
Configuration Management – Mother’s little helper
for Global Agile Projects?

Lars Bendix
Department of Computer Science

Lund University
Lund, Sweden

Christian Pendleton
Softhouse Consulting

Malmö, Sweden

Abstract—There are many good reasons for turning co-located
projects distributed, likewise there are many good reasons for
turning traditional projects agile. In both cases there are many
obstacles to overcome and pitfalls to avoid and the
combination of agile and distributed does not make this
situation any better. In general Configuration Management
works as the infrastructure of any software project and its
concepts and principles have to be implemented in different
ways depending on the specific context. How to adapt
Configuration Management for an agile context is well
understood, how to adapt it for distribution is less understood
– and what changes and how to fix that when a co-located agile
team goes distributed is unclear. In this position paper, we
draw on our experience from academic and industrial agile
projects to give our opinions on what to look out for and
possibilities for solutions.

Keywords-configuration management; agile development;
global distribution; tools and techniques; challenges

I. INTRODUCTION
Agile development methods seem to have had quite some

success in recent years, but agile has also become a
buzzword that is used and abused in many contexts. Agile
often seems to be used as a quick fix to any problem. Lately,
the idea of using agile on distributed projects has surfaced
though it may seem a contradiction since agile methods are
built on face-to-face communication [19]. In a review of
reviews of global agile research it is concluded that there is
an increasing interest in the research world (measured on
number of publications) for both distribution and agile – and
that there is the need for more research that covers both [11].

Both authors of this paper have more than a decade of
experience with agile development (XP and Scrum) in
academic as well as in industrial contexts. However, they
have little or marginal experience with distributed
development and were curious to look into how agile
changes under distribution. Furthermore, both authors are
experts in Configuration Management (CM) and were
particularly interested in understanding how the practice of
CM will change from co-located agile to distributed agile –
and what new things CM could offer to provide support in a
distributed agile setting.

To be able to understand and distinguish the different

scenario we were working with we created the mental picture
shown in figure 1.

What most people are probably interested in is the direct
transition from co-located traditional to distributed agile
development (the dotted line). However, in our opinion that
is probably a dream as it would be making too big a leap in
one single step.

The transition from co-located traditional to co-located
agile is well understood and equivalent to simply adopting an
agile development method [4]. The implications for the
practice of CM are also well understood [5].

The transition from co-located traditional to distributed
traditional development is the core focus of the International
Conference on Global Software Engineering and is well
investigated even if there are still aspects that may not be so
well understood.

The transition from distributed traditional to distributed
agile development and the transition from co-located agile to
distributed agile development are clearly within the scope of
this workshop. In this position paper, we focus our attention
on the transition from co-located to distributed agile. In
particular our interest is the implications for the practice of
CM, but we will also touch some of the more general
problems of going distributed on agile projects.

Figure 1. Moving to global agile.

Accepted for the ICGSE Workshop on Global Software Engineering for Agile Teams,
Porto Alegre, Brazil, August 27, 2012

© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or

redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

In the following, we first have a short discussion of what
we intend by the terms “agile” and “distributed” and a quick
introduction to the area of CM. Next, we look at agile
practices and analyse how their implementation will change
when going distributed and how CM can support their
implementation; followed by a discussion of how our
proposals relate to existing work. Finally, we draw our main
conclusions on how CM can support the transition from co-
located agile to distributed agile development and sketch
some future topics to investigate and discuss further.

II. AGILE AND DISTRIBUTION
Agile and distributed are concepts with many and vague

definitions. We give a short discussion of what we intend
when we use the terms in this paper. Neither of the concepts
is “binary”, so there are different shades or degrees of being
agile and distributed.

A. Agile
What does it mean that a project team is agile? The agile

manifesto [17] is rather vague and very open for
interpretations. Even one of the founding fathers of the agile
movement, Kent Beck, has changed his mind over the years.
In the first edition of his book on Extreme Programming [3],
he was rather rigid and required people to carry out all the
prescribed practices in order to be considered agile. In the
second edition of his book [4], he has “softened” somewhat.
He has extended and refined the number of practices and
divided them up into primary practices, that can be useful on
their own and in any context (like Pair Programming) and
corollary practices, that should not be used unless the
relevant primary practices are in place first (like Shared
Code, where Continuous Integration needs to be in place
first). He also places much more importance on the five
fundamental values on which he has built Extreme
Programming: feedback, communication, simplicity, courage
and respect.

In this paper we take “agile” to mean that the five values
of Extreme Programming are followed. In particular that
feedback is sought very frequently to obtain information on
which decisions of possible changes of direction could be
based. This definition includes not only Extreme
Programming practices, but also Scrum practices and other
practices or processes that follow these values.

B. Distributed
When is a project team being distributed? Does it have to

be a situation similar to that of Open Source Software
projects where the team consists of individuals scattered all
over the globe? Or is it sufficient that the team consists of
two groups, one located in Boston and the other in Tokyo?
And would it also be distributed if the teams were located in
adjacent rooms? Research works with three overall types of
causes for distribution: physical distance, time-zone
differences and cultural differences [16]. In this paper, we
will primarily focus on the first two types. According to Piri
et al. [13] distribution really makes a difference. In particular

on a number of parameters like: Team Trust,
Communication, Coordination, Mutual Support,
Effectiveness (Quality), and Resourcing.

However, distribution can also be even more subtle than
that. In the context of agile methods, which are based on
quick and easy communication, a “distribution” effect can be
caused by impediments for such communication. In one
occasion we discovered that a team did not really use the
information on the storyboard except at the stand-up
meetings. It turned out that the reason was that when they
worked they all sat with their backs to the storyboard and
thus rarely looked at it.

So, in this paper we will take “distributed” to mean
everything that causes obstacles for the quick and easy
communication of information within a project team.

III. A QUICK INTRODUCTION TO CONFIGURATION
MANAGEMENT

This section is a quick introduction to the most important
concepts and principles in CM. It will give an alternative
picture to the CM knowledgeable readers and make it easier
for the CM-uninitiated reader to follow our subsequent
discussions and reasoning.

A. Traditional Configuration Management
Traditionally CM is looked at as process biased and

aiming at regulating the interface between the customer and
the company and enabling the management of a development
project. It consists of four activities: Configuration
Identification, Configuration Control, Configuration Status
Accounting and Configuration Audit [12].

The Configuration Identification activity makes sure that
important artefacts of a project are put under configuration
management, whereas the Configuration Status Accounting
activity reports on the status of artefacts and development.
One way to look at this is that the first activity is the
definition of a database. What objects should be put into it,
what information should be recorded about the objects, how
should they be structured and what relations should exist
between them. The second activity then becomes queries on
this database of project artefacts, both standard queries and
ad-hoc queries to provide information from the collected
data. Configuration Control has focus on managing changes
to project artefacts. It ranges from collecting relevant
information about Change Requests over their treatment on
the Change Control Board – that decides which Change
Requests to accept, reject or defer – through the process of
following them through to their closure. The decision part of
this process has a “control” aspect to it, whereas the rest of
the process can be seen as collection and provision of
information. The purpose of the Configuration Audit activity
is to make sure that a project is ready to deliver what is has
promised. Much like when you see an airline pilot walking
around his airplane before leaving, making sure that the
engines are still there, that there is not ice on the fuselage
and so on. Had the pilot had sensors – and trusted them – he

would not have to walk around to gather his information.
Likewise, software development teams that do not have
“sensors” (like valid measurements on release quality) – or
do not trust them – will do Configuration Audits before
releasing their products.

B. Team-oriented Configuration Management
A different view of CM sees it as tool biased and aimed

at helping a team of developers to co-ordinate their parallel
work and to handle the day-to-day and minute-by-minute
evolution of the software inside the development team.

Wayne Babich [2] identified three fundamental problems
that he had seen happen in the coordination of individual
people’s work in a team: shared data, simultaneous update
and double maintenance. The shared data problem happens
in situations where a problem is caused by the changes of
other people – changes that we were not aware of. The
simultaneous update problem happens when someone
accidently overwrites and removes someone else’s change.
The double maintenance problem happens when something
is copied – and changes are made to one of the copies. In
order to keep the two copies identical the exact same change
has to be made in the other copy too. We can never hope to
completely eliminate these problems, but by clever use of
processes and tools we can hope to be able to manage them.
Peter Feiler [8] distilled work models of version control
tools. They introduce the concept of a workspace to isolate
people from other people’s changes and unexpected Shared
Data problems. Tools perform concurrency checks to avoid
the Simultaneous Update problem by not allowing a commit
to the repository if someone else has already committed a
change. However, there are still subtle ways in which other
people’s changes can accidentally be removed. Merge
functionality helps manage the Double Maintenance problem
by automatically integrating the changes in one copy into
another copy. For the synchronization of people’s work early
tools provided locking mechanisms to stop parallel work on
the same components, but gradually moved towards a more
relaxed model that allows parallel work since there is tool
support to merge possible parallel changes. The transaction
model changed from a very simplistic model where people
were focused on single files that were committed one at a
time towards the concept of logical changes where a set of
changes are committed in one atomic operation.

IV. FROM CO-LOCATED TO DISTRIBUTED AGILE
When going from co-located to distributed agile it will

affect the way the team is working. Some practices (like Pair
Programming) will be invariant to distribution, while other
practices (like Sprint Planning or Continuous Integration)
will have to be implemented differently. Furthermore, there
may be some practices that cannot be turned distributed (like
Sit Together), just like there may be the need for additional
practices to take care of aspects pertaining to the distribution.
In the following, we will present a small selection of the
practices – CM-related as well as CM-enhanced – that we
have looked at and analysed.

A. CM-related practices
Continuous Integration: Continuous integration is the

response to the Double Maintenance problem [20]. CM can
set up different strategies that allow the team flexibility in
how often and how tight integration should be. When the
integration runs smooth there is very little impact from
distribution. The only thing being that it is more difficult to
know when there is something new to integrate. CM can
easily set up mechanisms to automatically notify everyone
on the team. When there are problems with an integration the
developer has to communicate with the other parties
involved in the problem.

Ten-minute Build: Build automation is one of the
services that CM is able to provide [20]. Like Continuous
Integration, it is only in the case of problems that developers
will have to communicate and will notice any difference in
the change from a co-located to a distributed setup. Ten-
minute Build is a “pre-requisite” for Test-Driven
Development since it builds on it being easy and fast to build
and unit-test the code [20].

Frequent Releases: If Continuous Integration and Ten-
minute Builds are in place, it becomes quite easy to
implement Frequent Releases. CM can provide means for
doing Configuration Audits before release. Likewise there
are version control tools that allow the introduction or
exclusion of a story at the last moment by advanced use of
transaction packages.

Sprint Planning: Sprint planning is a team activity in
Scrum. The product owner may participate, but if the
backlog items are prepared in advance, it is usually not
required. Since we are dealing with the backlog items here,
traceability can be boosted by proper routines for
identification (same as for backlog handling). The way of
conducting sprint planning will have to change dramatically
if the team is distributed. Common sprint planning practices,
like planning poker, will suffer from communication over
some kind of media. It is hard to say that any CM practice
can solve those problems though.

B. CM-enhanced practices
Backlog Handling: The backlog handling in Scrum is

really the responsibility of one person – the Product Owner
[21]. The need for CM support in the operational work is
therefore quite low, neither is the impact of distribution very
severe. But a backlog that is not visible to those who use it
will not give value to the team. In a small, co-located team
one can often do with just a bunch of cards (like in XP) that
are sorted in priority order. When the team grows or goes
distributed there will be the need for more controlled
procedures for the backlog handling and a few CM practices
will come to use. Publishing the backlog in a controlled way
will make everyone in the team receive the changes
simultaneously and will decrease confusion when
communicating about the backlog. This kind of publishing is
actually a baseline adapted to agile values. To make
traceability from backlog items, through development, to

deliveries possible configuration identification is needed. If
we add distribution to the scenario and work with several
teams from different sites where backlog items can have
dependencies between the teams, identification and
traceability is crucial.

Informative Workspaces: A main objective of CM is to
collect and present information. When information is
digitalized and put online it will also give the team flexibility
to communicate in ways that are asynchronous, public and
persistent instead of relying on the normal verbal
communication in a co-located setup – and it means that the
team will be less affected by distribution. The digitalization
also gives possibilities for capturing more information,
automating some steps in processes and quality control of
data. Finally, it is much easier to search and mine digital
data.

Daily Scrum: The daily scrum is the short daily meeting
dealing with the tasks within the current sprint. In a non-
distributed environment, CM involvement is limited to
possible traceability of tasks vs. backlog items and trouble
reports – i.e. identification. If the organization is distributed
with different teams on different sites, it is good to consider
how to increase transparency towards teams on other sites
since it is difficult to participate in the scrum of another team
when there are dependencies in the sprint planning that needs
to be handled. There are several tools on the market to
support this, but once you go digital with the scrum board
you most likely will want to integrate with other tools like
version control tools and issue management tools. If the team
itself is distributed over several sites, the digitalization of the
scrum board soon becomes necessary and even more central
in the daily work of the team. Again – the more distributed,
the more benefits from routines for identification and
publishing to make communication about the backlog items
and the tasks easier and straight forward

Burndown Chart: The burndown chart is the major “in-
sprint-follow-up tool” in Scrum. It shows the progress during
the sprint and is handled by the team. Tools for computerized
scrum boards almost always include a function for the
burndown chart. There is little direct relation with CM here.

V. DISCUSSION
There are many reports on difficulties and failures with

blending agile and distributed. However, there are also a few
studies that report success [6, 14]. Both of which show the
importance of understanding the agile philosophy and also
have strong aspects of CM without explicitly mentioning it.

It is important not to create silos in the distribution of
work [15] but work in a more flexible network of changing
connections like [7]. CM can help support the move from
distributed teams to distributed individuals.

Gupta et al. [10] report on the lack of conclusive
evidence of collaboration tools. They found that people
rarely communicated and collaborated in planned ways but
most often made ad-hoc decisions. This may indicate that a

collaboration framework that is based on asynchronous
collaboration through a knowledge base could be a solution
rather than traditional collaboration tools there the benefits
have not been established [18]. CM could provide at least
part of such a more flexible framework.

One of the differences between co-located and distributed
projects pointed out by Piri et al. [13] is the lack of trust in
the distributed setup. Trust is very important for agile teams
since it is strictly related to the values of courage and respect.
One way to build trust in a team is to increase information
and awareness about what is going on in the project. As an
information providing service CM offers many possibilities
to give support for that even on a distributed project.

From “prior experience” reported, it seems that most of
the time when people have problems in going from
traditional distributed to agile distributed it is because they
lack even the most elementary understanding of what agile is
– or because they think they are agile just because they do a
couple of practices or skip the agile principles under pressure
[9].

Alyahya et al. [1] deal with how to manage progress on
distributed agile projects. The problem is that distribution
makes it hard to create awareness about what changes go on
and at what point they are. This affects the developers’
understanding of development progress. They propose a
holistic approach to manage the development progress. They
want to monitor Unit Testing, Acceptance Testing,
Continuous Integration and Source Code Versioning. This is
quite similar to what happens in the Configuration Control
activity after a Change Request has been approved and
assigned. They state that it can be a problem that developers
can forget to update the status when it has to be done
manually, but following traditional CM standards such
misses will be caught by the Configuration Audit. Finally,
the overall awareness they aim at with their proposal is little
more than what is (or could be) provided by traditional
Configuration Status Accounting.

VI. CONCLUSIONS
It seems a contradiction that a method like “agile” that is

so profoundly rooted in quick, easy and high-bandwidth
communication should be proposed as the “fix” to problems
with distribution. Our impression is that it is the “extremely
frequent feedback” part of “agile” that works wonders. So,
we have to find “fixes” for the loss of communication we
experience when we go from co-located to distributed agile.

CM may not be a “little yellow pill” but if “you go
running for the shelter of a Mother's little helper” it will
certainly “help you on your way, get you through your busy
day”. CM provides support today on traditional co-located
projects where focus often is on the control aspects of CM.
However, CM could be even more helpful on agile
distributed projects and since such projects thrive on seeking
and consuming information there will have to be a stronger
focus on that aspect of CM.

ACKNOWLEDGEMENT
We would like to thank Marc Girod, Ericsson, Ireland,

for comments, ideas and discussions – and The Rolling
Stones for inspiration for the title of the paper.

REFERENCES
[1] S. Alyahya, W. K. Ivins, W. A. Gray: “Co-ordination Support for

Managing Progress of Distributed Agile Projects”, in Proceedings of
the First Workshop on Global Software Engineering for Agile Teams,
Helsinki, Finland, August 15, 2011.

[2] W. A. Babich: “Software Configuration Management – Coordination
for Team Productivity”, Addison-Wesley Publishing Company, 1986.

[3] K. Beck: “Extreme Programming Explained: Embrace Change”,
Addison-Wesley Professional, 1999.

[4] K. Beck: “Extreme Programming Explained: Embrace Change (2nd
edition)”, Addison-Wesley Professional, 2004.

[5] L. Bendix, T. Ekman: “Software Configuration Management in Agile
Development”, in I. G. Stamelos, P. Sfetsos (eds.) “Agile Software
Development Quality Assurance”, IGI Global, 2007.

[6] S. Berczuk: “Back to Basics: The Role of Agile Principles in Success
with an Distributed Scrum Team”, in Proceedings of AGILE2007,
2007.

[7] S. Datta, R. Sindhgatta, B. Sengupta: “Evolution of Developer
Collaboration on the Jazz Platform – A Study of a Large Scale Agile
Project”, in Proceedings of ISEC, 2011.

[8] P. H. Feiler: “Configuration Management Models in Commercial
Environments”, Technical Report, CMU/SEI-91-TR-7, Carnegie-
Mellon University, Pennsylvania, March 1991.

[9] M. Giblin, P. Brennan, C. Exton: “Introducing Agile Methods in a
Large Software Development Team: The Developers Changing
Perspective”, in Proceedings of XP2010, 2010.

[10] M. Gupta, J. Fernandez: “How Globally Distributed Software Teams
Can Improve their Collaboration Effectiveness”, in Proceedings of
ICGSE, 2011.

[11] G. K. Hanssen, D. Smite, N. B. Moe: “Signs of Agile Trends in
Global Software Engineering Research: A Tertiary Study”, in
Proceedings of the First Workshop on Global Software Engineering
for Agile Teams, Helsinki, Finland, August 15, 2011.

[12] A. Leon: “Software Configuration Management Handbook”, (second
edition), Artech House, 2005.

[13] A. Piri, T. Niinimäki: “Does distribution make any difference?”, in
Proceedings of the First Workshop on Global Software Engineering
for Agile Teams, Helsinki, Finland, August 15, 2011.

[14] B. Ramesh, L. Cao, K. Mohan, P. Xu: “Can Distributed Software
Development Be Agile?”, Communications of the ACM, October
2006.

[15] S. V. Shrivastava, H. Date: “Distributed Agile Software
Development: A Review”, Journal of Computer Science and
Engineering, May 2010.

[16] F. Q. B. da Silva, C. Costa, A. C. C. França, and R. Prikladnicki:
“Challenges and Solutions in Distributed Software Development
Project Management: A Systematic Literature Review”, in
Proceedings of the 5th International Conference on Global Software
Engineering, Princeton, New Jersey, August 23-26, 2010.

[17] Various authors: “Manifesto for Agile Software Development”,
agilemanifesto.org, 2001.

[18] J. Whitehead: “Collaboration in Software Engineering: A Roadmap”,
in Proceedings of FoSE, 2007.

[19] “First Workshop on Global Software Engineering for Agile Teams
(Globagile)”, www.inf.pucrs.br/munddos/globagile/, Helsinki,
Finland, August 15, 2011.

[20] U. Asklund, L. Bendix, T. Ekman: “Software Configuration
Management Practices for eXtreme Programming Teams”, in
Proceedings of the 11th Nordic Workshop on Programming and
Software Development Tools and Techniques - NWPER'2004, Turku,
Finland, August 17-19, 2004.

[21] K. Schwaber, M. Beedle: “Agile Software Development with Scrum”,
Prentice Hall, 2001.

