
Identifying project warning signs

Jenkins in an agile environment

Victor Englund, ada08ven@student.lu.se
Niklas Lindvall, ada08nli@student.lu.se
Karl Nilsson, dat12kni@student.lu.se

March 6, 2016

EDA270
Coaching of programming teams

Faculty of Engineering
Lund University

1



Abstract

In this study we will investigate how to use the continuous integration
tool Jenkins to identify project warning signs. When developing in larger
team, issues such as simultaneous updates, shared data, double mainte-
nance and fast changing specifications will occur. To be able to mitigate
some of these problems it is necessary to have an objective overview of
the project and Jenkins provide these capabilities. The study shows that
Jenkins will increase the awareness and produce a helpful overview of the
project through a couple of plugins, displaying code coverage and unit
test statistics.

Victor Englund, ada08ven
Niklas Lindvall, ada08nli
Karl Nilsson, dat12kni

2



1 Introduction

This study is done as a part of the course ”Coaching of programming teams”
(EDA270 [2]) at the Faculty of Enginnering (LTH), Lund University. The pur-
pose of the study is to explore the possibilities to use Jenkins[4] as a tool to
identify warning signs as a coach in an agile development project. Warning signs
can be helpful on determining when active coaching is required.

At first, we will describe the setting of the project, which includes the roles in
the project and a description of what Jenkins is. Moving on, we will describe the
problem that we are trying to address with this study using the works of previous
coaches in the same field, as well as a description of Test Driven Development
(TDD) in the course. This is used to compose our question formulation, and
our methods and results of those will be explained after that. Finally, we will
present our analysis of the data gathered from our methods.

2 Background

This section contains a description of the project setting in which this study
was conducted. We will also cover what Jenkins is and what purpose it fills.

2.1 The course project

During the second year of the Computer Science Engineering program at Lund
Faculty of Engineering a course called ”Software Development in Teams - Project”
(EDA260[1]) is given. The goal of the course is for a team consisting of 10-12
students to develop a Java system for registering and sorting times for an enduro
contest. The product is developed over the course of 6 weeks through an 8 hour
programming session each Monday, a 2 hour planning meeting on Wednesdays
and a 4 hour spike. This is the first practical agile development in a university
setting that the students experience. Git and Bitbucket is used as the platform
for version control and the central repository, and for most of the students it
was be the first time that they get to use a version control tool for a project.

2.2 Coaching

Our role as coaches in the project is to coach the team, as a part of the course
”Coaching of programming teams” (EDA270). As coaches, our purpose is to
make the team functionally using our own experiences and what we’ve learned
about agile development and team theory. In our case, we were coaching two
teams. Two of us were coaching one team each, and the third coach was coaching
both teams simultaneously. This was feasible due to the fact that the teams
were working in the same room, divided in half. During the course a study
was performed regarding the coaches’ overview of a project in the agile course
environment.

2.3 Jenkins

Jenkins is an open source continuous integration tool for automating repetitive
tasks. A lot of well known companies has seen the benefits from using Jenkins:
Sony, eBay, Netflix, Facebook and many more [5]. The basic use case of Jenkins

Victor Englund, ada08ven
Niklas Lindvall, ada08nli
Karl Nilsson, dat12kni

3



is executing unit tests, but it can perform most repetitive tasks such as calculate
test code coverage, code analysis, generate java documentation, build releases,
generate reports and much more. When running tasks Jenkins provides a clean
environment, on an external machine, verifying the build working outside an
developer environment. The build will be assigned a score for a build depending
on success at the tasks, indicating the general health of the project for a certain
commit in the project. The results is easily accessible by a webpage and can
be reviewed by anyone. By automating task developers’ time can be spent on
production rather then repetitive monotone tasks - generating feedback.

3 Problem description

When introducing a group to collaborative software development, a lot of issues
will occur. For example; building a sustainable software architecture, handling
collaboration where different minds approach problems differently and putting
all individual parts together. According to Wayne Babich the three core prob-
lems with software collaboration is; simultaneous updates, shared data and dou-
ble maintenance[12], which can lead to problems like regression of functionality,
indirect code conflicts and additional maintenance work.

On top of this the team is also introduced to the methodology of fast
changing specifications, constantly evolving source code and continuous releases.
Holmström Olsson et al [15] discuss common barriers when transitioning to a
continuous delivery workflow. Often occurring barriers are unreliable internal
verification of the quality of the system, lack of transparency of process and
undistributed information.

To be able, as coaches, to mitigate the problems occurring when introducing
these new practices it is necessary to have an overview of the project’s status
and health. Keeping an updated project overview can be an tedious task for
the team. Constant status reports from team members can be highly subjective
and consume a lot of time.

3.1 Previous studies on Jenkins in this course

In 2013, an in-depth study[16] was made by two coaches, J. Hembring and P-G
Stenberg. The purpose of the report was to show that usage of an automated
build server - in this case, Jenkins - will reduce the amount of failed builds as
well as tests during development. Another goal that they tried to accomplish
using this was to lower stress that builds up within the team when a release is
just around the corner. They had a Jenkins server set up, which fetched the
code from the development team’s Subversion repository, ran a test suite to
ensure that the code was fully functional, and then used some plug-ins such as
FindBugs and Javadoc in order to give feedback to the developers. Finally, the
server then generated a release build if everything was in order. This build could
then be fetched from the server by anyone in the team. After the project was
finished, they handed out a survey to the other teams to see how the experienced
the release process.

Victor Englund, ada08ven
Niklas Lindvall, ada08nli
Karl Nilsson, dat12kni

4



3.1.1 Results

Their results consisted of two sections. In one of them they showed that the
team frequently used Jenkins in order to get quick feedback on broken builds,
and thus were able to communicate this to the rest of the team quickly. The
other part was about Continuous Integration (CI) among the other teams, and
they concluded that the teams that used CI built up a lot more stress during
the releases.

3.1.2 Critique

We felt that one of the aspects that could be explored further from this is
the coaches’ perspective and interaction with the Jenkins server, as the study
never mentioned how the coaches experienced the teams progress and problems.
This can be of importance since the coaches don’t interact directly with the
repository like the team does, thus maybe posing the risk of not having insight
in the current state of the repository.

3.2 TDD in the course

While the course is designed to follow all XP practices, we have experienced that
usually some of them are taken a bit more lightly. This is usually a combination
of laziness, time pressure and especially a lack of understanding. Examples
of this is TDD, where a lack of understanding usually was the cause during
our project, and Pair programming where the pair switching sometimes was
delayed due to laziness and time pressure. Time pressure was also a factor that
sometimes caused the code in the repository to be uncompilable.

A consequence of lacking TDD can result in a lowered code quality and
regression of functionality[14]. The lack of understanding of TDD usually boils
down to lack of feedback. As the project grows, we found ourselves usually
just running our own tests, instead of testing everything, as well as not running
the tests just before push/commit or just after pull. Slacking on the TDD will
usually lead to a lower test coverage of the code.

4 Question formulation

In Section 3.1.2 there is a mention of coaches having less insight in the repository
than the team does, and that we want to investigate that matter further. Using
an automated build system that can continuously produce data will hopefully
give an objective overview of the health of the project to the coaches. It might
identify warning signs of project problems such as failing test, decrease in test
coverage and broken builds. Receiving an unbiased, computer generated status
report can indicate when it is a suitable time to assist the team. As Cavano
and McCall discuss, ”software testing alone does not produce or ensure good
software, it only gives an indication of error frequency that can be expected”[11].
These indicators will help management set an agenda for discussing reoccurring
problems for the project and helping the team improve on problem areas of
collaboration.

The questions we would like to answer in this study are the following:

Victor Englund, ada08ven
Niklas Lindvall, ada08nli
Karl Nilsson, dat12kni

5



• Will the use of an automated build server - in our case Jenkins - improve
the overview the coach has of the project?

• Will an increased overview help the coaches to react to broken builds as
quickly as the team does?

5 Method

In this section we will cover how we set up our Jenkins server, and how it was
used. We will also show the questionnaire about project overview we handed
out to the coaches of the other teams.

We use Jenkins in order to continuously build releases, perform tests and
establish statistics for code quality. As a commit is sent to BitBucket master
branch, Jenkins will start a build on the specific commit.

Jenkins marks a build failed, unstable or successful depending on different
parameters. If the build is broken and can not compile, the build is marked
failed. If one or more test does not pass or the test coverage of the code is below
a certain limit (which is decided by the team), the build is marked as unstable.
If the build can be compiled and all tests pass, the build is marked as successful
and the corresponding commit is merged with our stable branch and pushed
to the repository as illustrated in Figure 1. This practice provides us with a
branch that we know has a valid build and functional test cases. Regardless the
status of the build, a report of the gathered data will always be published.

Figure 1: Master to Stable merging Jenkins

We configured Jenkins with the plugins JUnit[9] and Clover[7] to make it
easier to gather the data produced by the unit testing with JUnit[4] and the test
coverage produced by Atlassian Clover[6]. These plugins aggregates the data so
it can be displayed as a graph over time.

To use Jenkins, the team needed to create an Ant[10] build script in order
to build the project. The build script is used to compile the code, run unit
tests, build runnable Java Archives, JAR’s, and produce compressed zip-files
with documentation and code.

During the third iteration of the project, the Jenkins server was set up
and introduced to the team. This allowed us to always have the possibility to
quickly look at the status of a build and acted on it if possible or appropriate.
The developers were provided the address to the server and were free to use it
to check the data. They were however not actively encouraged by us coaches to
use it.

Victor Englund, ada08ven
Niklas Lindvall, ada08nli
Karl Nilsson, dat12kni

6



5.1 Test coverage

One of our major metrics for measuring the health status of the project was the
test coverage reports generated by the Clover plugin. Our purpose for doing
this was to see if the teams were getting sloppy with their unit tests.

5.2 Questionnaire

In order to allow us to compare our experiences to those of the coaches who
did not use any assisting tools for project overview, we created a questionnaire
containing the following questions.

1. I have had an overview of the project status and its progress (i. e. red
code in the repo, code quality, test quality) (0-5)

2. What type of methods have you used in order to get a status overview of
the project? (Free text answer)

3. How quickly do you, the coaches, discover if the repository is ”red”? (0-5)

4. How quickly do you perceive that your team discovers if the repository is
”red”? (0-5)

6 Results

In this section we will first present our own results from using Jenkins, both for
overviewing the project and for discovering broken builds. After that, we will
present the results from our questionnaire given to the other teams.

6.1 Overview

Since we always had Jenkins running on at least one of the computers that
us coaches used, we constantly had a good overview of the teams’ respective
repositories, including the current code test coverage. This overview made us
discover broken/unstable builds before the team recognized most of the time.

6.2 Red repository

Due to each build in Jenkins being graphically represented by an icon in the
colors of red (broken), yellow (unstable) and blue (stable) it was very easy for us
to see the current state of the repository. In most of the cases, we managed to
discover that a commit with failing tests or uncompilable code had been pushed
to the repository before the team did.

6.3 Data from Jenkins

The Jenkins server had at the end of the project been involved in between 80
and 120 builds for each of the three teams that used the Jenkins server. The
graphs for the test coverage up until Iteration 5 is presented in Appendix A, B
and C. The three lines in the Code Coverage graphs describe the following[17]:

Victor Englund, ada08ven
Niklas Lindvall, ada08nli
Karl Nilsson, dat12kni

7



• Conditional: Represents how much of the if- and case-statements that are
covered.

• Method: Represents how much of the methods in the code that are cov-
ered.

• Statement: Represents how many of the variants of if- and case-statements
that are covered.

It’s a bit hard to distinguish the difference between conditional and state-
ment coverage. The difference is that statement coverage considers all outcomes
of a statements. For example, if the code has an if-statement without an else
case, the statement coverage will count the non-existing else-case as not covered
by the code and thus lower the coverage for statements.

The three Build Status graphs show the total number of tests executed for
each push, and how many of the tests that passed/failed. Any amount of failed
tests results in the build being marked as unstable. Some of the builds shown
have 0 executed tests, and that is due to the pushed code not compiling at all.
This results in no tests ever being executed.

6.4 Data from questionnaire

In Figure 2 and 3 below you will find the data from three of the questions in the
questionnaire. Worth noting when studying these graphs is that Team 6 and
Team 7 were conducting studies on CI as well.

Team 3 Team 3 Team 4 Team 4 Team 6 Team 6 Team 7 Team 7 Team 8 Team 8 Team 9 Team 9
0

1

2

3

4

5

6

I have had an overview of the project status and its progress 
(i. e. red code in the repo, code quality, test quality)

Figure 2

Victor Englund, ada08ven
Niklas Lindvall, ada08nli
Karl Nilsson, dat12kni

8



Team 3 Team 3 Team 4 Team 4 Team 6 Team 6 Team 7 Team 7 Team 8 Team 8 Team 9 Team 9
0

1

2

3

4

5

6

How quickly do you, the coaches, discover if the repository is "red"?

How quickly do you perceive that your team discovers if the repository is "red"?

Figure 3

The free text question What type of methods have you used in order to get
a status overview of the project? resulted in a couple of different answers but
most of the coaches used short team meetings and verbal communication to
get an overview. Two teams said they used some form of continuous integration
tool (CircleCI[18] and Codeship[19]) and the rest got an overview by hand using
other type of tools like code coverage and/or unit tests plugins to Eclipse.

The raw data from this questionnaire can be found in Appendix D.

7 Analysis

In this section we will provide an analysis of the results presented in the previous
section. Before discussing our findings, we introduce the constraints we used
and which problems occured during the execution of our methods.

7.1 Constraints

Time is always a factor, and was so in this project as well. The fact that the
project was run over just six iterations limited us a lot. Had there been more
time we would probably introduced a lot more functionality to the project, such
as fully automated release process on Jenkins, rejection hooks for BitBucket
pushes and automated GUI tests for JUnit.

A big fact that makes this course differ a lot from an industrial setting is
that it’s just a course. The main goal is to learn, and it’s not really possible to
fail the course unless the students are absent from the labs.

Along the lines of that, we would also like to point out that the team, coaches
included, were having other courses of differing workload simultaneously. The
course is also limited to the scheduled time, and the students are not allowed
to work over-time. Had this been in an industrial setting, and the release was
approaching, the team would most likely not go home at 17:00 with half finished
work just before a release.

Victor Englund, ada08ven
Niklas Lindvall, ada08nli
Karl Nilsson, dat12kni

9



As mentioned earlier, we decided to not introduce Jenkins until the third
iteration of the project in order to not overwhelm the team. This decision gave
us some useful data about our own experiences before and after the Jenkins
introduction, but it also shrunk the time window we had to work with and
experience Jenkins.

Another constraint we were forced to put on ourselves due to time limits was
to set up the Jenkins server to just concern the master branch. Even though
most of the pushes were headed directly to the master branch, a couple of
branches, mainly for refactoring, were created. We do not have any data for
Jenkins regarding these.

7.2 Problems

One of the first problems we encountered when using Jenkins was the use of
the Ant scripts. The teams had the task of creating an Ant script assigned to
them by the customer. The script worked well in the work environment the
team was developing in, but when executed in the sterile environment of the
Jenkins server it was discovered that some of the libraries used weren’t properly
included. This was due to the teams being inexperienced with Ant, and the
problem could be solved after a few hours of work.

Another problem that one of the teams encountered during the second release
of the project was that the Clover plugin we used on the Jenkins server seemed
to inject some code into the JARs, making the program unexecutable for the
customer. This delayed the release for about an hour. This was later discovered
to be the fault of the Clover plugin in Jenkins, but we managed to find a way
to work around it later on.

During the fifth iteration of the project, the Jenkins server crashed due to
it running out of storage space. The time from the initial crash until the server
was up and running again was about three hours.

Jenkins went down once again during the final iteration. The reason for
this was a late requirement from the customer, which was to make the code
compatible with Java 6. Using the Java 6 compilation broke our Clover plugin
on the server, and we were forced to remove it. This is the reason for us not
having any code coverage data for iteration 6. Had there been more time we
would probably have still compiled the program using Java 8 with a different
Ant script on the Jenkins server.

7.3 Questionnaire

The data set from the questionnaire is fairly small as there are few teams by
design in this coarse. In total there are nine teams, minus our own two teams
and another team that chose not to answer. This means we can only speculate
about any patterns that are emerging.

In Figure 2 and 3, we can see that only because you are using a CI tool
(CircleCI or Codeship) the overview of the project is not necessarily increased.
However, the teams using a CI tool tend to have more of a similar response
time, in respect of red repository, between the coaches and the developers.

The teams using verbal communication, and no specific tools to help, had
more differences between how quickly the coaches respective the developers dis-

Victor Englund, ada08ven
Niklas Lindvall, ada08nli
Karl Nilsson, dat12kni

10



cover if the repository was red. This could mean that using a CI tool could be
helping in getting a shared view of the project.

7.4 Discussion

Using a build server such as Jenkins enables the coaches to get an increased
and helpful overview of the project. Being able to spot a ”Red repository”, in
many cases before the team itself, did allow coaches to be prepared and ready
to coach the situation if needed. By consulting the Jenkins report, you can
easily identify what change has caused the issue and what kind of problem has
occurred; uncompilable files, incorrectly solved merge conflict, failing test cases
and drastic drops in code coverage. Usually the developers showed the behaviour
of pulling source code just before pushing their own, delaying the impact of the
potential issues in in the shared repository. The instant feedback provided by
Jenkins was an invaluable teaching tool.

The stable branch that Jenkins pushed to after successful builds was a great
asset when a release was approaching. Having access to a branch were every
commit was a potential release candidate helped during releasing. Even though
it’s possible to use the stable branch pattern without an automated build server,
it was good to know that the tests were always carried and passed by Jenkins.

As mentioned in Section 5, we introduced Jenkins during the third iteration
of the project. Although we felt that it would be a good experience for the team
to carry out their first release without the support from the Jenkins server’s sta-
ble branch, this late introduction combined with our time window of six iteration
might have hindered their workflow from fully adopting Jenkins. The tools that
was introduced earlier on in the project such as Git, Eclipse and JUnit, got a
greater adoption than Jenkins and Clover which was introduced later on. This
somewhat reduced the feedback we got from the teams on the server. Getting
more feedback from the teams regarding what they would’ve been interested in
having on Jenkins in terms of graphs, plugins or other suggestions to further
enhance our experiences and thus the results for this study.

When the Jenkins server went down during the fifth iteration, our overview
went down with it. Since we were used to having this comfortable way of telling
whether the repository was in good shape or not, we were somewhat perplexed
by the situation. Luckily, the teams didn’t seem to have any major issues
during that time anyway, so we could sit down and sort out the problems with
the Jenkins server relatively undisturbed. This experience taught us a lot how
much we were relying on the Jenkins server, and that it could be worth having
some sort of backup plan for situations like this. The teams that didn’t use tools
such as Jenkins mostly relied on oral communication and stand-up meetings.

8 Conclusion

From the data gathered, both from our own usage of Jenkins and the question-
naire handed out to the other teams, we feel confident to conclude that using
any CI tool will make the coaches and the teams equally aware of the objective
status of the repository. Our own experience with Jenkins gave us the impres-
sion that we had a better overview of the project overall, not just the repository.
This is however something that needs to be investigated further, as we would

Victor Englund, ada08ven
Niklas Lindvall, ada08nli
Karl Nilsson, dat12kni

11



like to have more data on other coaches using Jenkins for the same purpose as
we did. Another thing that might be of interest for future works is to explore
if the team will benefit from their coaches having the same (or better) status
knowledge of the repository as the team.

Victor Englund, ada08ven
Niklas Lindvall, ada08nli
Karl Nilsson, dat12kni

12



References

[1] EDA260 - Software Development in Teams – Project. (n.d.). Retrieved
March 03, 2016, from https://kurser.lth.se/lot/?val=kurs&kurskod=

EDA260

[2] EDA270 - Coaching of Programming Teams. (n.d.). Retrieved March 03,
2016, from https://kurser.lth.se/lot/?val=kurs&kurskod=EDA270

[3] Bitbucket — The Git solution for professional teams. (n.d.). Retrieved
February 23, 2016, from https://bitbucket.org/

[4] Jenkins . (n.d.). Retrieved February 23, 2016, from
http://jenkins-ci.org/

[5] Who is using Jenkins? (n.d.). Retrieved February 26, 2016, from
https://wiki.jenkins-ci.org/pages/viewpage.action?pageId=

58001258

[6] Java and Groovy code coverage. (n.d.). Retrieved February 23, 2016, from
https://www.atlassian.com/software/clover/overview/

[7] Clover Plugin. (n.d.). Retrieved February 23, 2016,
https://wiki.jenkins-ci.org/display/JENKINS/Clover+Plugin

[8] JUnit - About. (n.d.). Retrieved February 23, 2016, from
http://junit.org/

[9] JUnit Plugin. (n.d.). Retrieved February 23, 2016,
https://wiki.jenkins-ci.org/display/JENKINS/JUnit+Plugin

[10] Apache Ant. (n.d.). Retrieved February 23, 2016, from
http://ant.apache.org/

[11] Cavano, J. P., & Mccall, J. A. (1978). A framework for the measurement of
software quality. Proceedings of the Software Quality Assurance Workshop
on Functional and Performance Issues -.

[12] Babich, W. (1986). Software configuration management: Coordination for
team productivity. Reading, Mass.: Addison-Wesley.

[13] Keyes, J. (2004). Introduction to Software Configuration Management. In
Software configuration management. Boca Raton, Fla.: Auerbach Publica-
tions

[14] Extreme programming pocket guide. (2003). Beijing: O’Reilly.

[15] Olsson, H. H., & Bosch, J. (2014). Climbing the “Stairway to Heaven”:
Evolving From Agile Development to Continuous Deployment of Software.
Continuous Software Engineering, 15-27.

[16] J. Hembrink, P-G Stenberg, (2013). Continuous Integration with Jenkins,
Coaching of Programming Teams.

Victor Englund, ada08ven
Niklas Lindvall, ada08nli
Karl Nilsson, dat12kni

13

https://kurser.lth.se/lot/?val=kurs&kurskod=EDA260
https://kurser.lth.se/lot/?val=kurs&kurskod=EDA260
https://kurser.lth.se/lot/?val=kurs&kurskod=EDA270
https://bitbucket.org/
http://jenkins-ci.org/
https://wiki.jenkins-ci.org/pages/viewpage.action?pageId=58001258
https://wiki.jenkins-ci.org/pages/viewpage.action?pageId=58001258
https://www.atlassian.com/software/clover/overview/
https://wiki.jenkins-ci.org/display/JENKINS/Clover+Plugin
http://junit.org/
https://wiki.jenkins-ci.org/display/JENKINS/JUnit+Plugin
http://ant.apache.org/


[17] About Code Coverage, Clover 4.1, Atlassian Documentation. (n.d.).
Retrieved March 02, 2016, from https://confluence.atlassian.com/

display/CLOVER/About+Code+Coverage

[18] ”Ship Better Code, Faster.” Continuous Integration and Delivery- CircleCI.
Web. 03 Mar. 2016.

[19] ”Continuous Delivery with Codeship: Fast, Secure and Fully Customiz-
able.” Continuous Delivery with Codeship: Fast, Secure and Fully Cus-
tomizable. Web. 03 Mar. 2016.

Victor Englund, ada08ven
Niklas Lindvall, ada08nli
Karl Nilsson, dat12kni

14

https://confluence.atlassian.com/display/CLOVER/About+Code+Coverage
https://confluence.atlassian.com/display/CLOVER/About+Code+Coverage


Appendices

A Team 1

Figure 4: Test coverage for Team 1

Figure 5: Number of passed test cases for Team 1

Victor Englund, ada08ven
Niklas Lindvall, ada08nli
Karl Nilsson, dat12kni

15



B Team 2

Figure 6: Test coverage for Team 2

Figure 7: Number of passed test cases for Team 2

Victor Englund, ada08ven
Niklas Lindvall, ada08nli
Karl Nilsson, dat12kni

16



C Team 5

Figure 8: Test coverage for Team 5

Figure 9: Number of passed test cases for Team 5

D Questionnaire raw data

Victor Englund, ada08ven
Niklas Lindvall, ada08nli
Karl Nilsson, dat12kni

17



T
a
b

le
1
:

R
aw

d
a
ta

fr
o
m

q
u

es
ti

o
n

n
a
ir

e

V
il

ke
t

te
am

co
ac

h
ar

d
u

?
J
ag

h
ar

h
af

t
en

öv
er

b
li

ck
av

p
ro

je
k
-

te
t

st
at

u
s

o
ch

d
es

s
u

tv
ec

k
li

n
g?

V
il

ka
m

et
o
d

er
h

a
r

n
i

a
n
v
ä
n
t

fö
r

a
tt

f̊a
en

ö
v
er

b
li

ck
?

H
u

r
sn

a
b

b
t

u
p

p
tä

ck
er

n
i

co
a
ch

er
a
tt

d
et

ä
r

rö
tt

i
re

p
o
t?

H
u

r
sn

a
b

b
t

u
p

-
p

le
ve

r
n

i
a
tt

te
a
m

et
u

p
p
tä

ck
er

a
tt

d
et

ä
r

rö
tt

i
re

p
o
t?

T
ea

m
6

3
S

ta
n

d
u

p
,

m
u

n
tl

ig
,

co
d

es
h

ip
.

4
4

T
ea

m
4

4
T

ju
v
k
ik

at
i

re
p

o
t

o
ch

p
u

ll
a
t

1
2

T
ea

m
4

0
J
ag

:
In

ga
.

A
n

d
ra

co
a
ch

en
:

S
tu

d
er

a
t

ko
d

en
0

4
T

ea
m

3
3

S
ta

n
d

u
p

,
K

o
m

m
u

n
ik

a
ti

o
n

3
5

T
ea

m
6

3
P

ri
m

är
t

m
u

n
tl

ig
ko

m
m

u
n

ik
a
ti

o
n

/
st

a
n

d
u

p
.

V
i

h
ar

äv
en

f̊a
tt

te
a
m

et
a
tt

u
tv

ec
k
la

et
t

sy
st

em
so

m
ti

ll
ex

-
em

p
el

n
u

b
lo

ck
er

a
r

g
it

p
u

sh
ti

ll
d

ev
b

ra
n
ch

o
m

in
te

al
la

te
st

er
ä
r

g
rö

n
a
.

5
5

T
ea

m
3

3
M

u
n
tl

ig
k
om

m
u

n
ik

a
ti

o
n

fr
ä
m

st
3

5
T

ea
m

8
4

S
ta

n
d

u
p

,
m

u
n
tl

ig
ko

m
m

u
n

ik
a
ti

o
n

5
3

T
ea

m
8

4
ju

n
it

,
st

an
d

u
p

4
2

T
ea

m
9

4
A

ld
ri

g
ti

tt
a
t

i
sj

ä
lv

a
ko

d
en

,
m

en
h

a
r

ly
ss

n
a
t

v
id

d
is

k
u

ss
io

n
er

,
st

a
n

d
-u

p
m

ö
te

n
et

c.
S

a
m

t
d̊

a
o
ch

d̊
a

k
ör

t
ig

en
o
m

v̊
a
ra

te
st

er
sa

m
t

ef
te

r̊a
t

ko
ll

a
t

co
d

e-
co

ve
ra

ge
m

ed
E

cl
E

m
m

a
.

2
4

T
ea

m
7

3
C

ir
cl

eC
I,

C
ov

er
a
ll

s
4

4
T

ea
m

7
1

S
ta

n
d

u
p

,
m

u
n
tl

ig
t,

C
ir

cl
eC

I
5

5
T

ea
m

9
5

M
u

n
tl

ig
ko

m
m

u
n

ik
a
ti

o
n

,
ly

ss
n

a
v
id

st
a
n

d
u

p
,

E
cl

E
m

m
a,

sk
u

m
m

a
ig

en
o
m

n
y

ko
d

5
4

Victor Englund, ada08ven
Niklas Lindvall, ada08nli
Karl Nilsson, dat12kni

18


	Introduction
	Background
	The course project
	Coaching
	Jenkins

	Problem description
	Previous studies on Jenkins in this course
	Results
	Critique

	TDD in the course

	Question formulation
	Method
	Test coverage
	Questionnaire

	Results
	Overview
	Red repository
	Data from Jenkins
	Data from questionnaire

	Analysis
	Constraints
	Problems
	Questionnaire
	Discussion

	Conclusion
	Appendices
	Team 1
	Team 2
	Team 5
	Questionnaire raw data

