
Continuous Delivery - effects of iterative implementation

Mattias Gustafsson and Jesper Olsson
{dat13mgu, dat12jol}@student.lu.se

Abstract— Previous studies have established that
Continuous Delivery (CoDe) is a benefit for agile
teams. In this essay we will compare the differences
between two teams that have iteratively develop their
own CoDe pipeline to two teams that have gotten a
pre-existing set of CoDe tools set up in advance. Through
measuring how the teams deployments went and their
understanding of CoDe we compared the two. We will find
that implementing CoDe implies an overhead knowledge
making it difficult to set up iteratively and having time to
use the benefits it gives in the short timespan of six week.

1 INTRODUCTION

As children we’ve all been told “stop doing that”
as a response to an action that hurts. That way of
thinking haunts many people to this day. In software
development there are many things that hurt, that slows
developers down. Integrating code, writing extensive unit
tests, updating manuals and technical documentation,
there are different ways of coping with challenges like
these.

Some companies might try to integrate as seldom as
possible to avoid developers getting hindered in their
problem solving, paying off the technical depth when the
customer demands a release. That type of mentality that
sweeps problems under the rug will lead to developers
needing to go in the the infamous crunch.

Kent Beck has a different view over development
which he outlines in his book “extreme programming
explained - embracing change”. Two principles he puts
out in contrast to the earlier examples are continuous
integration and 40 hour work week. By working
iteratively in small steps and integrating often with the
main code base we find problems earlier and can address
them before they grow.[1]

CoDe, short for Continuous Delivery, takes continuous
integration and ups the ante. By forcing developers to do
the things that hurts often, suddenly a new need occurs.
They can do the work manually, finding stable branches,
test extensively and try to export it to shippable state.
Or they can focus on making the processes automated
and repeatable thus making the things that hurt, not
hurt.

In this essay we examine the benefits of letting a
team with a limited time budget implement several
steps towards a fully automatic release and integration
process. We will discuss whether it is worth dedicating

development time to establishing a pipeline or if it is
better to buy an existing set-up or not have Continuous
Delivery (CoDe) at all. Specifically we will look
closer on how continuous delivery impacts the team’s
releases.

The essay has four parts: in the background section
CoDe as a concept is explained and the teams
participating in the study described. Next in the method
section we discuss what and how data was collected
and how we will use this data. The data itself is then
presented in the result section before, in the final section,
we draw our conclusions.

2 BACKGROUND

In this section we will discuss the use of CoDe and the
context in which this study was performed. We will also
mention earlier studies and talk about our reasons for
choosing to let the participating students implement the
solutions on their own.

2.1 The PVG course and teams

The Computer Science program at Lunds Tekniska
Högskola has a course “Programvaruutveckling i grupp”
(Software Development in Teams)[2] in which the
students take part in a larger software development
project. This is done in teams of ten people, led by
one or two senior students, coaches, who have taken the
course before. The students have a basic understanding
of programming but have mostly worked only on small
assignments before. Of the teams, we have coached two,
referred to as team 05 and 06 in the text.

In the course, the students are introduced to Extreme
Programming (XP), an agile development method which
is used during the project. XP has twelve core principles,
including Test Driven Development, Pair programming
and Shared code ownership. Following these principles
takes some getting used to and the project is laid out
in such a way that conflicts and issues are likely to
arise (for the sake of learning of course). There will
also be deployments to a customer at several points,
usually resulting in frantic, chaotic work leading up to
them.

The project takes place in the span of six weeks during
which there is an eight-hour lab session each week,
as well as a two-hour planning session and four hour



“spike” time where each student gets assigned tasks that
benefit the team but does not involve committing any
code to the team repository. The project has in advance
been split up into different user stories. The stories gets
estimated during the planning sessions and implemented
during the programming sessions.

2.2 What is Continuous Delivery

“Software release should be a fast, repeatable process.”
says Jez Humble and David Farley in their book
on Continuous Delivery. Releasing software is hard,
integrating code and working in the same directions
are the cause of many common problems in software
development.[3]

The core idea of Continuous Delivery is to maximize
feedback from the code. Focus lies on repeatable
and automated procedures that goes from code to
an audited release with one press, while excluding
as many variables as possible such as manual
configurations.[3]

Some of the most common elements in a CoDe pipeline
are automation of tests and build tools. For a more
advanced pipeline a server that listens to the code base
and automatically audits the code and builds a release
can be implemented but it is no requirement.[4]

According to agile guru Martin fowler, CoDe increases
safety for developers and customers. As problems that
arise in the final stages of deployment come up quicker
and can get ironed out before clustering up into complex
problems. Developers can also get more useful feedback
from the customer who can see the features in a more
holistic way.[5]

2.3 Related work

A similar study was done by Erik Gärtner and Malcolm
Eriksson in 2015[6]. They coached teams into integrating
CoDe during the course of their project. They let
their team iteratively implement a CoDe pipeline
and afterwards measured the team’s understandings of
continuous integration compared to other teams. They
concluded that letting the team integrate CoDe was good
for their understanding but noted that other shortcomings
of the team made it less useful than it could have
been.

In another study, Hembrink and Stenberg[7] coaches
a team to use a Jenkins server for CI. In this case,
the coaches set up the system beforehand and provided
the team with assistance as they expanded upon it.
They concluded that using CoDe is highly suitable for
the project and that it increased the test-coverage and
minimized the number of failed builds.

From these studies we can see that introducing CoDe
is viable and that it does have a positive impact on the
projects. Both these studies have been conducted in two
very different ways: either the team got a process pre
made by the coaches or the team got to develop their
own process. We will look at the differences between
these methods but we are also interested in whether or
not it is a good idea to wait with integrating CoDe until
the teams have experienced some of the chaos of their
first release.

3 METHOD

In the following sections we describe the process we
used to introduce CoDe to the teams and how we
measured their progress.

3.1 Steps for introducing CoDe

1) During the first lab session the team got a chance
of familiarize themselves with working in a team
environment and during the second, they had to
do a release. They were allowed to prepare for the
release but it was done manually.

2) We then Introduced CI through spikes. After the
first release, some team members were tasked with
researching tools for continuous integration to see
if they could get them to work. These would then
be used on the project so that the students would
get warnings or errors if they tried to push commits
with failing tests.

3) Next we introduced build scripts. In this step the
students had to create a script to build the project to
facilitate future releases. This included exporting
the code into runnable jar files and including
relevant files and folders.

4) With CI and build scripts done, the next step would
be to introduce automated acceptance tests. Ideally,
acceptance tests provided by the customer should
be run on generated builds rather than as unit tests
run in the developer IDE. This requires extended
scripts and redesigned tests. Thereafter the teams
would integrate these new acceptance tests into
the commit process so that they are automatically
run before a commit is integrated into the master-
branch.

We have coached two separate teams to iteratively
improve their CoDe process following the previous steps.
Two additional teams coached by another pair were
provided a working CI solution from the beginning and
will be used as comparison.

3.2 Working with spikes

Spikes are home assignments used for researching and
experimenting with things that the team does not want to
spend time on during actual development. Any task can



be a spike as long as it does not affect the shared code
base. Most spikes were done in pairs. All preparatory
work for the steps in section 3.1 were done during spike
time.

3.3 Why not just set it up in advance?

It would have been easy to prepare a set of tools for
the team to use in the project. We are also simulating
a situation in which the developers themselves sets
up the frameworks which is a common scenario when
companies tries to become more agile. Our most
important goal is for the students to learn as much as
possible during these weeks, therefore we would rather
see them get involved in the process.

A fully established pipeline might smoothen out some
of the early bumps we want the team to face. Ideally,
the teams would first experience the problems of their
first release and then see a clear difference when they
have a CoDe pipeline in place. To do this we wait with
CoDe for the first week and start with it after the first
iteration.

With that said, many of the tools used for CoDe are more
advanced than what most of the students are used to (they
may require knowledge of Ant or Maven, etc.). They
are given very little help on the subject as researching
these tools was considered home assignments (spikes)
for them to do between lab sessions. As a result, it is
not certain if this approach is viable for all teams and it
may take too long for them to get things to work for it
to be useful.

An interesting alternative would have been to simulate
the scenario where the processes gets build by the
developers but with the help of a specialized consultant.
But since neither of us coaches are specialized in tools
necessary and we can’t afford hire real consultants we
chose to not go down that path.

3.4 Collecting data

Our most important questions regarded the viability of
implementing our own CoDe pipeline and whether the
team preferred doing it or not. We base our result on a
few factors:

• How far we came along the steps in section 3.1.
• How many and which stories the team completed.
• What the team members thought about their

progress and CoDe.

For the last point we let each team member fill a form
after the fifth lab session where they would rate how
much they agreed with the following statements:

• We had a clean repository with working tests.
• We had a quick and smooth release process.

• Focusing on CoDe helped the team improve.
• CoDe was worth the time spent on it.
• I would rather have been given a working solution

from the beginning.
• I understand the concept of CoDe.

For each statement there would be a scale from 0 to
5. The same questions were given to the teams with
a provided set-up, with a few modifications. The point
“CoDe was worth the time spent on it.” was changed
into “Code would have been worth it even if we had
to do it ourselves.” and the point “I would rather have
been given a working solution from the beginning.” was
changed into “I would rather have gotten to set up the
pipeline myself.”. During the last planning session we
asked the students if they had any other opinions on the
matter and discussed how they perceived the benefits of
CoDe.

4 RESULTS

In section 4.1 we present how well each of the teams
performed. In section 4.2 we summarize the results of
our survey. Finally in section 4.3 we mention thoughts
the teams had on the process.

4.1 CoDe results

The two teams performed very differently when it came
to CoDe. Team 06 quickly got quite far along the steps
in section 3.1.

Team 05 on the other hand struggled to get CI to work,
even though they spent a lot of time on it. It was not until
the fifth week that they managed to set up an automatic
integration pipeline that would run all tests with each
commit. Note that commits would not be stopped if they
failed the tests but the teams would be able to see what
and when it went wrong. The team never got build scripts
to work and though they had automatic acceptance tests,
they were run as unit tests within the IDE and not on
built versions of the program.

Team 06 managed to set up the the CI server half way
through development. They also made their own script
that tested and built the project. There was some trouble
getting gui tests to run on the CI server. As a result
the team shifted more to shell-scripts that tested and
deployed.

4.2 Survey answers

When applicable, we have placed all four teams in the
same diagram, otherwise they are split up in team 05
and 06 (our teams) and team 03 and 04 (teams provided
with CoDe tools). Team 05 has the color light blue while
team 06 are dark blue. Team 03 are light green and team
04, dark green.





4.3 Other thoughts

Team 05 liked CoDe and appreciated the CI server,
though they missed not being able to make it build their
program and running acceptance tests on it. They agreed
that experiencing a release on their own was positive but
would have liked if they could have gotten most of the
CoDe tools up by the next lab session.

Team 06 managed to set up the CI server for the third lab
which was a big success. But when it came to getting
acceptance tests working it was harder. In general the
team felt positively about feedback from how the build
went. Many times builds failed because the team forgot
to run all the tests after an auto-merge occurred in git,
errors like that got noticed quickly when the CI server
responded.

When team 06 for the last iteration managed to get all a
script that first ran the unit tests then built and exported
executables and then ran all acceptance tests on those
executables the atmosphere in the team changed. Seeing
all those green tests gave a moral boost, and the mix of
unit and black box tests made the team more confident
than ever. For the last release we had code pushed within
the same five minutes as the release was made without
any concern.

5 DISCUSSION

From the above results a few things stand out. First of
all, the teams had very varying success with CoDe. The
reason for this may come from their different experiences
from before the course, we know that team 06 had one
very experienced programmer for example. Both teams
were very eager though and wanted to learn.

It could be worth considering to what extent the coaches
should help the teams. In this study we were both very
lenient and open with how the teams should solve their
problems. We told them what they needed to look into
(for example, delegated a spike on build scripts) but
let them choose and set up their tools on their own
without interfering much. We believe this helped with
their understanding but it also took more time. As a
result, they had little time to actually use the systems
once they were fully implemented and worked properly.
Though team 05 suffered hardest from this, team 06,
who got more things working early, also did not have
everything done until the last few iterations. As team 05
noted, it might be good to focus more on CoDe early on
during the first two weeks though it is possible to wait
with using a CI server and build scripts on the working
branch until after the first release to still get the benefits
from experiencing that.

On the other hand, one could also question the value of
not using CoDe for the first weeks as it is still possible
that the team’s general inexperience would be enough to

still ensure a hectic first release. It would be hard to tell
the effects of CoDe in the first weeks because the teams
improves quickly at first which would add ambiguity to
the results.

We see in the survey answers that the teams that were
given a CI server from the start had a cleaner repository,
which is not very surprising. We were surprised that they
did not have as good a release process and that they
felt they had a better understanding of CoDe than our
teams had. Perhaps the latter is because their knowledge
was more evenly distributed than in our teams where
the different parts of CoDe were introduced as spikes,
meaning that those not doing the spikes in question
felt that they lacked knowledge in those areas. We
still believe that doing something yourself grants better
understanding than having someone else do it for you
so if everyone in the teams had partaken in all spikes
they should still have a better understanding. Because
that is not possible, this would then require better
communication between students after each spike so that
everyone had a clear idea of what has been done and how
it worked. Another reason for the results could be that
our teams did not rely on CoDe to the same extent as
the other teams as our processes were unfinished.

Something very interesting is that both team 05 and team
06 appreciated getting to implement CoDe themselves.
This holds especially true for team 06, likely because
they succeeded to a greater extent. For the other teams
the feelings were more mixed, though most of them did
not agree with the idea of setting up CoDe on their
own, contrary to what our teams thought. This could
be explained as a psychological thing where the teams
preferred the way they worked over other ways. It is
common to think your way is better. This is of course
just speculation on our part and any conclusions are hard
to extract from it.

6 CONCLUSION

The teams appreciated getting to implement CoDe
themselves though it is questionable if this helps with
the understanding of CoDe compared to a team that is
provided with a working solution. To improve this, the
coaches should make sure the teams can have the bases
of CoDe set up by the third lab session so that there is
ample time for them to use their new tools.

CoDe is tough and requires knowledge to set up. If
this knowledge does not already exist within the team,
the coaches should consider helping them. If, in the
future, CoDe becomes a more prominent part of the
PVG course this would be less of an issue and would
increase the viability of an iteratively introduced CoDe
process.



7 FUTURE WORKS

We said that we did not want to use CoDe for the
first two weeks in order to add contrast and give
understanding to the teams why CoDe is good. For a
future study it could be interesting to see if there is a
difference between introducing CoDe at the start of a
project or part way through it. Another way to look at
this would be with a larger contrast. What would happen
the team was given a working CoDe solution halfway
through the project?

Another area that needs more research are the impact
of automated acceptance tests. Many teams make
complicated unit tests as a substitute but how does
runnable acceptance tests as black box tests on the
executional impact the development.

REFERENCES

[1] ”Extreme Programing Explained”, K. Beck, C. Andres, second
edition, 2005, Pearson Education

[2] “Programvaruutveckling i grupp”, http://cs.lth.se/edaf45/

[3] ”Continuous Delivery - Reliable Software Releases through
Build, Test, and Deployment Automation”, J. Humble, D. Farley,
2011, Pearson Education

[4] ”Continuous Integration”, M. Fowler, May, 2006 url:
https://martinfowler.com/articles/continuousIntegration.html,
fetched 05-03-2017

[5] ”Continuous Delivery”, M. Fowler, August, 2014 url:
https://martinfowler.com/bliki/ContinuousDelivery.html, fetched
26-02-2017

[6] ”Coaching an inexperienced agile team towards a continuous
delivery methodology”, E Gärtner and M. Eriksson, 2015

[7] ”Continuous Integration with Jenkins”, J. Hembrink and P-G.
Stenberg, 2013,


