helped the team by coaching them in the agile thinking and pro-
gramming. Every team has gotten two coaches from the course eda270, coaching
programming teams.

6.2 Git in the Course Project
We as coaches did have very limited previous experience with Git, EGit and
Github. As amongst the focus of this study was to find what makes Git suc-
cessful and what differ from SVN we found the project and the data it gave us
very useful.

6.2.1 Git limitations

In the course project we did not use all the features that was available in Git
which is because because of the small scope of the project, but also partly be-
cause of our inexperience. One of the great things with Git is that the developers
can pull changes between them unfortunatly we did not take advantage of that.
instead we had one repository where everyone could push and pull changes,
like a master repository. This was a conscious choice by us, the work-model
with a master repository is more straight forward and we felt it would be more
safe to use that. We are very aware this takes a lot from what makes Git be
Git and have taken this into account when analyzing the students opinions and
behaviors.

Most of the students hadn’t worked with Git before and they only used basic
functions. However some of the students were more used to Git from before and
they made use of more of the Git functions, like branching. The fact that some
of the students had used Git before was great because they could help the others
to solve problems that occurred.

6.2.2 Egit

Most of the students were using EGit and those who learned it became used to
it and appreciated it. Even if some of the students had personal grudges against
EGit they all liked Git. One of the complaints was that there was a lot of buttons
that didn’t do anything but this is most likely a result of lacking knowledge of
the buttons in question. In our team there was one student that refused to use
EGit and used the console instead. He did this with the motivation that he
thought Egit was ’messy’ and he already knew the console quite well already.
It can be the simple resistance to learn new things when you know something

9

that works that create this behavior. We see it as a small failure for EGit since
its job is to be easy to use, accessible and provide all the features of the console.

6.2.3 Github

We used Github to host our project. We did this because we thought it could
be very useful for the students to learn since it is easily accessible, popular and
also because we wanted to learn more about why Git is so successful. Very soon
when we started the coaching it became clear that with the limited time with
students we had to cut our focus from Github. In the project the students have
not come in any significant contact with any of the characterizing features of
Github. Due to the course format ’following’ fellow students and other similar
features has been quite unnecessary. The Github statistics have been nice to
look at but have not really provided any significant extra value. No meaningful
conclusions about Github have been made because of the limited scope of the
course. However to the extent we used it it looked promising.

6.2.4 Problems

During the labs we studied how the students behaved and what problems they
had. During the first lab the had a lots of problem that derived from how Git is
used and most of all how to handle merge conflicts. This is logical because most
students have not experienced very many merge conflicts before this course and
have to learn how to solve it, especially when they happen to commit a class
file which always conflicts. During the next two labs it was much smoother and
we couldn’t see many problems related to merging anymore and they seemed to
like working with Git which also can been seen from the result from the survey.
On the contrary the has coaches from other teams that uses SVN tell us that
theirs teams are so tired of SVN that they consider to change to Git, in the
middle of the project.

That being said the following programming sessions was not completely with-
out Git related problems. Problems such as adding files to specific ignore lists
caused some ’headache’ and certainly stole a fair bit of time. Another problem
was that pulling just stopped working at times. These problems is most likely
due to inexperienced use of Git and maybe a misclick here and there causing
problems.

6.2.5 Survey

After the students had been using Git during three lab sessions we asked them
to fill in an survey about Git. We constructed the survey with mainly first-
impressions in mind as well as some background checks on previous experience
within the team. Most of the questions where simple mutli-choice questions,
but there was also some questions with text boxes where they could fill in their
opinions.

10

Figure 5: Part of the survey results

Something that the team liked about Git was that it was simple to use
and that it handles branches better than e.g. SVN, which is in line with [6].
They also appreciated the private repository as a way to store local history and
recognized the advantage it would give when working offline for some time.

7 Conclusions
Git is a powerful tool that can be really helpful while developing software.
After having used it for a couple of weeks we can understand why its popularity
is growing. It has many useful functions and it is easy to create and merge
branches.

7.1 Easy to learn
Our group received limited training before the first session with Git. We had
provided them with a document of simple instructions concerning the features
they were expected to use right from the start in the project, See Appendix A.
The study of our student group’s behavior does not fully reflect Git because we
used the master-repository setup. It would have been interesting to see how it
would have worked if this was not the case.

When we started this project we didn’t have any experience with Git or at
least very limited experience, however we had used SVN though. In our team
on the other hand most of the students did not have any significant experience

11

of SCM nor any tools for it. When we started to look at and experiment with
Git it took a couple of hours before we had gotten the hang of the most basic
parts of Git like committing, pushing, pulling, fetching, branching and merging.

Many of the students in our team had a tendancy to have some problems with
especially merging. But as we have stated above, after the first programming lab
most of them got more control over merging and merge conflicts. We found that
in EGit the way to merge conflicts are shown and resolved is a bit unintuitive.
Having to use the "Add to index" button before committing to resolve merge
conflicts is hard to figure out on your own, some of our students had either
forgotten about this or not read our Git introduction carefully enough. Much
like other SCM tools you need to work with the tool and abide by its rules
rather than to try to force your old way of working to work with the tools

However it’s not many of students that are using branching and some of
them doesn’t know exactly how it works, we feel this is fine as there was not
that much room to branch in this project. Many other features that were
not touched includes bisect, rebase and cherry picking amongst others. This
certainly is not Git’s fault but a product of the nature of the course project.

We have found that it’s not that difficult to learn Git in its basic form
especially if you have some experience of version control tools before. If you want
to use Git to its full potential you need more time and first-hand experience.
The more difficult thing to grasp is the configuration management process you
need to employ when using Git. Using Git to collaborate with other people on
the same piece of software is a great challenge.

7.2 Git suitable for a course project
When you are using a master repository in Git it is not that different from SVN
in how you use it, especially if you only are using the basic features. If you
do so the difference is that you have your own repository you must commit to
before you can push it to the master repository. If you use Git like that for the
courseproject it is not very difficult and you can still have some control over
the code that is needed for the course. The extra version control in your own
repository for your own use was appreciated by some of the students, but the
value of it would certainly go up as the projects get bigger. The students did
not express the need of using Git’s full functiionality in terms of interacting
with eachothers repositories without a master repository. When asked, they
were sceptical of its use for them since they felt they had enough problems with
pushing and pulling from the master repository.

Git solves merges very well despite the little hiccup in our team and it is not
that often there becomes conflicts which is too difficult to solve. Our group did
not have much troubles with the renaming and the deletion of files which we as
coaches have had some troubles with in SVN before. The fact that it is easy
to change the names on the files in Git is because it tracks the contents of the
file makes Git more able than SVN where it can be troublesome to change the
name of a file or removing a file.

All this and the fact that Git is easy to learn makes that Git is very suitable

12

for the course project and all the students in our team prefer Git over SVN, one
the other hand so have the never really worked whit SVN. But as touched on
above in this document students of other teams is tired of SVN and wants to
change to Git instead. EGit on the other hand did receive some negativity in
the survey but many still prefer it over the console. The impression we have got
when coaching is that it can be quite hard to solve some of the more ’mysterious’
problems with EGit, and that it was lucky that one of our students knew the
Git by console quite well. The ’mysterious’ problems was the kind of problem
such as certain functionality like pull giving errors with no explanation. The
group only had these problems in the beginning and vanished in later iterations
so we conclude they arose through misuse of the plugin.

Overall we think that Git is very usable as a base to learn SCM and XP
from. Git both has advantages and disadvantages compared to SVN. Git gives
more freedom to the cost of being more complex than SVN. The freedom given
to the developers is not always desireable, in some cases a master repository
provides a good place for authority to draw information from. Both tools are
very adequate and we can recommend Git for the purposes of learning.

8 Summary
Git is a popular version control tool where everyone has his own repository
and you can pull and push changes between the developers. If you make all
exchanges of code go through one repository it becomes a master repository,
you can work much in the same way as you do in centralized SCM like SVN.
Git is quite easy to learn and and nice to work with and the students of course
project seems to prefer it over SVN. Git have many powerful software relatives
such as Github and EGit which is helping its popularity.

13

9 references
1. Version Control with Git by Jon Loeliger & Matthew McCollough

2. The Promises and Perils of Mining Git by Christian Bird, Peter C. Rigby
, Earl T. Barr , David J. Hamilton, Daniel M. German, Prem Devanbu

3. Making Sense of Revision Control Systems By Bryan O’Sullivan

4. Social Coding in Github: Transparency and Collaboration in an Open
Software Repository by Laura Dabbish, Colleen Stuart, Jason Tsay, Jim
Herbsleb

5. Configuration Management Models in Commercial Environments, by Pe-
ter H. Feiler

6. Tech Talk: Linus Torvalds on Git. http://www.youtube.com/watch?v=4XpnKHJAok8.
(Warning biased)

14

.

Installera Egit till eclipse
Help → Install new software → add

http://download.eclipse.org/egit/updates

Välj Eclipse Git Team Provider. Om det inte fungerar gå tillbaka och klicka ur EGit Plug­in Import
Support och försök igen.

Hämta hem projeket
File → Import → Git → Projects from Git →URI
Följ instruktionerna (klicka next) och använd nedanstående https och välj att skapa projektet
från existerande projekt i sista steget.
https://github.com/EdanLTHgit/Enduro4.git

Nu har du ett project i ditt eclipse som är kopplat till ett eget privat repo och som har det stora
master repot som ‘upstream’. Repositorierna på github är public så ni kan ta ner dem, men ni
kommer inte kunna pusha saker till dem förrens ni är tillagda som collaborators.

Komandon i git
(Under Team fliken i context menu)

Commit spara dina ändringar till sitt eget repo.

Fetch hämtar från annat repo utan att merga ihop det med det man har i sitt, fetch används när
man vill titta på det man hämtar ner innan man tar in det i sitt workspace.

Push lägger upp det man har commitat i sitt eget rep till vårt repo på GitHub, för detta krävs
autentisering. Ex: Om du har commitat 2 gånger till ditt repo så kommer dessa båda commits
läggas upp på github repot.

Merge lägger ihop sitt eget repo med det man har hämtat.

Pull genomför både fetch och Merge, detta är det ni kommer använda som ‘update’.

Vid fetch, push och pull ska följande https adress användas
https://github.com/EdanLTHgit/Enduro4.git
och vid push måste ni använda det användarnamn och lössenord till gitHub. Ni kan använda
secure store för att spara lösenord så ni slipper skriva in det varje gång.

Appendix A

15

Show history ­ Visar en logg med alla commits och hur saker o ting mergats

Merge
När ni har fechat från ett annat repo så måste ni själva merga ihop det med er egen kod.
Eftersom vi inte vill ha några konflikter i repot så måste fetch och merge eller pull alltid utföras
innan push

När det uppstår konfliker vid en merge så måste ni lösa dem.
Team → Merge Tool
och rätta till, när filen är som den ska så lägga till filen genom
Team → Add to index
därefter gör en commit

(Man behöver inte använda merge toolen, man kan ändra i filen manualt också, det viktiga är att
man tar ‘add to index’)

Viktigt!

Comitta aldrig .class filer till repot. Man ska kunna sätta dem på “ignore” under windows­
preferences.

Experimentera

https://github.com/EdanLTHgit/LekRep.git

