
Continuous Delivery:
How hard can it be?
Anders Buhl dat13abu@student.lu.se
Mikael Jarfors nat13mja@student.lu.se
Dept. of Comp. Science, Lund University

T
he fast development rate of modern

software projects and high expectations
on the time to market and quality of

software demands faster and more reliable
software development methods. Continuous
delivery is the extreme combination of contin-
uous integration and frequent release where
every new task will be made into a new re-
lease. The customer will always have access
to the latest version which provides fast and
continuous user feedback.

1 Introduction

This report will present the results of our research on
the effects of continuous delivery (CoDe)on a small
scale project developed by undergraduate students.
In addition to the project setup and the tools avail-
able to all development teams, the teams in the case
study also had tools to support continuous delivery.
The students did not have any prior knowledge about
the system and had to get to know the system during
the project. Previously, the team had tried using a
continuous integration system before allowed them a
basic understanding of the principles behind it.

The purpose of the research is to evaluate how
the release process is affected by adopting CoDe.
The main research questions are; how time spent on
creating a release can be decreased by adopting CoDe,
how the number of failed releases can be decreased
by adopting CoDe and if a student project of this
size will be affected by CoDe. Additional interesting
areas of research are what technical problems that

can occur, what benefits CoDe bring to the team and
the project, if the release process can be made less
chaotic, if it is possible for a student team to keep
the system releasable at all times and what effect
CoDe will have on the developers confidence.

Continuous delivery is an approach to software
development, which adopts continuous integration
and frequent releases to the extreme and makes every
new story into a release. This means that the system
has to be kept in a releasable state at all times and
the customer will at any given moment in time be
able to tryout the latest version within a couple of
minutes.

The in-depth study is conducted on two teams
studying the course software development in a team
(Programvaruutveckling i grupp, EDAF45). The
course is mainly directed to students studying the
second year on computer science but is optional for
other students studying at LTH. The teams consists
of ten developers and each team is supposed to follow
the XP developing methodology. One of teams (ref-
erenced to as team04) was a homogeneous group of
male students studying the second year on computer
science, except one, who was studying the third year
of computer science. The other team (referenced
to as team03) was a more heterogeneous group of
students who had chosen to study this course as
an optional course. This team was a combination
of second, third, fourth and fifth year male and fe-
male students. The study was done as a part of
the parallel course coaching of programming teams
(EDA270), where older students acts as coaches to
the development teams.

1



The main goal of the course EDAF45 is to learn
how to develop software in a team environment
through practical experience learn how to develop
software in a team. Each week there is focus on one
or more of the XP principles (also called team goals),
e.g. test-driven development, pair-programming etc.
One week corresponds to one sprint and starts of
with a planning meeting. During the planning meet-
ings, the teams reflected on previous sprint and plan
for the next sprint. The customer presented new
stories each planning meeting which were in turn
estimated and prioritized. After the planning meet-
ing each student were supposed to spend four hours
on a spike assignment which was to be presented
in the beginning of the programming session. The
programming session was eight hours and usually
there was a release with a deadline six hours into the
programming session.

2 Background

This in depth study is based on a few yet relevant
aspects, where the studies provided inspiration from
earlier in depth studies as well as from the principles
of eXtreme Programming. This section will discuss
how previous studies and XP led to setup for this
study.

2.1 Related work

Earlier attempts to adopt continuous integration
and CoDe in the students projects have been made.
One in-depth study focused on using Jenkins as a
continuous integration tool and looked at all benefits.
The result was higher test coverage and fewer failed
builds. The coaches chose to provide the team with
build script and a pre-configured Jenkins server [9],
this inspired us to have a similar approach in our
setup. Our research was more directed to the release
process and we chose to focus on how the release
process would be made simpler and how it would
change when using CoDe. Since test coverage would
be higher and there would be fewer failed builds
each release would be more stable and the chance
of a failed release because of a failed build would
decrease.

Eriksson and Gärtner used an iterative approach
in teaching their team to adopt CoDe. In this study
they focus on teaching the students how to adopt
CoDe and let the team discover the benefits of CoDe.
Also letting the team develop the CoDe system in-
cluding build script and build server would give the
team more insight into how the system works and

make the team appreciate CoDe more. The team
manage to setup a working CoDe system within the
time frame of the course [7]. These results are inter-
esting to see how a student team responds to CoDe
and how it can be implemented. It also gives an
indication of the effects on adopting CoDe on a stu-
dent project. Our focus will be more on the benefits
and challenges of adopting CoDe and to see how the
team responds to CoDe when using a pre-configured
system.

Previous work presents the result of adopting CoDe
in a real company. It presents the benefits and chal-
lenges of introducing CoDe into a team which is
unfamiliar with the principles of CoDe. The bene-
fits presented were accelerated time to market, in-
creased user feedback, improved productivity and
efficiency, reliable releases, improved product qual-
ity and improved customer satisfaction. Challenges
they faced when adopting CoDe was operational chal-
lenges, process challenges and technical challenges.
These benefits and challenges are results to be ex-
pected when adopting CoDe. We expect the benefits
and challenges to be similar in a student project [6].

2.2 XP

Extreme programming, XP, is an agile development
method. Agile development is a methodology where
the main idea is to embrace change and not plan
ahead more the absolutely necessary. Planning, anal-
ysis and design is done iteratively in small steps
for each cycle in development. Development cycles
are shortened to be able to easier adopt to changes.
Changes in software can be very costly and the cost
of changing software increases over time. By embrac-
ing change and not plan ahead the cost of change is
reduced [3].

Each development cycle, sprint, is divided into two
main parts: planning game and development. During
planning game the development team estimates the
cost of implementing features. These features are
described by the customer as small user stories, called
stories in XP. The customer prioritizes which stories
should be implemented during the next iteration
according to the estimations done by the development
team. In the development phase of the iteration the
developers will work in pairs and picks a story to
implement according to the customers priority [3].

XP have 12 principles (see figure 1) which describe
the central parts of XP. Continuous integration and
frequent release are the most important practices
when adopting CoDe. Continuous integration is the
principle that new code should be integrated as soon

Anders Buhl
Mikael Jarfors

CoDe Page 2 of 9



as it is developed. For each integration the system
will be built and all tests will be run. Releases will
be created frequently with small changes. CoDe
combines these two principles to the extreme that
every implemented task will result in a new release.

Figure 1: The 12 practices of XP [3]

2.3 Project setup

In order for our two teams to adopt continuous deliv-
ery from the start, a Jenkins integration server was
provided. The system was comprised of a Jenkins
server running on a home computer, such that it had
access to a public IP address. The server initiated
builds through a web hook that was set up through
the admin tools in Bitbucket. Initially the build
pipeline was a simple maven script that ran all the
tests and then generated a jar-file from the contents
of the repository.

Moreover, the Jenkins system was chosen for this
project for a few reasons, the primary reason was that
it was the most powerful free tool that was a available
at the time of starting this project. An alternative
that presented itself was Bitbucket pipelines, which
seemed a viable alternative, however due to the 30
day trial period and the project running for 6 weeks,
it was disregarded as an alternative. Furthermore,
Jenkins has a tremendous user base, which in turn
means that there are plugins for all the major version
handling tools such as git, Bitbucket and SVN.

3 Continuous Delivery

The fundamental idea of continuous delivery is to
be able to fast, efficiently and reliably deliver high
quality software. To achieve this the releases have to
be frequent and automated. This is supported by the
XP principles continuous integration and frequent re-
lease (see section 2.2). The release process has to be
automated to be repeatable and fast [8]. Continuous

integration requires a system to automate building
and testing the system. By adding an additional step
to produce and package executable binaries, docu-
mentation and external libraries etc. The integration
and delivery pipeline will run at every commit and
produce a new release.

3.1 Continuous Delivery related principles

CoDe requires developers to follow certain principles
when developing the system. These principles are a
part of the XP principles and are important to be able
to guarantee reliable and high quality software. CoDe
relies heavily on the quality of tests, fast feedback
and the ability to keep the repository releasable a all
times. In addition to the three XP principles, clean
repository is also an important principle to be able
to keep the repository releasable.

• TDD
An important design and architecture activity
in agile development to keep the design simple
and efficient. Unit tests written during TDD
are used for regression testing to guarantee that
existing functionality is not removed or broken.
TDD is used to form a safety net through test
cases that ensure functionality is present, and
thus protects existing functionality during new
commits in a CoDe environment.

• Continuous Integration
It is important to continually integrate new func-
tionality into the personal workspace to reduce
the risk of merge conflicts and workspace diverg-
ing in different directions. To be able to create
a new release as fast as possible it is important
that new features and fixes are integrated often.
Continuous Integration is needed as each task
in CoDe is created into a release, if the code is
not being continuously integrated, no releases
will be created.

• Frequent release
The idea to release weekly or daily is taken to
the extreme in CoDe and a new release can
be created on a minutely basis. Frequent re-
leases support the idea of an accelerated time
to market. This means that features that are
implemented early in a release cycle are not ar-
tificially delayed through release cycles, instead
is immediately released into the product.

• Clean Repository
As each subsequent integration is to become a
release, it is key that the repository is kept clean.

Anders Buhl
Mikael Jarfors

CoDe Page 3 of 9



A clean repository means being able to build
the system and have all tests pass.

3.2 Configuration management

Configuration management is key in order to adopt
continuous integration, as the developers need to
be able to continuously share their changes with
other developers as well as integrating new changes
to their own workspace. Continuous delivery can
be aided or hindered by a few areas of configuration
management such as branching.[12] In the project we
chose to not focus to much on advanced configuration
management methods and this is a part that could
be researched further.

3.2.1 Branching

Branching is a key aspect of software development,
where allowing your developers the freedom to exper-
iment while not needing to be worried about break-
ing any of the established functionality of a release.
Branching can be used in continuous delivery sce-
nario in order to separate the master branch from
any malicious code.

On the other hand, branching poses a few disad-
vantages such as creating the issue of double main-
tenance, meaning that the team needs to maintain
two separate projects instead of one. This problem
could be avoided by introducing feature toggles as a
way of introducing branching.

3.2.2 Feature Toggles

Feature toggles can be used in continuous delivery
projects in order to avoid double maintenance. In
the works by Neely and Stolt, feature toggles are
embraced as a method of using continuously push-
ing subsets of a story without breaking functionality.
This was done through incorporating placing unfin-
ished story behind a feature toggle, which could be
toggled on at a point where the functionality had
been implemented [12].

4 Application

The Jenkins server that was initially set up during
the first iteration, went through multiple changes and
additions in order to better aid and suit the project
needs. The plugins used where the Ant Plugin, Ja-
coco Plugin, Maven Plugin, Project Based Matrix
Security, Bitbucket Build Status Plugin, Slack Noti-

fier Plugin, Bitbucket Oauth Plugin and Bitbucket
Plugin.

4.1 Tools

• Maven Plugin
The generation of deployable jars was done
through a Maven build script [11], this plugin
ran the build script on the Jenkins server

• Ant Plugin
The generation of Jacoco test coverage needed an
Ant script instead of Maven in order to function
properly [1]. The reason behind using Ant as
an aid, was that the Jacoco plugin for Maven
struggled with a multiple module set up.

• Jacoco Plugin
This plugin published the Jacoco coverage re-
ports to the Jenkins build page.

• Project Based Matrix Security
Project Based Matrix Security was used to re-
strict access of users to their specific project,
as well as limit their ability to configure and
sabotage the Jenkins set up.

• Bitbucket Plugin
The Bitbucket plugin enabled integration be-
tween Bitbucket and Jenkins, such that once a
push was made to Bitbucket, the Jenkins server
was notified by a webhook to pull the latest
changes and build the system.

• Bitbucket Build Status Plugin
This plugin handled feedback in the Bitbucket
client (As seen in Figure 2).

Figure 2: Bitbucket Notifications

• Bitbucket Oauth Plugin
Bitbucket Oauth Plugin was used to handle
secrets and keys in order for the Bitbucket build
status plugin to function.

• Slack Notifier Plugin
This plugin pushed notifications to slack about
the status of a build after each commit. (As
seen in Figure 3).

Our pipeline consisted of compiling the program
and running the tests through Maven, and then
rebuilding the system with ant in order to pro-
duce test coverage reports with Jacoco. Lastly,

Anders Buhl
Mikael Jarfors

CoDe Page 4 of 9



Figure 3: Slack Notifications

the tests, artifacts and reports were published
on the build page of Jenkins. An illustration of
the pipeline can be seen in figure 4.

Figure 4: Visualisation of the Pipeline

5 Results

This section will present the results of introducing
CoDe in a student software development team and
also present challenges related to CoDe faced during
the project. The results were gathered through ob-
servation of the team, a survey sent to all students
participating in the course and through discussion
with other coaches in the course.

5.1 Benefits

The main benefit from adopting CoDe was continuous
feedback. The teams immediately discovered if a
commit failed any test cases or if the build failed
for any other reasons. Team03 had easier access to
the feedback since they were notified through Slack
with every commit and whether the build succeeded
or failed. The release process was less chaotic and
faster for the teams compared to what we were told
by other coaches. On the other hand team04 had
a big problem with non-functioning releases which
resulted in them having to fix the problems and redo
the release process.

The teams almost managed to keep their repository
clean from failing test cases and when it happened
the team was notified very fast. This helped the
students understand how important and difficult it
is to keep the repository clean.

5.2 Challenges

This section will state the challenges we experienced
when utilizing Jenkins and CoDe, it will focus on 3
key areas presented in [6]. The results in this section
are some common problems with adopting CoDe and
it also contains challenges which could have been
avoid if planned for.

5.2.1 Organizational Challenges

We did not encounter any severe organizational chal-
lenges since the organization of the team was built
from the ground up during the project. The only
organizational challenge we encountered was related
to the organization of the course and institution.
The computers used during the project did not allow
the students to install additional software and since
Maven was not installed they could not execute the
Maven build script locally before committing to the
repository.

5.2.2 Process challenges

In CoDe every commit would result in a new release
and the software should be kept releasable all the
time, but still the release has to be of sufficient
quality. This required the development process to
have a clear definition when a feature is done and
when to commit the feature. Every story was too
big to be committed all at once and required to be
divided into smaller tasks and test cases. This was
a problem in both teams and it was not clear when
a feature was committed and often a half finished

Anders Buhl
Mikael Jarfors

CoDe Page 5 of 9



task (or story) was committed which resulted in a
release containing some functionality which was not
completely implemented. This forced the team to
manually check the release before it was deployed to
the customer.

Build scripts are used to make sure that the system
is built, tested and packaged the same way every time,
i.e. that the build process is repeatable. Developers
should use the same build script as the integration
server during development when testing new features.
This was not possible in this project (see section
5.2.1) and introduced some process challenges since a
build could fail on the integration server even though
developer had tested the system locally.

5.2.3 Technical Challenges

The largest issues that we encountered during the
projects lifetime consisted of technical problems. The
first issue that the teams encountered was that Maven
required the team to follow a specific packet structure
in order for the tool to build correctly.

Furthermore, the versions of JUnit and JDK used
posed an elusive issue as it was not clear that this
was the issue, however it was solved easily through
specifying the version of each of the tools.

Moreover, one of the earlier points of discussions
was whether the team members should have access
to the Jenkins system, and how this would be done.
During the first iteration of the project the matrix
based security managed to lock out all of the users
from the system and a complete server reset needed
to be done through deleting the security settings.

Thirdly, both teams found that at some point in
the development process, there was a need to include
external files in the JAR file. In the case of Team 03,
an automated GUI construction tool was used, which
created .FXML files that needed to be included in
order for the GUIs layout specified. In the case of
Team 04, the team had decided to include an external
library called TimeSafe in order to construct their
configuration files. In both these cases it proved
difficult to include the needed files and libraries in
the JAR file.

Lastly, the Jenkins server did not support building
more than the main branch of the system and we
chose to not add this functionality to the due to lack
of time and also we did not want to encourage the
students to use branching.

5.3 Group Dynamics & Trust

The challenges, related to CoDe, faced during the
project affected the students trust in the system. The
dynamic of the group was affected when the system
did not work as expected and it was hard for the
students to accept that some test cases that passed
on their local machine could fail when executed on
the Jenkins server. Team03 almost missed a release
deadline when the Maven build script did not include
all required files in the executable JAR-file. This
had a great negative effect on the team and morale
were really low until the issue was solved by us, the
coaches. A similar situation occurred in team04 and
it had even greater negative effect on team04, because
they were more inclined to doubt the system.

5.4 Survey

A survey was conducted after the third release during
the fifth programming session. We chose to conduct
the survey at that time to give the students sufficient
time to get used to work in the team and to get
well acquainted with CoDe. We did not want to
conduct the survey after the last release during the
sixth programming session since the project would
have ended and it would probably give the students
a different perspective than they would have during
development.

The survey was conducted to be able to compare
the release processes of each team. The focus of the
survey was the release process, the students percep-
tion of their releases and release process and whether
the team had adopted CoDe.

Figure 5: The use of CoDe in the course.
Q: Did you team use code?
False positives answer was ’yes’, but was a
misunderstanding of CoDe

The survey did have some problems. The first
problem was that only 44% (43 out of 98) of the

Anders Buhl
Mikael Jarfors

CoDe Page 6 of 9



students answered the survey. Also many students
(18.6%) had misunderstood the concepts of CoDe and
answered that their team used CoDe even though
the team did not use CoDe (see figure 5).

Figure 6: Part of the project with dirty (unclean) repos-
itory when using CoDe (false positives not in-
cluded)

Figure 7: Part of the project with dirty (unclean) repos-
itory when not using CoDe

Figure 6 and figure 7 presents the amount of de-
velopment time where the repository contained ’red’
code, i.e. code that does not compile or code with
failing test cases. Important to note is that this is
the students view and may not actually reflect the
real numbers. What can be interpreted from the
survey is that it is a small improvement to when
using CoDe. From our point of view which came as
a result of discussion with other coaches, resulted in
a different perspective where the improvement was
more significant than the result of the survey.

With the use of Jenkins the teams got continuous
feedback whether a build succeeded or failed. A build
failed if it did not compile or if there were failing test
cases. Other teams would have to manually check if

Figure 8: Part of teams which sent a release with failing
test cases comparing CoDe (’Ja’) and non-
CoDe (’Nej’) (false positives could be consid-
ered non-CoDe)

someone pushed a commit with failing test cases and
this would probably result in more commits contain-
ing failing test cases. The number of releases sent
to customer with failing test cases was significantly
lower for teams adopting CoDe, which would indicate
that number of commits with failing test cases was
lower (see figure 8).

Figure 9: The students were more confident in changing
existing code if their teams followed TDD

Tests are an important part of CoDe and is also
a central part of the XP principles and thereby a
central part of the course. It has also been in focus in
our research and figure 9 presents how good the stu-
dents felt their team were at adopting TDD vs. how
confident they felt changing existing code. The trend
line in figure 9 indicates that there is a correlation
between TDD and collective code ownership.

Section 2.1 presents the known benefits of intro-
ducing CoDe, e.g. increased user feedback, improved
product quality and accelerated time to market. In

Anders Buhl
Mikael Jarfors

CoDe Page 7 of 9



Table 1: Comparison of CoDe vs. non-CoDe

Time to create Confidence in
release (0-10) system (0-10)

CoDe 2.35 5.94
Non-Code 2.46 5.96

the student project this would ideally result in faster
release process and a higher confidence in the sys-
tem. The time spent on creating a release is not the
measured time, instead it is the students perception
of the time to create a release. The result presented
in table 1 shows that there was almost no difference
in time spent on a release and the confidence in the
system.

5.5 Test-driven development

Testing is an important aspect of CoDe which acts
as a safety net in order to guarantee the quality of
the software. The survey indicated that the students
became more confident in changing existing code
when adopting CoDe. From the results presented in
table 2 it is clear that Team03 had a better testing
process, since they had higher test coverage and more
test cases. It was noted that Team03 had discussions
regarding the testing process and aimed to better
adopt TDD and as a result the higher number of test
cases indicated that they were better at adopting
TDD than team04.

Table 2: Test coverage

Team Number of test cases Test coverage

Team03 93 80.3%
Team04 38 67.7%

6 Discussion

The result we obtained was inline with our predic-
tions, however we ran into more challenges than
expected. The difference when comparing the stu-
dent teams was not significant which indicates that
CoDe does not have great effect on small projects
or that it is hard to implement and make the team
adopt to CoDe within the time line of the project.
We would argue that even if the results did not show
a significant difference the problems the teams faced
and the reasons for delayed releases were different
and both teams experienced the benefits of CoDe.

The survey had a very low response rate and the
answers were subjective. Some of the results in the

survey could have been collected in better ways, but
due to lack of time and resources the survey was
constructed and conducted in this form. However,
the survey gave some indication on the differences
in the teams and most of these differences displayed
the benefits of CoDe.

We did not encourage the teams to use branching,
since we did not want the configuration management
methods to become too advanced. But we did not
stop the teams from using more advanced configu-
ration methods, e.g. branching. Team03 utilized
branching in some different scenarios and for one
release they created a release branch which was not
built on Jenkins and thereby bypassed the continu-
ous delivery system and the release process had to
be done manually (see section 5.2.3).

6.1 Cost vs. benefits

The cost of implementing a continuous delivery sys-
tem was not part of the project and was not devel-
oped by the team. In terms of the project the cost
was the technical challenges related to the system
and the negative effects these challenges had on the
team.

Compared to the benefits presented in section 5.1
we think that the benefits outweigh the cost. Fur-
ther more the cost and challenges faced could be
reduced and prevented if the system och processes is
developed properly.

6.2 TDD vs non TDD

Team03 had higher adoption rate of TDD in com-
parison with Team04 during release 2, where both
teams believed that they had a functional release.
However, during the final test of the runnable files
in the release showed that Team03 had a correctly
functioning program whilst team04 found faults in
their program. Reflections during the following plan-
ning game showed that some of the team members
came to the conclusion that the program lacked tests
for essential features that revolved around output
of files, which proved to be the failing factor in the
release as well. In this specific yet real world scenario
one could see that test driven development rewarded
the team that embraced it.

7 Future work

This is an area where a lot more can be researched
and there are some aspects we discovered during
the project. What could have made it easier for

Anders Buhl
Mikael Jarfors

CoDe Page 8 of 9



the students to adapt to CoDe and make it possible
for the students to manage the system, was if they
were to develop the build scripts by themselves. The
integration server could be provided pre-configured
to the students with the possibility to run the build
scripts developed by the students.

7.1 Branching

During the process of the student project, the con-
cept of adapting a development branch, a master
branch and a release branch was often a matter of
discussion. During a future iteration of a similar
project, one could adopt other scenarios, such as
letting the students work with a development branch
that only merged into the master once a build was
successful.

7.2 Feature Toggles

Feature toggles could be useful features to adopt in a
similar project, i.e implementing features that can be
parallelized through architectural patterns such as
template och strategy methods are perfect examples
of functionality that can be hidden behind feature
toggles.

8 Conclusions

In conclusion, continuous delivery is costly process
in any size of project, however the student developed
project saw greater benefits as the time to create
the continuous delivery pipeline did not consume
development time. In contrast, the students often
found themselves antagonizing the continuous deliv-
ery tools, which could be solved through the students
developing the tools themselves.

Furthermore, teams that use a continuous delivery
scenario need to be skilled in the art of test driven
development as shown in our case studies, devel-
opment teams that do not fully adopt test driven
development may be left with dysfunctional releases.

Lastly, continuous delivery was found to streamline
the release process in terms of that the students were
able to release at will. However the success of the
release itself came down to the teams adoption rate
of the XP-principes and values.

9 Acknoledgements

We would like to thank teams 03 and 04 from the
EDAF45 course of 2017 as well as the peer reviews
that were generously done by Jesper Olsson, Mattias

Gustafsson, Joel Klint and Oscar Rydh as well as
our mentor Lars Bendix.

References

[1] http://ant.apache.org/ [2017-02-17]

[2] U. Asklund, L. Bendix, T. Ekman, Software Con-
figuration Management Practices for eXtreme
Programming Teams, in proceedings of the 11th
Nordic Workshop on Programming and Soft-
ware Development Tools and Techniques - NW-
PER’2004, Turku, Finland, August 17-19, 2004

[3] K. Beck, Embracing Change with Extreme Pro-
gramming, IEEE Computer, Oct 1999, p. 70-77

[4] L. Bendix, T. Ekman, Software Configuration
Management in Agile Development, in: Agile
Software Development Quality Assurance, Infor-
mation Science Reference, Feburary 2007

[5] J. Bosch, D. St̊ahl, 2016, Cinders: The continuous
integration and delivery architecture framework,
Information and Software Technology, Volume
83, March 2017, p. 76-93

[6] L. Chen, Continuous Delivery - Hugh Benefits,
but Challenges Too, IEEE Software, Volume 32
Issue 2, March 2015, p. 50-54

[7] M. Eriksson, E. Gärtner, Coaching an inexperi-
enced agile team towards a continuous delivery
methodology. 2015 p. 1-11.

[8] D. Farley, J. Humble, Continuous Delivery, Upper
Saddle River, NJ : Addison-Wesley, cop. 2011.

[9] J. Hembrink, P. Stenberg, Continuous Integration
with Jenkins. 2013. p. 1-8.

[10] https://jenkins.io/ [2017-02-17]

[11] https://maven.apache.org/ [2017-02-17]

[12] S. Neely, S. Stolt, Continuous Delivery? Easy!
Just Change Everything (well, maybe it is not
that easy), in proceedings of Agile 2013, Nashville,
Tennessee, August 5-9, 2013

Anders Buhl
Mikael Jarfors

CoDe Page 9 of 9


