
1

Continuous Integration with Jenkins

Coaching of Programming Teams (EDA270)

J. Hembrink and P-G. Stenberg
[dt08jh8 | dt08ps5]@student.lth.se

Faculty of Engineering, Lund Univeristy (LTH)

March 5, 2013

Abstract—Developing software in teams using agile methods often requires new code to be shared within the team
and integrated with existing code at a regular basis during development. This can be very time consuming as the
integration of new code must be verified by building and testing the system for each integration. Continuous Integration
is a practice and a part of the agile development method Extreme Programming that involves automation of the building
and testing of new code and thus reducing the time spent by the developers on integrating their work. In this study we try
to implement the practice of continuous integration into an agile student project in the course Software Development in
Teams (EDA260) at the Faculty of Engineering, Lund University, hoping to improve the efficiency of integration of tasks
as well as improving code quality. The implementation has been implemented with the use of the tool Jenkins, a popular
tool for continuous integration, supporting automation of building, testing and more. Some common terms and theories
of both continuous integration and the tool used is explained and is then followed by results and conclusions following
the practical implementation.

Index Terms—Continuous Integration, agile development, test-driven development, eXtreme programming, Jenkins,
LTH

F

1 INTRODUCTION

WHEN developing software in a team us-
ing agile methods a team of developers

have collective code ownership, sharing the
code in a common repository where each de-
veloper checks in new code or changes when-
ever the developer is done with the task. This
requires each check in of new functionality
to be integrated in the existing code base—
something that involves building and testing
the system to be able to verify that the system
still works with the new changes. Performing
the integrations at the end of a development
cycle increases the risk of conflicts and thus
increasing to cost to solve the integration prob-
lems.

Continuous Integration (CI) is a practice
where each integration made by a developer

is verified by an automated build, a complete
test run and other reports providing feedback
about the state of the software or code. This
makes errors in the integrations rapidly and
easily detectable and thus reducing larger prob-
lems later in the development cycle.

Continuous Integration was first minted as a
part of the rule of integrate often [1] in Extreme
Programming (XP), a set of activites, rules and
principles for agile development focusing on
frequent releases in short development itera-
tions. The practice of CI states that developers
should integrate code whenever it is possible,
allowing integration problems to be detected
as early as possible. Developers should never
have unintegrated code for more than a day
following the rules of XP.

While a tool is not needed to apply the
practice of continuously integrating, an inte-



2

gration server is often used for this purpose,
making the automation easier. In this study we
used Jenkins [2], a widely used CI server. A
description of what Jenkins is will be handled
in section 3.

This study is a part of a course at the Fac-
ulty of Engineering, Lund University where
students in groups of eight to ten develop a
project in an agile manner, XP to be exact. We,
the authors are acting as coaches to these team
of students. We will then try to coach the team
of students to practice CI with the support
of Jenkins. In section 5 we will compare our
team’s performance with other team not focus-
ing on CI.

2 PRACTICES OF CI IN THE COURSE

The practice of CI has a set of sub-practices
related to those of XP defined by Fowler and
Foemmel [3]:

• Maintain a Single Source Repository
• Automate the Build
• Make Your Build Self-Testing
• Everyone Commits To the Mainline Every Day
• Every Commit Should Build the Mainline on

an Integration Machine
• Keep the Build Fast
• Test in a Clone of the Production Environment
• Make it Easy for Anyone to Get the Latest

Executable
• Everyone can see what’s happening
• Automate Deployment
However we adapted some of these practices

to suit the course environment used in this
study, making some of the practices redundant.
For example Everyone Commits To the Mainline
Every Day becomes redundant since there is
only one day of development per week, the
developers should instead commit as soon as a
story is implemented. See section 4.1 about the
student project and the course. In the sections
2.1–2.7 our practices are described.

2.1 Using an Integration Machine
One approach to verify the integration of new
code is for the developers to manually build the
system and make sure all tests pass on a build
server before declaring the change integrated.

Developer

Developer

Developer Repository

Committing 
changes

CI Server

Poll

Build 
script

Feedback

Fig. 1. An overview of the process of CI as
defined in the student project

This can be automated with an CI server
which monitors the repository for changes and
if it detects any builds and run the tests. The
CI server then provides the developers with
feedback about the status of the build, whether
the build was successful or not. In the case of a
build failure the developers can quickly solve
the problem and commit a fix.

The use of the CI server can be seen in
figure 1. The developers commit changes to the
repository. The CI server polls the repository
on a regular basis, if it detects any changes
commited it will execute the build script that
automatically builds the system. It will then
publish feedback telling the developers if the
build and tests was successful or not.

2.2 Maintain a Single Source Repository
When using agile methods to develop
software—XP in particular—it is important to
have a collective code ownership [4]. Software
configuration management (SCM) tools is an
important part of this. One kind of SCM tools
widely used is version control (VC) tools. The
VC tool used in the project, Subversion, helps
developers keep all source code files in one
place, a repository, with each change saved so
that one can go back and trace changes made.

In the practice of CI it is essential that the
team has one single master repository [1] [3]
where all files needed to build the software is



3

in place, this also includes build scripts such
as Ant [5] (a Java library used mainly to build
Java applications described in build files) and
test classes such as JUnit [6] test suites (JUnit
is a framework for writing unit tests in Java).
The developers should always maintain this
repository first hand.

The master repository is also where the CI
server looks for changes and base the build
upon.

2.3 Automate the Build

To be able to verify the integrations commited
to the repository by the developers, the CI
server should be able to build the software by
itself. This can be done with a build script,
in our case an Ant-file which builds the Java
application being developed. In addition to
building, the build script also automatically
runs all tests, code auditing tools and generates
JavaDoc.

2.4 Test First and Automated Test Runs

Another way to help verify new commits is
by running unit tests for all code. In extreme
programming, test-driven development (TDD)
is a vital part of writing new code and for
CI [7]. Luckily this practice makes it easy to
automate a complete test run.

The CI server can automatically run all unit
tests and create a report for all developers in
the same way as the build report, but more
detailed as it can show exactly which tests
failed and thus which methods failed. It can
also provide detailed information about test
coverage and warnings in the source code.

2.5 Frequent Commits

As mentioned previously in this paper and as
a part of the other practices developers should
commit often and as soon as new functionality
is done (and of course, tested). Each commit
should be done to the master repository so
that the CI server can run the verifications and
allow other developers to retrieve the latest
revisions of the source code and build files.

2.6 Shared Artifacts
When executing the build script the CI server
can create several artifacts. These includes exe-
cutables of the program, test reports, documen-
tation and more. Every developer should have
access to these artifacts so that one can test run
the compiled program, inspect reports or read
up on the API.

2.7 Extreme Feedback
Communication is a corner stone in every agile
project, this is especially true when using CI. It
is important that all members of the develop-
ment team know the state of the build of all
time.

Every developer can access the build and
also see all reports and the current build state
through a web browser. It is also common to
use one of many plugins for extreme feedback
available for Jenkins. An example of this can be
a monitor which lights up in different colours
depending on the build state, for instance red if
it fails and green if it’s successful. Some teams
even go one step further and utilises physical
lamps or sounds.

3 A BIT ABOUT JENKINS
Jenkins is a continuous integration tool writ-
ten in Java. It can execute Ant and Maven
scripts and shell scripts both for Windows and
Unix/Linux enviroments. Builds can generate
JUnit test reports out-of-the-box while other
test frameworks are supported via plugins.
Supported SCM tools are: CVS, Subversion, Git,
Mercurial, Perforce and Clearcase. Builds can be
triggered by commits, polling the repository,
manually triggers, via an API or by other suc-
cessful builds, i.e. one can setup Jenkins to
build one module only after another module
has been successfully built.

Jenkins uses HTTP in the form of a web page
as interface making both the builds, feedback
and configuration available through a web
browser as mentioned in section 2.7.

4 IMPLEMENTATION
In this section we describe how we, as coaches,
went to introduce and implement CI into the
student project.



4

The goal with impementing CI in this project
was to see if team could have a release ready
fast, at all time. Release management in this
course is known, from own experience, to be a
stressful moment. We think the reason for this
is simply that CI has the least focus compared
to all the other practices of XP during the
theory part of the courses.

Antoher goal with the introduction of CI and
Jenkins in particular was to give be able to
monitor and give feedback to the team in the
aspect of testing. TDD and unit testing has in
the opposite of CI a large focus. By letting the
team know if a test fail or if the test coverage
is low after each commit, our hypothesis was
that we could coach the team to be more aware
of TDD and thus improving the validation the
integrations.

4.1 The student project
The course Software Development in Teams
(EDA260) is a compulsory course for com-
puter science students at LTH. The course is
divided into two parts—-one theory part and
one project part.

The project part is—as brifely mentioned in
the introduction—a part of a course and there-
fore a simulation of a real project where the stu-
dents are divided into extreme programming
teams developing a Java software for a fictional
customer, usually played by an employee at
the department of computer science. All twelve
teams develops the same software.

The development is taking part in a time
period of six weeks (iterations), each containing
an eight hour “work day” on Mondays and
a two hour planning meeting on Wednesdays.
The work day—the programming sessions—is
done with XP rules in mind, including (but
not limited to) Pair Programming, TDD and
on-site customer. The Planning meetings is a
session where all developers, the coaches and
the customer takes part, discussing and most
of all estimating the development time of a
set of predefined stories given to the team by
the customer. After the estimation done by the
team the customer decides what stories to go
into the next release. Each student also gets a
so called spike, a four hour task to do outside

of the programming sessions, these spikes are
not allowed to be implementations of any kind,
but can constist of reasearch or refactoring.

During the theory part of the course the
students have been taking laborations in using
SCM tools like CVS or Subversion. They have
also had lectures in topics such as SCM, Test-
driven Development, Simple Design, Refactor-
ing and XP.

The course Coaching of Programming Teams
(EDA270) is a parallel course to EDA260 where
previous students of that course play the role
of coaching the team through the project.

4.2 Introducing CI in the Student Project

The first step of our implementation of CI was
to give the developers a basic, bare minimum
skeleton of the system, including some equally
simple unit tests. This is given by all coaches
to their respective teams.

As we knew from our own experiance the
knowledge on build scripts such as ANT is
very limited we also wrote a basic script which
could compile the software and run the tests
that we wrote. Just enough to get our Jenkins
server running and actually performing the
task of giving the team feedback on the builds
and tests.

On the first programming session the Jenkins
server was started and the students were given
a short introduction on how to access and use
Jenkins. Since no release was planned during
the first iteration the Jenkins server was mainly
used to monitor the build and test reports
to make sure the integrations of implemented
stories were successful.

The first release was planned to the second it-
eration, therefore the students were told to read
up on Jenkins. They were also shown where to
access the artifacts generated by the build script
and published on the Jenkins server, making
sure every team member knew how to get
make a release.

On later iterations the team (with the coaches
assisting) added more functionality to the build
script and Jenkins. Some of the following Jenk-
ins plugins were used, in no particular order
of importance:



5

Ant Plugin. A plugin for building Java appli-
cations with Ant. This is installed out-of-
the-box in Jenkins.

Javadoc Plugin. A plugin for publishing the
Javadoc generated by the build script on
the Jenkins web interface. Comes installed
with Jenkins.

Subversion Plugin. This plugin enables Jenk-
ins to poll a SVN repository for changes
and trigger builds if changes are detected.
Comes installed with Jenkins.

Green Balls. A simple plugin to replace the
blue balls to green balls indicating success-
ful builds.

Jenkins Emma Plugin. Emma is a tool for
measuring test coverage in Java. The plu-
gin publishes reports and graphs on the
web interface.

FindBugs plugin. FindBug is static analysis
tool, looking for bugs in Java programs.
The plugin publishes reports and graphs
on the web interface.

While some of these plugins is necessary to
be able to use Jenkins with Java, plugins such
as the Emma and FindBugs plugin was in-
stalled to give additional feedback about code
quality et cetera.

4.3 Using Extreme Feedback
A way for developers to quickly see whether
a build is successful or not is to display clear,
simple feedback to the developers. In our en-
vironment we had a computer screen set up
so each developer could see it clearly at all
time, running a full screen application simply
making the whole screen turn red for builds
failing, yellow for unstable builds—meaning
the build was completed but with failing tests
and finally green for successful builds.

Having this external screen allowed the de-
velopers to see the outcome from Jenkins with-
out having to browse to the web interface on
their own workstation making them aware of
failing or unstable builds even while in their
normal workflow.

4.4 Improving Test Coverage
Covering as much code as possible with the
tests is essential to make sure all modules are

Fig. 2. Test coverage for each build for the
project

integrated.
We used the tool Emma to measure the test

coverage of the code together with the plu-
gin for Jenkins to publish the reports making
them available to developers. A threshold can
be configured to make the build considered
unstable or failed if the coverage percentage is
too low. This makes the team aware of untested
code which can be important when making
large refactorings where new classes might go
untested (it should of course not happen, but
it does).

Figure 2 shows a graph over the test cover-
age in the project with percentage on the Y-axis
and builds on the X-axis.

4.5 Improving Code Quality

Detecting bugs can be a hard task for any
developer and some slip by the tests. Many of
them can be found with static code analysis,
such as comparing strings in Java without call-
ing the equals-method.

We introduced FindBug as a static code
analysis tool to be integrated into our build
script and in the Jenkins server as a plugin.
Many of the faults found by the tool is merely
Java specific warnings about unused imports
or wrongfully named methods according to
the standard coding conventions. But some
critical bugs as the one mentioned earlier can



6

Fig. 3. Bugs and warnings found by FindBugs
for each build in the project

be detected fast after each commit using the
feedback published on the Jenkins server.

In figure 3 a graph is shown with different
types of fualts found by FindBugs. The Y-axis
is the number of faults found and the X-axis is
the builds.

4.6 Managing the releases
Jenkins together with a build script can auto-
matically package releases as soon as a build is
considered successful. Anyone in the team can
then get the latest package—artifacts—from the
Jenkins server. The package can include bina-
ries (runnable jar-files in our case), generated
JavaDoc and any documentation residing in the
repository. Everything that should be needed
for a release in this course.

The process of a new release, including
preparing for a release in our team is described
below:
1. Make sure everything is integrated. While

a release could be made by just taking the
latest successful build, the team generally
wants a release with as much new stories
implemented as possible. Therefore a
developer responsible for the release
makes sure that the latest commits is
integrated—and if not tells the team about
it so they can fix it. This usaully takes
place about an hour before the planned

release making sure the team have time
to fix problems.

2. Check documentation. Something that is
required for every release in the course
is the documentation, including technical
documentations and user manuals. These
are artifacts that cannot be checked auto-
matically, there this is validated manually
by a pair of developers. This is usually
done in parallel with the point described
above.

3. Manual acceptance testing. Automatic ac-
ceptance testing is done as a part of build-
ing but to ensure it works on an isolated
environment the release is downloaded
from Jenkins and tested manually with the
binaries. This is especially important since
the development environment is different
from the one where the product is being
used. This also ensures the now up-to-date
manual is correct. This is done just about
30 minutes before the release to make sure
there is time to correct any errors.

4. Sending the release. The actual release is
done by downloading the release package
from the Jenkins server and mailing it to
the customer. This is done as soon as the
release is verified to work and can be done
in minutes.

5 RESULTS

The result of implementing CI with Jenkins in
the course project shows that there were a rel-
atively small amount of failed builds and tests
during the entire development. The releases
were generally good and fast with most prob-
lems being missing documentations or “usage
bugs” meaning undetected bugs caused by the
user, for example providing wrong parameters
in the configuration file.

Jenkins was used continuously used by all
members to validate their commits during the
development sessions. In the small amount of
occurances where the build failed it was clearly
communicated to the rest of the team both
via the feedback monitor and vocally by the
developer responsible for the commit.

Looking at figure 4 a large drop in the num-
ber of tests can be seen after about halfway



7

Fig. 4. Graph showing the trend of both suc-
cessful and failed builds

through the list of builds. This was just after
a large refactoring. The drop can be explained
both by the reduced amount of classes but
also by the team “cheating” with the practice
of TDD in the refactoring. We can observe
that more tests were written gradually after
discovering this. Figure 2 also confirms this as
in the same period the test coverage of classes
is reduced a bit while the method, line and
block coverage drops significantly more than
the class coverage, meaning there was some
removed classes, but the new methods went
untested.

5.1 Other Teams
A survey was sent to all other coaches asking
them if they introduced CI to their team, how
their release process looked like and how long
it took.

The result showed that most of them had
some kind of CI practice but none of them used
a CI server. Instead they manually invoked an
Ant script that built the system, one team did
semi-automate this by having a shell script run
periodically. As this method works, a shared,
automated feedback from the build is missing.

On the question about release processes we
found out that the teams having build scripts
had a process very similar to ours, but with
the difference of having Jenkins available to

provide easy access to the builds. Some teams
had instead automatic emailing of the builds to
a team mailinglist.

One team answered that they did not au-
tomate the build, but instead produced the
build through the IDE. This method works
but requires that the developer making the re-
lease follows a checklist with procedures such
as testing and packaging the release correctly.
Feedback for the rest of the team is also missing
as they have to rely on the responsible person
to communicate with them.

The time taking to do the release varied from
one minute to up to an hour. Not surprisingly
the team with Continuous Deployment could
release in a minutes with the more manual
methods taking longer. We assume however
that these numbers might not be all fair as it
did not state whether to take the preparations
in consideration or not. Our team for example
could release in minutes but up to an hour was
dedicated to the release to manually validate
for example documentation as explained in
section 4.6.

5.2 Problems
The first noticable problem we found was lack
of knowledge of testing. Some developers did
not know how to test exceptions in JUnit and
automating the acceptance testing was also a
problem. The problems were resolved by let-
ting team members educate each other after
spikes.

In figure 4 and 2 we can se two dramatic
drops in the graphs. These were caused tests
invoking a system exit. This was detected fast
thanks to the feedback from Jenkins but could
have been avoided all together with better
knowledge on how to test these types of code.

Other problems was mainly caused by the
team not following the practices of XP. Com-
mitting broken code occured at some points
even though it is a bad practice and showed
up on Jenkins. In some cases the commits were
due to human erros in the use of SVN, but
sometimes intentionally before the end of the
day. Going home with broken code should of
course never happen, but could be fixed the
week after quickly as Jenkins showed it to the



8

team. Since it was a course project with only
the ten developers developing the software one
day per week the harm was not major, but
could potentionally be devastating in a larger
project.

6 CONCLUSIONS

Continuous integration is an important practice
in agile projects, XP in particular. It can help
increasing the frequency of releases, in mak-
ing releases more managable and improve the
quality of the product and the code behind it.
However it requires that the team of develop-
ers follow not only the practice of CI, but all
it prerequisite practices aswell, as described in
section 2.

Jenkins is an excellent, highly customisable
CI server with many plugins to tailor the tool
for specific needs. The web interface makes it
accessible to all developers, a prerequisite of
CI.

Continuous integration with Jenkins is
highly suitable for this course as the result
showed that it improved test coverage and
kept the number of failed builds down during
the whole development cycle. It does however
require the coaches to actively support the
team in maintaining the tools, for example we
decided early to develop a build script for the
team at the start, something that could have
been done by the team, but we think giving
them a jump start gave the team more focus
on using the tools rather than spending time
configuring the tools by themselves.

ACKNOWLEDGMENT

We would like to thank our team of students
in EDA260, Team 09 VT13, our fellow coaches
in EDA270 and the lecturers.

REFERENCES
[1] J. Humble and D. Farley, Continuous delivery: reliable soft-

ware releases through build, test, and deployment automation.
Pearson Education, 2010.

[2] K. Kawaguchi, “Jenkins CI,” http://jenkins-ci.org/, [On-
line; accessed 03-Mar-2013].

[3] M. Fowler and M. Foemmel, Continuous Integration.
ThoughtWorks, 2006.

[4] K. Beck and C. Andres, Extreme Programming Explained:
Embrace Change. Addison-Wesley Professional, 2004.

[5] “Apache Ant,” http://ant.apache.org/, [Online; accessed
03-Mar-2013].

[6] K. Beck and D. Saff, “JUnit,” http://junit.org/, [Online;
accessed 03-Mar-2013].

[7] M. Karlesky, G. Williams, W. Bereza, and M. Fletcher,
“Mocking the embedded world: Test-driven development,
continuous integration, and design patterns,” in Proc. Emb.
Systems Conf, CA, USA, 2007.

[8] M. Polo, S. Tendero, and M. Piattini, “Integrating tech-
niques and tools for testing automation,” Softw. Test., Verif.
Reliab., vol. 17, no. 1, pp. 3–39, 2007.


