
Introducing Perforce Visual Client as version

control tool in an XP environment

Axelsson, Oscar
dat11oax@student.lu.se

Olsson, Daniel
atf10dol@student.lu.se

March 5, 2015

Abstract

In a programming course at LTH, Subversion is used. For inexperi-
enced developers, features like merging, branching or checking differences
between revisions can be overwhelming in an advanced version control
system. The aim is to investigate if there is a better alternative to SVN.
The investigation showed that developers using Perforce rated their ex-
pertise higher in being able to make diffs, handling merge tracking and
branching, compared to developers that used SVN. As of today, using ver-
sion control in a command line environment is more popular than using
a visual client, but with the uprising of tools like Perforce Visual Client,
this may change.

1



1 Keywords

Version control tools, branching, diff, merging, Perforce, student project, coach-
ing.

2 Introduction

In the PVG course, the well known version control tool Subversion is used. For
someone unfamiliar to version control systems, one might be overwhelmed by
all of its functionality. Is there a better software for people who are scared
by terminal commands and complex version controlling? The authors have
gained some previous experience with Perforce from another course at LTH.
From that experience the conclusions conducted that it could be a good and
easy introduction for students with no experience of version control. The study
conducted research on how a team would adapt to the use of Perforce.

When we later in the study mention Perforce, we mean the Visual Perforce
client, P4V.

3 Background

3.1 Perforce background

Perforce is a version control system developed by Perforce Software Inc.
Perforce is, according to the developers themselves, a fast, scalable, secure

and reliable version management tool and it fits both large and small teams.[3]
The system manages control and documents different versions, named by

revision numbers. Every new version is documented by a number, the author,
which files it affect, what changes and a commit message where the developer
could describe the change that was made.

The synchronization model used by Perforce is the long transaction model
[4]. Simply put, it prevents a developer to submit a file which is not up to
date in relation to the depot. However, Perforce does not support the strict
long transaction model. There can be dependencies between files which would
require a developer to have a certain configuration locally before submitting it
to the depot. This is only prevented with the strict long transaction model.

The principles and terminology is quite similar to other version control tools.
What is called often called commit is called Submit, add is Mark For Add,
remove is Mark for Delete and pull is Get Latest Revision. When you
are to use a file in Perforce, you have to check out the file. The default setting
is that a file is locked when it is not checked out.

In order to ease the usage of Perforce, it can be set up in different ways
and can work for many different purposes. A versioning server can be reached
through the internet by many users, as seen to the left in Figure 1. It could
also be set up with the Git Fusion tool, as seen in the middle, by enabling Git
users to collaborate with Perforce. The last suggestions is by simply be in a
sandbox mode where one can bring everything home without having an internet
connection to the server while developing, as seen to the right.

2



Figure 1: The figure shows three different ways of setting up a Perforce depot
and how to use them. Source: Perforce Webpage[12]

Perforce can, as many other VCS, be run from the terminal. However, we
have focused our in-depth study on the visual Perforce client, P4V, which is
entirely run from a stand-alone program. This has been our chosen program to
investigate.

3.2 Project Settings

Our study was performed during the course EDA260 “Software Development in
Teams – Project”. The course aims to give students practical experience with
software development in teams and the method eXtreme Programming. The
students are divided into team of 12-14 people. The team’s goal is to develop a
program that registers and sorts time for any kind of race. For our development
the race is an Enduro race. The team gathers every Monday from 8-17 for the
development phase, and on Wednesday for a two hour planning meeting. The
course ends with a live competition where the software is tested by judges of a
race.

4 Problem statement

What are the struggles of using Perforce and what functionality do the students
find easy to us? Is it better than subversion and would it be appropriate for the
PVG course to change their default tool? What things are better or worse with
Perforce compared to subversion, git or any other version control tool? Seeing
as branching is hardly used in the PVG projects, can Perforce with its everyday
looking user interface being the comfort that the students need to want to try
out branching? Merging is a common problem in the course, can Perforce help
the team feel more secure with merging.

By the end of the project we hope that the team is satisfied with the result
and product that they have produced. With the help of Perforce, the students
have improved their expertise of understanding version control systems in gen-
eral and feel comfortable using Perforce. We also hope that the group feels that
Perforce has been an asset rather than a burden.

3



Hopefully, the graphical user interface that Perforce brings attracts the stu-
dents more than scaring them away.

5 Method

Before the first lab, we set up Perforce in a way we found appropriate. We had
to make a decision whether we wanted to host the repository ”locally” on a
server or on LTH or at a network attacked storage[6], such as assembla[7]. It
was decided that we would use an LTH hosted server.

At the start of the PVG course, we introduced Perforce to the team and
they received a short introduction/manual, see Appendix A, of Perforce that
we had authored. In order for them to start, we supervised and helped them if
they found anything difficult. We found it important to remember that people
learn from mistakes and therefore, we decided to let the team make all mistakes
they had to make in order to learn from them. We did document the mistakes
and the team did document their experiences with the version control tool at
the end of each session. It was beneficial for themselves as they were forced
to go through and reflect on what they had learned. It was also helpful for us
because we could analyze the result. In an earlier course, the team had taken
a CVS lab and they gave us a brief analysis of their impressions and thoughts
regarding CVS compared to Perforce.

As we wanted to spread knowledge and expertise within the group, we de-
cided that switching partners was going to be done continuously. We hoped
that the students would have learned a lot within a couple of weeks. This would
result in the team being self going within a couple of weeks.

We discussed whether we would investigate any of Perforce’s scripting pos-
sibilities but decided that we had enough on our plate. An article on Perforce
scripting can be found at [8].

We compared our results within the group with the result of the rest of the
teams that used subversion or git. We wanted to compare our branching strategy
with other group’s different branching strategies but decided that there was no
time for it. Comparison regarding checking differences between files, branching
and merging were the three main metrics we focused on. Other impressions
were also asked about from a more broad perspective.

Since the team was using Eclipse, we discussed whether we would use an
integrated Perforce tool, such as P4Eclipse [5], as opposed to the native Perforce
client. Due to the fact that our whole in-depth study focused on the Perforce
Visual Client, we felt that it would defeat the whole purpose of the in-depth
study if we used the integrated Eclipse plug-in.

We wanted to force the team members to learn by themselves and spread
that knowledge early, but at the same time, we wanted to be there to help them
when they need help. The positive thing about us not knowing too much about
Perforce was that we could have a discussion with the team members where
everyone really felt that both the students and we, the coaches, were on the
same level and could learn from each other.

At the first meeting of our team we made a short introduction of Perforce
and distributed a manual of the program that describes how it is used. The
manual that we had written assumed that the students had previous experience
with version control and especially CVS. The team studied the manual and by

4



the first development session the team got its first hands-on experiences with
Perforce. The first step was to set up Perforce and create a user. Also to connect
to our server and retrieve the depot that consisted of a skeleton that the team
had created and the coaches implemented. When that step was completed the
team was up and running. At the end of the development session that day the
team had time to reflect on their first day. The also reflected on how perforce was
and what their struggles where. All this was collected via a survey conducted
by the coaches.

At the third planning meeting a decision was made by the team to start using
branching. We introduced branching for the team with some guidance from
[9]. Patterns were discussed with inspiration from Brad Appleton’s branching
patterns [11]. A decision was taken by the team that it was necessary to use
a simple branching model because problems were encountered when everyone
was submitting to the same branch. The branching strategy was visualized with
help of a version tree diagram, as seen in Figure 2. At the third development
session the team started to use branching for the first time.

Figure 2: The figure shows a version tree diagram which is used to describe a
branching strategy. Source: Brad Appleton’s Webpage[11]

At the fifth development session the team encountered the first big problem.
With their own initiative they started using rollback. The problem was not
solved during the session but at the sixth and final session the program was up
and running again.

6 Results

6.1 Merging

Perforce offers a merging capabilities as shown in Figure 3

5



Figure 3: The figure shows the visual merging tool of Perforce. Source: Perforce
Website Merge[13].

The evaluated knowledge in merging and merge tracking of the students is
displayed in Figure 4.

Figure 4: The figure shows the knowledge in merging and merge tracking of the
students of our team compared to the rest of the teams.

6



6.2 Branching

We had a main branch called ”release”, a development branch called ”dev” and
one individual branch for each functionality which were created as the teams
wanted. It was highly appreciated by the team.

The evaluated knowledge in branching of the students is displayed in Fig-
ure 5.

Figure 5: The figure shows the knowledge in branching of the students of our
team compared to the rest of the teams.

6.3 Diff

The evaluated knowledge in being able to compare differences between files and
different revisions of the same file by the students is displayed in Figure 6.

7



Figure 6: The figure shows the knowledge in being able to compare differences
between files and different revisions of the same file by the students of our team
compared to the rest of the teams.

7 Discussion

At the first development session Perforce was setup by the team. We had before
the session estimated that it would take up to several hours to set up and get the
team running because of the inexperience by the team. But to our surprise the
whole team was up and running within the first half hour. The team thought
that the manual and the set-up instructions which was given to them before
the session was to very good use, giving them the support they needed. The
development continued and by the end of the day we had over 100 submits from
the team. Some of the team got expressions from the merge tool but not all.
They who tried it had a pleasant experience with it. The merge tool in Perforce
differs a lot from the one the team have experienced in CVS. In Perforce all
is visual for the developer to see. Your code is compared with the two latest
versions i the depot, from that the developer can select what lines of code should
be merged in and not. The team found this to be a great asset and felt no fear
or anxiety to be faced with merge conflicts. One of the problems we discovered
with Perforce from the first development session was that when a user created
a Perforce account it was automatically looked to that host/computer where
the account was created. This was later solved by changing the settings for the
users.

In week two, there were problems with red code in the depot and tests
were failing. The problem with Perforce not having support for strict long
transactions was solved by simply telling the students to retrieve the whole
depot when getting the latest revision and when they were submitting, they
were told to submit all of their files and not just a single one. The problem was

8



thought to be a trivial one but turned out to cause quite the mess in the depot.
If Perforce had support for strict long transactions, we would believe it would
make it more secure to use for inexperienced developers.

At the third development session branching was introduced and the team
adapted to it very well. They saw the benefits with it early and became more
confident and felt more secure with there development. But at the fifth develop-
ment session a larger problem occurred and the team decided that they needed
to rollback the program. This created some issues for the team because they
where inexperienced by it and we coaches had not given them enough intro-
duction to it. But by the beginning of the sixth development session the team
had through a spike gotten better knowledge with it and could then localize the
issue. The team also found it easier to localize the problem thanks to P4V:s diff
command, which presents it in a easy way, more about this is taken up in the
diff session.

The program was finally released and the team was satisfied by the result.
By the end of it all the team had a pleasant experience with Perforce. They
had some troubles with rollback and branches but that can be the lack of expe-
rience and the approach of trial and error instead of gathering knowledge before
trying. The team have from this project gained a great experience with version
control and we think that Perforce is a great tool for an inexperienced developer.
Thanks to the visual aspect of both merging and branching the developer can
easily see what has happened.

The reader has to keep in mind that in a study with this few people, the
results can show something that could be interpreted wrong and therefore, the
conclusion might be misleading.

7.1 Merging

The results tend to point towards the fact that Perforce and git/SVN perform
typically the same when it comes to merging different versions of files. We got
a lot of good critique regarding merging in Perforce which is not shown in the
diagram. It could be that our team has easier to get started with merging on
Perforce thanks to the visual client, but when the other teams learn to handle
merging on SVN they feel just as comfortable as our team with Perforce.

There were a few people in the team that expressed their love for the merging
capabilities of Perforce and thought it was genius. They found it very easy to
use because of the interface P4V presents.

7.2 Branching

As mentioned before, it is impossible to say anything for certain with too few
people answering these questions. Although, if one is to take anything from this
graph, it could be that Perforce, after at least two weeks or three, seemed to give
somewhat better overview of branching compared to git/SVN. This difference
could also be that we in the third development session introduced branching
and the team then got a better understanding of it compared to teams that had
not tried it.

An important thing to keep in mind is the following quote from one of the
students in our team: ”It would be an extreme hassle to execute this whole
project without branching.”.

9



The principles of branching were embraced immediately and the team quickly
spoke in terms of branching which tells us that it was highly needed for the
team. The team felt more confident in their development and felt they had
more control and stability of the project. They also felt less stress before a
release because the know that their release branch was always working and a
release could easily be produced within minutes.

7.3 Diff

The results tell us that checking differences in files was somewhat at the same
difficulty in Perforce compared to git/SVN. It is worthy to mention that we in
our team has presented and introduced diffing as a function which other teams
may not have done.

7.4 Limitations

In a study conducted on few people, one has to realize that the results may
vary a lot. The study was performed on developers where most of them have
only a small amount of experience using a version control system. Our results
and assessments do not necessarily correspond with people who have previous
experience using a version control system.

We chose to not approach the Perforce plug-in for Eclipse, P4Eclipse, because
we felt that it would defeat the purpose of the whole study which focuses on
Perforce Visual Client. Also, we did not dive deep in the scripting possibilities
of Perforce because we did not feel like it was relevant for the project. The
in-depth study focused on the graphical aspects of a version control system
and therefore, a decision was made to ignore testing Perforce functionality via
terminal commands.

7.5 Possible weaknesses

There are always drawbacks in a realistic solution. What are the drawbacks of
using Perforce in the EDA260 course? We discussed earlier on that a student
in second year may feel uncomfortable using version control in the command
line, we know from experience that some of us did. If the students only learn
Perforce Visual Client, will the missing expertise in using SVN/Git in a terminal
window be crucial to have when one has to work at a company? We believe that
learning the principles of using a version control tool is more important than
learning how to use it via a command line. The students thereby get a good
experience from version control and can easier see the benefits of it.

8 Conclusion

The results tell us that the usage of Perforce has made it easier for the developers
to maintain their code. This may vary from different groups and the small
sample of students may skew the results.

Perforce repeatedly shows us that the visual aspects of the client gives the
user a very flat learning curve. It does not have the same effect as many other
terminal based tools where the user feels frightened because of a program’s po-
tential complexity. This does not mean that the program is the perfect selection

10



in every situation, but with an inexperienced team of version control, Perforce
is a great alternative.

Our expectations were exceeded. We did not think that we would see such
ease when the students worked with a completely new version control system.

All in all, Perforce is an intuitive and easy to use tool for version control.
We recommend it highly.

11



References

[1] ”Version Control” http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=

&arnumber=1576667 Retrieved 2014-12-21

[2] Laura Wingerd, ”Practical Perforce”, 2005 http://books.google.se/

books?hl=en&lr=&id=mlm61wb2v3MC&oi=fnd&pg=PT7&dq=perforce&

ots=IYr5yQPoPy&sig=L7YQsBmV6Agjsw95XXZon1b3NFU&redir_esc=y#v=

onepage&q=perforce&f=false

[3] Perforce Platform — Perforce http://www.perforce.com/platform#

advantages

[4] Peter H. Feiler, Configuration management models in commercial environ-
ments, March 1991, Pittsburgh USA.

[5] ”P4Eclipse” http://www.perforce.com/resources/presentations/

developers-corner/developer-takes-new-visual-tools-p4eclipse-v20101

[6] Richard Geiger, ”Perforce with Network Appliance Storage”, Perforce
User Conference 2001 http://www.perforce.com/sites/default/files/

network-application-storage-geiger.pdf

[7] ”Assembla” https://www.assembla.com/repositories/perforce

[8] J. Bowles, S. Vance, ”Scripting with Perforce” 2005 http://www.perforce.

com/sites/default/files/scripting-with-perforce-paper_0.pdf

[9] R. Cowsam, ”Introduction to Branching in Perforce” http://www.

vaccaperna.co.uk/scm/branching.html

[10] Y. Zhang, R. Chang, ”Branch Management and Atomic Merge in a
Continuous Integration Environment” http://www.perforce.com/sites/

default/files/emc-white-paper.pdf

[11] Brad Appleton Streamed Lines: Branching Patterns for Parallel Software
Development http://www.bradapp.com/acme/branching/

[12] Perforce Webpage http://www.perforce.com/sites/default/files/

git-p4-sandbox.jpg

[13] Merging http://www.perforce.com/sites/default/files/

perforce-p4-merge.png

12

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1576667
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1576667
http://books.google.se/books?hl=en&lr=&id=mlm61wb2v3MC&oi=fnd&pg=PT7&dq=perforce&ots=IYr5yQPoPy&sig=L7YQsBmV6Agjsw95XXZon1b3NFU&redir_esc=y#v=onepage&q=perforce&f=false
http://books.google.se/books?hl=en&lr=&id=mlm61wb2v3MC&oi=fnd&pg=PT7&dq=perforce&ots=IYr5yQPoPy&sig=L7YQsBmV6Agjsw95XXZon1b3NFU&redir_esc=y#v=onepage&q=perforce&f=false
http://books.google.se/books?hl=en&lr=&id=mlm61wb2v3MC&oi=fnd&pg=PT7&dq=perforce&ots=IYr5yQPoPy&sig=L7YQsBmV6Agjsw95XXZon1b3NFU&redir_esc=y#v=onepage&q=perforce&f=false
http://books.google.se/books?hl=en&lr=&id=mlm61wb2v3MC&oi=fnd&pg=PT7&dq=perforce&ots=IYr5yQPoPy&sig=L7YQsBmV6Agjsw95XXZon1b3NFU&redir_esc=y#v=onepage&q=perforce&f=false
http://www.perforce.com/platform#advantages
http://www.perforce.com/platform#advantages
http://www.perforce.com/resources/presentations/developers-corner/developer-takes-new-visual-tools-p4eclipse-v20101
http://www.perforce.com/resources/presentations/developers-corner/developer-takes-new-visual-tools-p4eclipse-v20101
http://www.perforce.com/sites/default/files/network-application-storage-geiger.pdf
http://www.perforce.com/sites/default/files/network-application-storage-geiger.pdf
https://www.assembla.com/repositories/perforce
http://www.perforce.com/sites/default/files/scripting-with-perforce-paper_0.pdf
http://www.perforce.com/sites/default/files/scripting-with-perforce-paper_0.pdf
http://www.vaccaperna.co.uk/scm/branching.html
http://www.vaccaperna.co.uk/scm/branching.html
http://www.perforce.com/sites/default/files/emc-white-paper.pdf
http://www.perforce.com/sites/default/files/emc-white-paper.pdf
http://www.bradapp.com/acme/branching/
http://www.perforce.com/sites/default/files/git-p4-sandbox.jpg
http://www.perforce.com/sites/default/files/git-p4-sandbox.jpg
http://www.perforce.com/sites/default/files/perforce-p4-merge.png
http://www.perforce.com/sites/default/files/perforce-p4-merge.png


9 Appendix A

9.1 Quick guide to Perforce

This quick guide serves as an introduction to the most commonly used functions
within Perforce. It is assumed that you have previous knowledge about CVS
and that you already have set up your repository and workspace.

9.1.1 Commit

To be able to edit a file you will need to Check out the file. Afterwards when
you are finished with your updates you simply Submit in order push your edits
to the repository. This may be done on both single and multiple files as well as
directories.

9.1.2 Update

When you want to copy the files from the repository to your workspace, you use
the command Get Latest Revision. This could be done by clicking the Depot
tab and select the folder or file you want to update. There is a possibility to copy
older versions to the workspace than the current. To do this the Get Revision...
command is used with the corresponding revision of the file.

9.1.3 Add

To add files to the repository you have to perform two tasks, first the file needs
to be marked for add (can be found in the context menu), which places the file
in a changelist. When the file is marked for add, the file icon is marked by a red
plus sign. The then changelist needs to be submitted to the repository, which
adds the file to the repository.

9.1.4 Status

The status command in Perforce is compared to CVS a graphical display. The
status of the file can be seen on the file with different icons. When you hover
over the file a describing dialog appears, describing the status of the file. If the
file e.g. needs merge or an update.

9.1.5 Log

The log of a file can be viewed in History where you can see all the Changelists
that were created when submitting changes. You can view the submit comments
and the version number of the changes. The changelists can also be compared
with the diff command.

9.1.6 Diff

The diff function within perforce is a versatile tool which lets you check differ-
ences between files within your workspace and the repository. To diff you run
the Diff against have revision command and this displays the differences with
a P4V diff tool. You can manually set which revisions of the file you want to
compare on as well as check the diff on a file between branches.

13



9.1.7 Branches

Perforce offers a wide support for branching, including the ability to perform the
composite model in some sense with the use of labels. Branching release versions
will allow you to maintain the previous release with bug fixes and updates while
continue development on the next release without the need to mix code. In
the context menu you select Branch and then you choose either source files,
directories or a label (which is connected to different files or directories) and
then select a target path. The files will then be copied into the new target
path starting on revision 1 (corresponds to the selected revision as stated when
branching).

9.1.8 Support for merge tracking

When handling merges and tracking of them, Perforce offers a large variety of
tools. They offer a great overview of the different revision and merges of the
files. Revision graphs displaying a visual representation of the revision history
of the file can be generated in Perforce. It also displays the individual commit
messages for each commit along with the time, author and revision number.
The changelist of the commit is also displayable for the different revisions.

9.1.9 Useful links when learning more about Perforce

http://www.perforce.com/perforce/r14.1/manuals/intro/intro.pdf
http://www.perforce.com/perforce/r14.1/manuals/p4v-gs/p4v-gs.pdf

9.2 User manual

9.2.1 Hur hämtar jag Perforce till min hemkatalog?

Skriv dessa tre rader i terminalen.
cp -R /usr/local/cs/EDAN10/Perforce ˜
cd ˜
chmod -R 755 Perforce

9.2.2 Hur startar jag Perforce?

cd ˜
./Perforce/bin/p4v&

9.2.3 Hur skapar jag en användare?

I Server skriver du in: vm57.cs.lth.se:1666
Till höger om User trycker du p̊a New och fyller i uppgifterna.

9.2.4 Hur loggar jag in?

Server: vm57.cs.lth.se:1666
User: Ditt användarnamn
Tryck OK!

14



9.2.5 Ok, jag är inloggad. Now what?

Tryck p̊a Connection i menyn. Välj New Workspace.
Tryck p̊a Browse till höger om Workspace root: och välj en mapp som du
vill använda som din lokala kopia av depot (dvs ditt workspace).
Tryck p̊a OK. Välj Depot-fliken om den inte är vald och tryck p̊a Get Latest
Revision-knappen l̊angt upp till vänster för att hämta det som finns p̊a depot.
Öppna Eclipse och tryck p̊a File, Import, General, Existing Project into
Workspace. Välj samma root directory som Workspace root och importera
projektet Enduro.

9.2.6 Hjäääälp hjääälp, det fungerar inte!!

Skicka ett mail till atf10dol@student.lu.se eller dat11oax@student.lu.se
s̊a kommer vi inom 5 minuter. Garanterat.

15


	Keywords
	Introduction
	Background
	Perforce background
	Project Settings

	Problem statement
	Method
	Results
	Merging
	Branching
	Diff

	Discussion
	Merging
	Branching
	Diff
	Limitations
	Possible weaknesses

	Conclusion
	Appendix A
	Quick guide to Perforce
	Commit
	Update
	Add
	Status
	Log
	Diff
	Branches
	Support for merge tracking
	Useful links when learning more about Perforce

	User manual
	Hur hämtar jag Perforce till min hemkatalog?
	Hur startar jag Perforce?
	Hur skapar jag en användare?
	Hur loggar jag in?
	Ok, jag är inloggad. Now what?
	Hjäääälp hjääälp, det fungerar inte!!



