
Collaborative Work with Software Models – Industrial Experience and
Requirements

Lars Bendix1 and Pär Emanuelsson2

1Department of Computer Science, Lund Institute of Technology,
Box 118, S-221 00 Lund, Sweden

2Ericsson AB, S-583 30 Linköping, Sweden
1bendix@cs.lth.se, 2par.emanuelsson@ericsson.com

Abstract

When the initial problems of introducing and
adopting model-driven development in a company have
been handled, we want to go to work. That means that
we have to supply our team of developers with a
development environment and tools and processes that
allow them to work efficiently. In many cases the team
would like to work with models as if it was “just
another programming language” and use the same
techniques and processes for team collaboration and
coordination they are used to from traditional
development. Unfortunately some of the traditional
tools and processes that work so well for traditional
development do not work at all for model-driven
development. Version control functionality is usually a
key part in coordinating the parallel work in a team
and through a set of use cases, we arrive at a number
of requirements to a model-driven development
environment that must be available for a team of
developers to work efficiently.

1. Introduction

For many different reasons, the use of model-driven
development becomes more and more widespread. The
model “technology” per se seems to have matured and
can bring several advantages – amongst which is
higher developer productivity. However, while the
model-driven approach in itself is now becoming
mature, there still seems to be many problems with the
tools and processes that are needed to support the
developers in their work. Such support is already in
place with development environments for more
traditional development, but seems to be absent – or in
its infancy – when it comes to model-driven
development.

For the early adopters of model-driven development
there have been many obstacles to overcome in order

to switch from working with programming languages
to working with models only. Now that this first line of
problems from introducing models has been dealt with,
we start to see a second line of problems that has to do
with how to work with models. The developers would
like their day-to-day work to be as much as possible
just “business as usual” with all the support they had
when doing traditional programming.

The “general” problem is how to handle
collaboration when working with models. Much of this
has to do with how a team of developers can
coordinate their work [1]. However, there are also
other aspects, like how to capture the history of the
development to facilitate maintenance (understanding
the model through its evolution history) – or to
facilitate adding new functionality based on what has
happened in the past.

We also need an organised and disciplined way of
sharing what is being produced by the team. No team
can work efficiently without team members working in
parallel. Likewise we will need to carry out
maintenance of older versions of the system in parallel
with new development. These needs are usually
satisfied through the use of a version-controlled
repository. In both cases, branching and merging
capabilities of such a repository can be used for this.
Often we understand the present by looking at the past,
so we would like to inspect the differences between the
current version and some earlier version. This is all
functionality that is at our service for traditional code-
driven development, but which needs special tools for
model-driven development.

In the present phase we have investigated
collaboration in real projects. We have interviewed
developers to see how they find working solutions by
adapting available tools and processes. We are
currently not looking for general solutions to general
problems, but solutions that solve our specific
problems. Future work will then look at how such

results can be generalised. The modelling tool used in
the projects we have studied generates production
quality (C++) code from UML models. The UML
models consist of class and state charts diagrams
combined with action code (attributed to state
transitions and method bodies). The code generation is
“forward” only, which means that the C++ action code
is a part of the model and full code generation is done
from the model (UML and action code). There is no
round-trip process that allows edit of generated code.
One of the main advantages with this set-up that it
guarantees the consistency of model and generated
code, which has been a problem for many other model-
based approaches. In Figure 1 below, this corresponds
to “model centric” development.

Figure 1. Ways of using models in development.

The outline of the rest of our paper is as follows. In

the next chapter, we state the background for our work
– both with respect to related work as to the context in
which our problems occur. In chapter 3, we develop a
number of use cases for collaborative work in general
as well as for model-driven development in particular.
This is followed by a more in-depth discussion of the
consequences of these use cases with regards to
general requirements to useful tool and process support
for teamwork in model-driven development. Finally, in
chapter 5, we draw our conclusions and sketch some
future work to be done.

2. Background

In this chapter, we will give you an introduction to
our problem domain. We do that by first giving an
overview and discussion of related work, thus
delimiting what parts of model-driven development we
want to target. Then we give a description of the
experience Ericsson has with using model-driven
development, thereby highlighting the problems we
have encountered and the wishes we have for the
future.

2.1. Related work

There is very little previous work on the

requirements to useful environment support for model-

driven development – and to the best of our
knowledge, there is virtually nothing on the
collaboration aspects of a team and how they can use
version control techniques and processes in their day-
to-day work as a team.

The work of Meijler [9] seems to be focused on
requirements to a meta modelling environment
primarily for domain specific modelling languages.
Storage and retrieval of models is mentioned but no
details developed. There are also requirements to
runtime semantics and incremental extensibility and
ad-hoc adaptation of models, but again focus is on
what to provide single developers and not on what
consequences these requirements could have in a team
setting.

The primary focus of Staron [12] is on the
requirements for making the introduction of model-
driven development into industry work smoother.
Whereas this means that many aspects deal with
overcoming what we called the first line of problems of
introducing model-driven development, there are also a
few aspects related to collaborative working with
model-driven development. It should be possible to
develop a system in cooperation between several units
at the company. It should be possible to use models
without a complete redefinition of current processes;
and availability of tools is seen as an important issue.
However, once again these requirements are of a quite
general nature – though touching also on collaborative
aspects – and their detailed consequences are not
discussed.

The work that is most related to ours, is that of
Selonen [11]. It is not a direct attempt at finding the
requirements for support for teamwork using a model-
driven approach. The primary goal is to make a review
and comparison of different approaches to model
comparison. The provided framework for the review
makes use of a list of desirable qualities for model
comparison techniques and a list of potential usage
scenarios. In particular we find the usage scenarios
interesting as they contain more detailed considerations
of how model comparison is used and thus also more
details for the requirements. However, as it is not a
primary goal, there is no extensive discussion of the
consequences for the requirements.

In Figure 2 a) below, it is shown how tools make it
possible for a team to work and coordinate using
sophisticated branching and merging strategies when
working with text (traditional programming
languages). However, because of lack of the same tool
support in the model-driven domain, our teams of
developers have to work in the much more restricted
way that is shown in Figure 2 b), where branches are
few and merges back to the mainline are manual and
remain “invisible”.

Figure 2: a) how we would like to work; b) how we are
“forced” to work.

The situation in Figure 2 a) is the one that our

developers would like to be able to use, both because it
is less restrictive and because it is what they are/were
used to when working with traditional development.
This means that we should look at use cases from
traditional development and in particular for use cases
related to collaborative development. The drawback of
this method is that we will not capture ways of
working that are particular to model-driven
development. However, we have also conducted
interviews with developers who carry out model-driven
development to be able to discover differences from
the traditional case.

Several papers from the workshop on Comparison
and Versioning of Software Models address topics that
are related to providing support for collaborative work
with models [2, 6, 10 and 14]. However, they do not
address the topic in a systematic way and are more
focused on providing solutions or possibilities than at
looking at and analysing what are the actual needs to
enable efficient collaborative work with models. Even
our own paper at that workshop [3] focused more on
describing the problems than actually distilling use
cases and analysing and discussing their consequences
for the detailed requirements. We do that here with the
goal to be able to provide tool providers with a list of
requirements for which they can look for existing
results – and researchers with an agenda of problems
for which industry looks for and needs to find solutions
if model-driven development has to be efficient.

2.2. Experience

Ericsson has developed and deployed several large

systems containing millions of lines of code that have
been generated from UML models. Experience has
largely been very positive. It is easier to understand the
system for project participants with various roles. It is
easier to handle complexity in the problem domain.
Also system reliability, speed of execution and code
volume has been satisfactory.

However many of the projects have not found a
good way to handle collaborative aspects of the
development and evolution of UML models. Of course
a solution has to be found, but available solutions
severely restrict several aspects of the development.
One common solution is to avoid parallel development
as far as possible in order to avoid merges. This can
result in heavy planning work and static code owner
assignments. Of course – a reasonable amount of
planning is needed anyway and coordination of updates
has to be done in some way. But to manage teams of
hundreds of developers and guarantee that conflicting
changes are not made can indeed be very complex.

Many projects would like to work in a feature-
oriented way. In this kind of development a multi-
disciplinary team develops a single feature of a system
from start to end through all development phases. This
development is quite different from having one team
for requirements, one for design, one for test etc. All
the feature teams would work on the same model and
they should not have to do detailed synchronisation
and planning between the teams. This kind of
development requires efficient and reliable model
merge.

Projects that really want to work feature oriented
can be forced to choose programming instead of
modelling. That would be very unfortunate and
something that we would like to see changed –
modelling should be compatible with any kind of
technique that results in increased productivity and
quality.

We will not take the position of “blame the tools”.
Rather we will study how projects divide models into
manageable pieces and study how the different merge-
avoiding strategies interact. Tools will not solve all
problems and we will have to find strategies that work
with non-perfect tools.

For our specific needs, we are only looking for a
solution to a limited problem:

• All developers work on the same
coordinated project, so everybody works in
the same way if needed.

• Everybody is using the same set of tools.
• Historic versions of the models are always

available (possible to make 3-way merge).
• Layout changes without semantic

significance need not have an elegant
solution, but can be essentially manual.

There are many problems when merging results
done in different modelling languages or modelling
tools with different goals (architecture models, testing
models, production code generation). However, we
think there are significant problems also when using
the same modelling language and tool, with a complete
history of development (making 3-way merges

possible), and when the team has frequent coordination
meetings and there is a common “purpose and culture”
in place. These problems are simple and already solved
one might think, however there are many unsolved
problems:

• Differences between models are often
displayed in terms of a meta model that is
not familiar to the user. Many of the meta
model concepts do not have a
straightforward mapping to the model
elements that are the daily work items for
the developer.

• Even when only a few changes have been
done the compare/merge tools report many
differences. There may be up to 10-20
differences (on meta model level) resulting
from one change (on user level).

• Models may contain large textual parts.
Model compare/diff tools may be weak on
the textual parts although they should be as
good as textual compare/merge tools.

• Some tools report on model layout changes
and offer merge of these changes as well. It
may be hard to distinguish layout changes
from semantic ones.

• Layout differences are often a consequence
of semantic changes. If for example an
attribute name is changed to a longer
name, the whole layout of a class might be
changed, which results in a large number
of layout meta model attributes being
changed.

• A compare/merge tool often considers the
content of a single unit even if there are
associations to model elements in other
units. It is hard for the user to know when
such associations have been repaired or if
strange situations will appear much later
when the units are loaded into the same
workspace.

In text based merge there is a totally semantics-free,

language-free assumption: if there are two parallel
edits on the same source-line there is a conflict
otherwise there is no conflict. Is there a corresponding
concept for models that we have not discovered yet?

The text-based merge assumption works really well
for all languages (C++, Lisp, 1st order predicate logic)
and even though we can construct examples where it
fails miserably, it works fairly well in practise. Since
UML language extensions and DSLs are more and
more common, maybe something more language
independent is needed?

We want to have the possibility to do large-scale
development of models in parallel by large teams of

developers and still be able to guarantee a high level of
consistency and productivity. It should be possible to
merge models effectively and not be forced to do:

• Excessive planning work as for example:
o An extreme amount of planning in

order to serialize work to prevent
conflicts. That takes too much
time for work that is non-
productive.

o Divide the modules into small
fragments of controlled units in
order to avoid conflicts.

• or, if conflicts occur, extraordinary
measures such as:

o Manual merges with the model
editor.

o Manual edits of the file
representation of the model. That
is of course a terrible thing to be
forced into, but is often done in
practise.

3. Use cases

In this chapter, we describe the use cases for

collaborative development we have distinguished so
far. First we describe more general use cases from
traditional development and then more specific use
cases from model-driven development. The template
we use for describing our use cases is as follows:

Goals:
Actors:
Summary description:
Pre-conditions:
Post-conditions:
Subordinate or related use cases:
Discussion:
Sample scenarios:

Not all entries will be used for all use cases. In

some cases we have not arrived at the proper
refinement or definition yet and there are some use
cases that are still on the “future work” list.

3.1. Use cases related to textual domain

The use cases described in this section have been

inspired in part by [4] and in part by our own
experience from traditional development.

a) Put project under version control.

Goals: Identify and structure configuration items
and place them in a shared repository.

Actors: System architect/designer and Configuration
Manager.

Summary description: As a part of the Configuration
Identification activity [7] artefacts that are
important for the project are identified, a
structured for organising the artefacts is
established and created in a repository.

Pre-conditions: System architecture/design is in
place.

Post-conditions: All important project artefacts are
in the repository.

Discussion: For traditional development, source
code is usually the primary type of artefact.
However, it is not unusual to include also
requirements, design, test cases, documentation
and more.

b) Work in isolation.

Goals: Carry out independent work without
influence from others.

Actors: Developer (in the case of source code).
Summary description: A copy of the whole system

is created that can only be modified by one
single person.

Pre-conditions: A defined task and a defined state of
the system.

Post-conditions: A system that has only been
changed by a single developer.

Discussion: A common problem when many people
change the same system is that it feels like
shooting at a moving target. Furthermore, one
person cannot be certain that a problem is due to
him or some other person’s changes. So in some
situations it is best to be sure that only one
person can make changes.

c) Integrate work.

Goals: To integrate work that has been done with
the current state of the repository.

Actors: Developer – and the repository.
Summary description: After the completion of work

that has been done in isolation, it has to be
integrated with the current state of the
repository.

Pre-conditions: A set of local changes and a
repository (that may have changed).

Post-conditions: A repository where the local
changes have been integrated.

Subordinate or related use cases: Related to 3.1 b)
Work in isolation.

Discussion: Several people can carry out work in
isolation in parallel. So when it is time to
integrate, the repository may not be in the state
it was when the isolation was established. In this

case a merge between the local changes and the
current repository must be done. In most cases it
can be done by a tool, but in case of conflicts
human intervention is needed.

d) Verify and validate merge result.

Goals: To make sure that the proposed merge result
is correct.

Actors: Developer, compiler and test suite.
Summary description: In case a merge result is

produced, we build the system from the result
and smoke test it.

Pre-conditions: A proposed merge result.
Post-conditions: A checked proposed merge result.
Subordinate or related use cases: Related to 3.1 c)

Integrate work.
Discussion: We cannot be sure that automated

merge tools produce correct results. In
particular, they have problems because they do
not take into consideration neither syntax and
semantics of the programming language, nor the
logic of the system we are developing.

e) Investigate history.

Goals: To visualise how a component or system has
changed in the past.

Actors: Developer (or maintainer).
Summary description: When trying to understand

some code it is a great help to be able to see
how it has evolved through time.

Discussion: Usually the history is shown as the
difference between two versions of the same
component.

f) Create awareness.

Goals: To make the developer aware of what is
happening and potential consequences.

Actors: Developer – and team.
Summary description: The developer may be

interested in knowing who is working on what,
which things have changed, and what would be
the consequences of an integration at the current
time with (parts of) the system.

Subordinate or related use cases: Related to 3.1 b)
Work in isolation.

Discussion: If we want to distinguish between
different developers, they need to have different
branches in the repository. It should be possible
to show differences between not just the
repository and a workspace, but between two
workspaces. Likewise for merges that should be
“hypothetical” and not actually carried out
unless the developer decides so.

We have a number of additional use cases that we
intend to look at in the future for a more refined
analysis: g) Maintain old version h) Release system; i)
Rename or move of file (as part of refactorings) –
exotic/rare, here just to show previous textual work to
an equivalent model use case; j) Split or combine of
files – exotic/rare, here just to show previous textual
work to an equivalent model use case.

3.2. Use cases related to Model-Driven
development

The first two use cases describe development of

different kinds of models, namely architecture and
design models. The following three use cases describe
more detailed merge situations that may occur both in
development of architecture and design models.

a) Architecture model development.

Goals: Create an architecture model of a system.
Actors: System architect (develops the architecture

model). System engineer (receiver of the
architecture model).

Summary Description: Provides the system context
to project participants. Describes important
system interfaces that are the base for system
development. A model of the system
architecture is developed. It is the basis for
many planning activities, such as resource
planning and change impact analysis. It can also
be verified for consistency with models used for
design and test.

Pre-conditions: System requirements exist.
Post-conditions: An architecture model has been

developed.
Discussion: There are not that many people

involved in the development (compared with
design) and architecture models are primarily
graphical (no action language code is needed for
example).

b) Design model development

Goals: Create a design model for a system.
Actors: System engineer.
Summary Description: Provides the detailed system

description that can be used to make full code
generation. A design model of the system is
developed.

Pre-conditions: System requirements and system
architecture models exist.

Post-conditions: A detailed and verified system
model exists.

Discussion: There are many system engineers
(hundreds) involved in the development. The

models are very large. Development is often
done at distributed sites. Models have both
graphic and textual parts. Accuracy of results
from compares and merges is very important.

c) Model update without merge

Goals: Create a new version of a number of
configuration items of the model.

Actors: Model developer.
Summary description: When the items of the model

are checked in, the version control tool
discovers that there have been no other updates
of these items so they can be stored as they are.

Pre-conditions: The model is available in a
repository.

Post-conditions: The updated and verified model is
in the repository.

Discussion: This is the simplest case and no model
compare/merge tool is needed as the
“comparison” is done from file system
information (time stamp).

d) Model update with simple merge

Goals: Create a new version of a number of
configuration items of the model.

Actors: Model developer.
Summary Description: The model developer checks

out a number of items. The model editor is used
to update the model. The model developer
checks in the items. The version control tool
discovers that there have been other updates to
some items. A model merge tool is then
activated and the two updated items and a
common ancestor are identified by the version
control tool and sent over to the model merge
tool. The model merge tool compares the three
items and automatically generates a merged
model since all conflicts can be resolved.

Pre-conditions: The model is available in a
repository.

Post-conditions: The updated and verified model is
in the repository.

Discussion: The user should be able to inspect and
understand the changes that have been made and
verify that there are no real conflicts (there are
always conflicts that a tool cannot discover and
that need to be manually verified). It should be
possible to double-check (in cases of
uncertainty) that the result is what the user
expect.

e) Model update with complex merge

Goals: Create a new version of a number of
configuration items of the model.

Actors: Model developer.
Summary Description: The model developer checks

out a number of items. The model editor is used
to update the model. The model developer
checks in the items. The version control tool
discovers that there have been other updates to
some items. A model merge tool is then
activated and the two updated items and a
common ancestor are identified by the version
control tool and sent over to the model merge
tool. The model merge tool compares the three
items but cannot perform an automatic merge.
The user is asked how to combine results from
the two conflicting models.

Pre-conditions: The model is available in a
repository.

Post-conditions: The updated and verified model is
in the repository.

Discussion: It is essential that the user can inspect
and understand the changes (as in use case 3.2
d). Additionally the model merge tool should
not allow inconsistent model fragments to be
selected. Model inconsistency that results from
the combination of several edits should be
discovered.

We have a number of additional use cases that we

intend to look at in the future for a more refined
analysis: f) Quality checks/inspections g) Migration of
model to another language/tool; h) Create a new
project/model (if it is not captured by 3.2 a)); i) Model
verification and validation (if it is not captured by 3.2
f)).

4. Discussion

The discussion in this chapter is based on the use
cases we identified the previous chapter. For the use
cases from section 3.1 we will consider how it works
in the traditional domain and how we would like it to
work in the model domain – and what we would need
to obtain that. For the use cases from section 3.2, we
will consider how we would like it to work and what
we would need to obtain that.

We really want to do not just model-driven
development, but also feature-based development,
which means that it is an absolute must that people can
work in parallel everywhere in the code and in a very
dynamic and flexible way. This goes in particular for
the different feature teams but also for the developers
within one specific feature team. So we cannot use a
static split-combine solution [8], as feature teams will
work in different “areas” for different features.

This leaves us with the fact that we will have to
provide support for an optimistic copy-merge way of
working in parallel. Our developers are used to
working with such a strategy and would like to be able
to do that also for model-driven development. As a
consequence good merge support becomes a
fundamental requirement. Because this merge support
is not optimal today, our developers do implement
merge-avoiding strategies, like the one shown in
Figure 2 b). It has some advantages, because it keeps
the developers from excessive branching, which can be
a problem in itself. However, it also keeps the
developers from adopting useful team development
processes like Continuous Integration [5].

When looking for proper merge support, we are
very interested in tools that provide us with correct
merge results – and that find as many merges as
possible without giving up and signalling a merge
conflict that requires human intervention. In the
traditional textual domain, research has already
considered to include the syntax and semantics of the
used programming language to provide better merges.
However, that has never made its way into commercial
tools. Most probably because the cost-benefit is not
right. There are high costs involved with adapting the
merge tool to any language that needs to be supported
– and to keep up with the evolution of the language.
The pay-offs also seem to be marginal, as “simple”
merge tools do fairly well. In many cases when human
intervention is needed, the conflict can be resolved
pretty easily. In the remaining few cases, even an
“intelligent” tool would not have been able to solve the
conflicting changes.

When we consider the quality of a merge tool or
algorithm, we have to focus on two concepts from
statistics: precision and recall. The higher the
precision, the fewer times the tool will report a false
successful merge. The higher the recall, the less times
the tool will give up and report a conflict that requires
human intervention.

In the ideal case, we would look for 100% precision
and 100% recall, but in traditional development, people
are satisfied with less and put more emphasis on recall
than precision. The reason why we look for a high
recall is that we want the tool to automatically do as
many merges as possible. Often this happens at the
cost of the precision – it will more often report a merge
as being successful when indeed it is not a correct
result. However, as long as we have other ways of
telling that the tool was wrong, this is not a big
problem. Indeed, in traditional development, the merge
process consists of three steps: the merge, build check,
and smoke check. When the second and third steps are
not too heavy, there is not a high cost to pay for the
lower precision.

In the case of model-driven development, there is
currently a different trade-off. It is very time
consuming to carry out the build and smoke checks.
We would like to see work on how to quickly verify
models to see if they are still syntactically and
semantically correct. Likewise, we would like to see
work on how to quickly validate the logic in the system
we are developing. If that can be obtained, then we can
also relax our requirement that merge algorithms for
models should have 100% precision.

With regards to the recall – the ability to find as
many of the merges as possible – we believe that
model merge should have better possibilities than in
the simple textual case. The reasons for this are that
there is much more information available when the
merge result has to be produced.

A final aspect regarding merge, is the presentation
of the merge result. In the good old days of simple tty
screens writing lines of green text, merge and diff
visualisation was horrible. However, today there are
nice GUIs showing information in a very intuitive way
– an example of this is shown in Figure 3. We are
presented with both alternatives to be merged (at the
top left and top right) and also the common ancestor (at
the top middle). We also see the proposed merge result
(at the bottom) – and colour is used to make evident
from where the proposed result originated and where
something has been merged and where the code has
remained unchanged. It is possible in each case to
choose whether to include a change or not and in case
of a merge conflict to choose which alternative we
want. It is even possible to manually edit the proposed
result before we finally save it. Something similar
would be much appreciated also for model-driven
development.

Figure 3. Merge in the textual domain with a nice
graphical user interface.

5. Conclusions

Some of the requirements we have identified are

already satisfied to some degree at Ericsson today.
Merges can be done and differences shown, but the
quality lacks a lot. From our requirements we can see
where improvements can be made.

We propose that tool vendors and researchers try to
solve the special case (we use UML) before they try to
attack the general case. This also means that we can
“accept” a constraint of universally unique IDs in the
first case – and get the “similarity”-based stuff [13]
later.

6. References

[1] Wayne A. Babich, “Software Configuration Management

– Coordination for Team Productivity,” Addison-Wesley,
1986.

[2] Christian Bartelt, “Consistency Preserving Model Merge
in Collaborative Development Processes,” in Proceedings
of the International Workshop on Comparison and
Versioning of Software Models, Leipzig, Germany, May
17, 2008.

[3] Lars Bendix, Pär Emanuelsson, “Diff and Merge Support
for Model Based Development,” in Proceedings of the
International Workshop on Comparison and Versioning
of Software Models, Leipzig, Germany, May 17, 2008.

[4] Lars Bendix, Otto Vinter, “Configuration Management
from a Developer’s Perspective,” in Proceedings of the
EuroSTAR 2001 Conference, Stockholm, Sweden,
November 19-23, 2001.

[5] Martin Fowler, “Continuous Integration,”
http://www.martinfowler.com/articles/continuousIntegrat
ion.html, May 2006, retrieved January 3, 2009.

[6] Maximilian Kögel, “Towards Software Configuration
Management for Unified Models,” in Proceedings of the
International Workshop on Comparison and Versioning
of Software Models, Leipzig, Germany, May 17, 2008.

[7] Alexis Leon, “Software Configuration Management
Handbook (second edition),” Artech House, 2004.

[8] Boris Magnusson, Ulf Asklund, Sten Minör, “Fine-
Grained Revision Control for Collaborative Software
Development,” in Proceedings of the 1st ACM SIGSOFT
Symposium on Foundations of Software Engineering,
Los Angeles, California, December 8-10, 1993.

[9] T. D. Meijler, “Requirements for an Integrated Domain
Specific Modeling, Modeling Language Development,
and Execution Environment,” in Proceedings of the 3rd
Nordic Workshop on UML and Software Modeling,
Tampere, Finland, August 29-31, 2005.

[10] Leonardo Murta, Chessman Corrêa, João Gustavo
Prudêncio, Cláudia Werner, “Towards Odyssey-VCS 2:
Improvements over a UML-based Version Control
System,” in Proceedings of the International Workshop
on Comparison and Versioning of Software Models,
Leipzig, Germany, May 17, 2008.

[11] Petri Selonen, “A Review of UML Model Comparison
Approaches,” in Proceedings of Nordic Workshop on
Model Driven Engineering, Ronneby, Sweden, August
27-29, 2007.

[12] Miroslaw Staron, “Adopting Model Driven Software
Development in Industry – A Case Study at Two
Companies,” in Proceedings of the 9th International
Conference on Model Driven Engineering Languages
and Systems, Genova, Italy, October 1-6, 2006.

[13] Christoph Treude, Stefan Berlik, Sven Wenzel, Udo
Kelter, “Difference Computation of Large Models,” in
Proceedings of the 6th joint meeting of the European
Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software
Engineering, Dubrovnik, Croatia, September 3-7, 2007.

[14] Sven Wenzel, “Scalable Visualization of Model
Differences,” in Proceedings of the International
Workshop on Comparison and Versioning of Software
Models, Leipzig, Germany, May 17, 2008.

